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Abstract
 In a recent paper, a novel W-test for pairwise epistasis testingBackground:

was proposed that appeared, in computer simulations, to have higher power
than competing alternatives. Application to genome-wide bipolar data detected
significant epistasis between SNPs in genes of relevant biological function.
Network analysis indicated that the implicated genes formed two separate
interaction networks, each containing genes highly related to autism and
neurodegenerative disorders.

 Here we investigate further the properties and performance of theMethods:
W-test via theoretical evaluation, computer simulations and application to real
data.

 We demonstrate that, for common variants, the W-test is closelyResults:
related to several existing tests of association allowing for interaction, including
logistic regression on 8 degrees of freedom, although logistic regression can
show inflated type I error for low minor allele frequencies,  whereas the W-test
shows good/conservative type I error control. Although in some situations the
W-test can show higher power, logistic regression is not limited to tests on 8
degrees of freedom but can instead be tailored to impose greater structure on
the assumed alternative hypothesis, offering a power advantage when the
imposed structure matches the true structure.

The W-test is a potentially useful method for testing forConclusions: 
association - without necessarily implying interaction - between genetic variants
disease, particularly when one or more of the genetic variants are rare. For
common variants, the advantages of the W-test are less clear, and, indeed,
there are situations where existing methods perform better. In our
investigations, we further uncover a number of problems with the practical
implementation and application of the W-test (to bipolar disorder) previously
described, apparently due to inadequate use of standard data quality-control
procedures. This observation leads us to urge caution in interpretation of the
previously-presented results, most of which we consider are highly likely to be
artefacts.
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Introduction
In a paper recently published in the journal Nucleic Acids Research, 
Wang and colleagues1 proposed a novel W-test for pairwise epista-
sis testing. The thrust of the proposed method was to compare the 
distributions of the k observed genotype combinations at L = 2 dial-
lelic genetic loci such as single nucleotide polymorphisms (SNPs), 
between cases and controls (see Table 1). In general, for L = 2 
loci, the number of possible categories k = 9, although this number 
can be lower if any cells are empty in cases and/or controls. The 
comparison of genotype distributions between cases and controls 
is achieved by constructing a cell-specific measure for each of the 
observed genotype categories, corresponding to the normalized log 
odds ratio for that category:
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(i = 1, . . . k). These cell-specific quantities are then combined to 
construct a scaled χ2 test statistic whose value and (possibly non-
integer) degrees of freedom (df) can be calculated as a function of 
two parameters (h and f) that are estimated using a bootstrapping 
approach. Although in principle applicable to other orders of SNP 
combinations, including single SNPs (where k = 3) and combina-
tions of more than two SNPs (where k = 3L), the main focus of the 
published paper1 and accompanying software was on the pairwise 
test.

Analysis of 2 × k contingency tables, such as Table 1, in order to 
detect association between the row and column variables, is a clas-
sical problem in statistics that has had a long history of investi-
gation in the statistical and epidemiological literatures. The usual 
treatment depends on whether one wishes to condition on the row 
margins (here, the number of cases and controls – as would be natu-
ral in a case/control study), on the column margins (the ‘exposure’ 
variables – as would be natural in a clinical trial or a cohort study), 
or both2,3. Conditioning on the number of cases and controls leads to 
considering the cell counts as coming from two independent multi-
nomial distributions. Conditioning on the column margins leads to 
considering the cell counts as coming from k independent binomial 
distributions. Conditioning on both row and column margins leads 
to a hypergeometric distribution for the cell counts.

Tests of association within each of the above formulations  
depend on whether one wishes to use an exact or an asymptotic 
test2,3. Interestingly, all formulations result in a χ2 test statistic on  
k − 1 = 8 df (provided all cells are represented in the data), reflect-
ing the fact that there are k − 1 additional independent parameters 
to be estimated under the alternative hypothesis (where the row and 
column variables are allowed to be associated) compared to the null 
hypothesis (where there is no association between the row and col-
umn variables). This contrasts with the W-test proposed by Wang 
et al.1, in which k = 9 non-independent (log odds ratio) quantities 
are combined, resulting in the necessity for a scaled χ2 test statistic 
(with parameters h and f estimated using bootstrapping) in order to 
account for the non-independence between the k = 9 normalized 
log odds ratios.

Arguably the most natural way to analyse data from a 2 × 9 con-
tingency table is to perform a standard Pearson’s χ2 test4 on 8 df, 
testing the independence of the column variable (here, genotype) 
and the row variable (here, case/control status). We note that 
both Pearson’s χ2 test and the W-test actually test for association 
(between genotype category and phenotype) rather than testing 
specifically for epistasis or statistical interaction5–9 between the 
genotypes at the two loci in relation to phenotype. Unfortunately, 
depending on the software implementation used, Pearson’s χ2 test 
can fail to produce a test statistic for sparse data (i.e. cells with low 
or zero genotype frequencies), and continuity corrections10 have 
only been developed for 2×2 and 2×1 contingency tables. Wang 
et al.1 point out that one important advantage of their proposed 
W-test is its adaptive ability to cope with sparse data, through the  
data-dependent bootstrap estimation of the scaling factor h and the 
degrees of freedom parameter f.

The precise details of Wang et al.’s bootstrap procedure are not 
fully delineated in their manuscript, but perusal of both the manu-
script and the R code provided indicates that the bootstrap involves 
using a default of B = 200 bootstrap replicates, each of which uses 
genotype data from N

B
 = min (1000, N) randomly chosen individu-

als and P
B
 = min (1000, P) randomly chosen pairs of SNPs (where 

N is the total number of individuals and P the total number of pairs 
of SNPs in the data set under study), along with phenotype data 
(case/control status) that are resampled under the null hypothesis 
(i.e. independent of genotype). Thus, in order to implement the pro-
posed bootstrap procedure, one needs real data from a reasonable 
number of ‘other’ pairs of SNPs, which are used as ‘surrogates’ (to 
estimate the distributional properties of the test) for every ‘test’ pair 
of SNPs. Thus the bootstrap procedure is data-adaptive in the sense 
that real GWAS data (at a number of pairs of SNPs – possibly but 
not necessarily including the test pair) from the current data set are 

Table 1. 2 × k contingency table for L = 2 loci (resulting in k = 9 genotype combinations). The two possible 
alleles at each locus (which for SNPs will corrrespond to bases A, C, G or T) are labelled as 1 and 2.

SNP1×SNP2 genotype (allele1/allele2)

1/1×1/1 1/1×1/2 1/1×2/2 1/2×1/1 1/2×1/2 1/2×2/2 2/2×1/1 2/2×1/2 2/2×2/2 Total

Cases n11 n12 n13 n14 n15 n16 n17 n18 n19 N1 

Controls n01 n02 n03 n04 n05 n06 n07 n08 n09 N0 
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used to estimate the non-independence (covariances) between the  
k = 9 normalized log odds ratios for each test pair of SNPs. How-
ever, the rationale for using P

B
 ‘other’ pairs of SNPs as surrogates for 

each test pair of SNPs – and for then keeping the resulting estimates 
of h and f constant for each test pair of SNPs – is not discussed by 
Wang et al.1. Standard statistical theory dictates that the asymptotic 
variances/covariances of the parameter estimates 11
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which are functions of the estimates 11
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estimated on the basis of the observed data at the test pair of SNPs 
alone, possibly through use of a bootstrap. This would presumably 
result in a data-adaptive approach that adapts to the properties of 
the specific SNP pair under test, rather than to the properties of all 
(or a sample of) other SNP pairs in the data set, many of which may 
have quite different properties (e.g. different minor allele frequen-
cies (MAFs)) from the SNP pair under test.

In the GWAS literature, use of the full set of (or a sample of) 
observed test statistics as, in some sense, ‘surrogates’ for the test 
statistic at any specific SNP (in order to estimate the distributional 
properties of the test) is not unusual. Devlin and Roeder11 showed 
that, in the presence of population stratification, the genome-wide 
distribution of χ2 test statistics on 1 df (when testing for allelic 
association between genotype and phenotype) is inflated by a 
constant multiplicative factor λ. Devlin and Roeder therefore pro-
posed estimating this ‘genomic control’ factor λ on the basis of a 
sample of observed test statistics, and producing a set of adjusted 
test statistics by dividing each of the observed test statistics by λ. 
This suggestion is closely related to the now popular approach12 
of using quantile-quantile (Q-Q) plots to investigate whether there 
is any evidence for population stratification (or indeed some other 
phenomenon that causes departure from the expected genome-wide 
distribution of test statistics) in a GWAS. If the resulting plot of the 
observed test statistics versus their expected values shows sufficient 
departure from the line of equality, then each observed test statistic 
can be adjusted by dividing it by an estimate of λ. The bootstrap 
procedure proposed by Wang et al.1 for estimating h and f would 
therefore appear to fall into this general framework. Thus, while 

theoretical arguments would suggest that a data-adaptive estima-
tion of h and f might most naturally depend only on the data at the 
SNP pair currently under test, the use of data from a large number 
of other pairs of SNPs to estimate the relevant distribution can be 
perhaps motivated by comparison to Devlin and Roeder’s genomic 
control procedure. Moreover, given that the implementation of the 
proposed bootstrap procedure actually generates 9 different values 
of h and f (dependent on the number of observed genotype catego-
ries, k), one could argue that the only ‘other’ SNPs that contribute 
to determining the distribution for any test pair of SNPs are those 
that have similar properties to the test SNP, at least in terms of the 
sparsity of the observed genotype table.

In their paper, Wang et al. compared their proposed W-test to  
Pearson’s χ2 test, as well as to Multifactor Dimensionality  
Reduction13 and to an unspecified (possibly a linear allelic) logis-
tic regression test. Another method, not – as far as we are aware 
– considered by Wang et al., for comparing the distributions of  
k = 9 (or possibly less) genotype categories between two groups 
(cases and controls) would be to carry out a saturated logistic 
regression test on 8 (or possibly less) df, i.e. comparing (via a  
likelihood ratio test) a model:

logit(p) = α + β
1
I(x
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with a null model logit(p) = α, where p denotes the probability of 
an observation being a case (rather than a control), x1 and x2 denote 
the genotypes (coded 0, 1, 2) at locus 1 and 2 respectively, and 
I represents an indicator function. The parameters (β1, β2, γ1, γ 2) 
correspond to the main effects of locus 1 and 2 respectively, and 
the four ist parameters correspond to statistical interaction effects 
(on the logit scale). The 9 parameters (α, βs, γt, ist) (where s and t 
each take values 1 or 2) are essentially reparameterisations of the 9 
independent parameters δuv obtained when modelling the log odds 
of disease given genotype (where u and v each take values 0, 1 or 2 
according to genotype at locus 1 and 2) as:

                               logit(p) = log(p/(1 – p)) = δ
uv

,

– in other words, allowing the log odds (and thus the probability) of 
disease to take 9 different values according to the genotype category 
to which an individual belongs. Any completely missing genotype 
categories in cases and/or controls result in one or more param-
eters being dropped from the model, thus the method automatically 
adapts to the sparsity of the observed data (albeit in a different way 
from Wang et al.’s data-adaptive procedure). This logistic regres-
sion formulation emphasizes the fact that the 8 df test actually tests 
for association (which could correspond to main effects, interac-
tion effects, or both), rather than testing for statistical interaction  
per se.

This ‘prospective’ logistic regression model (modelling the log 
odds of outcome or phenotype, given exposure or genotype) is in 
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contrast to Wang et al.’s ‘retrospective’ model, which models (the 
ratio of) the log odds for genotype given phenotype. The prospec-
tive model is most natural in the context of cohort studies or clini-
cal trials, but is arguably less natural in the context of case control 
studies, where subjects are ascertained based on their phenotype 
(case or control status). However, it has been shown14 that valid 
estimates of the parameters of interest (βs, γ

t
, i

st
) – which corre-

spond to ratios of the log odds for phenotype (i.e. the log odds of 
being a case rather than a control) at different levels of the exposure 
variables – are achieved when this prospective model is applied to 
retrospectively ascertained case/control data. This convenient prop-
erty has resulted in the enduring popularity of logistic regression as 
the standard method of choice in the epidemiological literature for 
analysing case/control data.

Methods and Results
Application of W-test to real and simulated example data 
sets
To compare the newly-proposed W-test with other, more standard,  
analysis options, we applied the W-test and three alternative  
methods (Pearson’s χ2 test using two alternative implementations, 
and logistic regression on 8 df (denoted LR8)) to two different data 
sets. The first data set was distributed with the W-test software  
(R version) developed by Wang et al.1. This example data set  
consists of 50 SNPs (resulting in 1225 SNP pairs) genotyped in 
1000 individuals, and presumably corresponds to a single replicate 
of the simulated data (simulated under an interaction model, using 
real genotype data) described by Wang et al.1. The second data 
set was a simulated data set that we constructed ourselves using 
real genotype data from Wellcome Trust Case Control Consor-
tium 2 (WTCCC2) controls15, with phenotype (case/control status)  
simulated under the null hypothesis of no difference in genotype 
distribution between cases and controls. Specifically, we selected 
1000 female founder individuals and randomly assigned 500 as 
cases and 500 as controls. Real genotype data were selected at  
50 SNPs for these individuals by first LD pruning using the PLINK16 
command ″–indep-pairwise 50 5 0.5″ and then the first 
and last five SNPs from chromosomes 1 to 5 were extracted, giving 
50 SNPs in total.

Figure 1 and Figure 2 show a comparison of the -log
10

 P-values 
achieved by the four different analysis methods in these two data 
sets. In each figure, comparisons of the W-test with other tests are 
shown in the left hand column, while comparisons between the  
various other tests are shown in the right hand column. For the  
W-test, we used the R software developed by Wang et al.1 (with 
bootstrapping used to estimate parameters h and f); for Pearson’s 
χ2 test and logistic regression we used the R functions chisq.
test() and glm(), respectively. R version 3.3.3 was used 
throughout. The difference between the two χ2 test implementa-
tions is that for one, denoted later as CHI-f, the chisq.test() 
function was applied to the full 2×9 contingency table of counts of  
disease status versus genotype (which produces an 8 df test -  
provided there are no unobserved genotype categories) and for 
the other, denoted later as CHI-r, the chisq.test() function 
was applied to the vectors (each of length 1000) containing the  
individual-level phenotype and genotype data. With this latter  
implementation, the chisq.test() function automatically 

detects if there are unobserved genotype categories and removes 
them from consideration, resulting in a test with a potentially 
reduced number of degrees of freedom. Thus CHI-f corresponds to 
a χ2 test for the ‘full’ genotype table, while CHI-r corresponds to  
a χ2 test for a potentially ‘reduced’ genotype table.

We can see from Figure 1 and Figure 2 that the -log
10

 P-values 
achieved by the different methods are highly correlated and largely 
comparable in both data sets, except when Pearson’s χ2 test fails 
to give a result (indicated in the plots by a cross and a -log

10
  

P-value that we set arbitrarily to 4.5 or 28); this can occur with the  
the χ2 full (CHI-f) implementation when one or more of the nine  
genotype categories does not appear. However, in these situations, 
the W-test, logistic regression and the reduced χ2 (CHI-r) implemen-
tation all produce a result, and their results are seen to be largely 
comparable. The W-test does show slightly lower P-values at the 
most stringent significance thresholds when applied to the W-test 
demo data, suggesting a possible power advantage for the W-test  
over logistic regression and CHI-r for data generated under the 
simulation model assumed by Wang et al. The W-test also shows 
slightly lower P-values at the most stringent significance thresholds  
when applied to the WTCCC2 data. However, since these data  
were simulated under the null hypothesis of no association (or 
interaction), we cannot interpret this behaviour as implying higher 
power for the W-test.

Application of W-test to simulated data sets
To further compare the performance of the W-test with previously 
proposed tests of association and/or interaction, we simulated 1000 
replicates of genotype data for 500 cases and 500 controls at two 
diallelic loci with alleles denoted A and a (at locus 1) and B and 
b (at locus 2) respectively, under various generating models. For 
simulating under the null hypothesis, a higher number of repli-
cates (5000) was used. Initially we assumed allele frequencies of  
(0.4, 0.6, 0.4, 0.6) for alleles (a, A, b, B) and assumed no linkage 
disequilibrium (LD) between the loci; these settings ensured that 
none of the tests were affected by issues of sparse data, so all tests 
could be computed in all simulation replicates.

For the W-test, the bootstrap procedure proposed by Wang et al.1  
is not possible when only two SNPs are being evaluated. We  
therefore considered two alternative approaches for specifying  
h and f. In the first (denoted as W), we assumed the test pair of  
SNPs had come from the real Wellcome Trust Case Control  
Consortium (WTCCC)12 data set analysed by Wang et al.1. This 
means that the estimates of h and f provided in the Supplementary  
Information (Supplementary Table S2) of Wang et al.1 can be  
used. Given that Wang et al.’s ‘data-dependent’ estimation of h and f 
is derived primarily from the ‘other’ pairs of SNPs considered in the 
bootstrap procedure rather than from the pair of SNPs under test,  
we consider this a reasonable way to proceed, and, indeed, one  
could argue that these values of h and f should be suitable for use  
with any test pair of SNPs. Of course the number of individuals  
N in our current data set (500 cases and 500 controls) differs from the 
WTCCC data set, but, given that the bootstrap procedure only uses  
N

B
 = min (1000, N) randomly chosen individuals, we would  

anticipate that this should not affect the results substantially. In 
the second approach (denoted as W′ ), we simply used the default  
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Figure 1. Scatter plots of negative log (base 10) transformed P-values from different interaction tests applied to the W-test demo data. 
The tests are the W-test, Pearson’s χ2 test (full table), Pearson’s χ2 test (reduced table), logistic regression with 8 df (LR8). The W-test demo 
data consists of 500 cases and 500 controls and 50 SNPs. The scatter plots show all 1225 SNP pair tests between the 50 SNPs. The squared 
Pearson product-moment correlation coefficient is shown in the bottom right of each plot. Crosses indicate points that did not evaluate due 
to empty cells in cases and/or controls.
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Figure 2. Scatter plots of negative log (base 10) transformed P-values from different interaction tests applied to the WTCCC2 data. 
The tests are the W-test, Pearson’s χ2 test (full table), Pearson’s χ2 test (reduced table), logistic regression with 8 df (LR8). The WTCCC2 data 
consists of a subset of 1000 female founders and 50 SNPs which were alternatively labelled as cases and controls. The scatter plots show all 
1225 SNP pair tests between the 50 SNPs. The squared Pearson product-moment correlation coefficient is shown in the bottom right of each 
plot. Crosses indicate points that did not evaluate due to empty cells in cases and/or controls.
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values of h and f specified within the W-test software package  
(R version) i.e. h = (k − 1)/k and df f = k − 1 (where k is the number 
of genotype categories observed).

In addition to performing the W-test, Pearson’s χ2 test (full and 
reduced versions) and logistic regression on 8 df (LR8), we also 
considered three additional logistic regression-based tests:

•  LR3: logistic regression on 3 df, comparing (via a likeli-
hood ratio test) the models logit(p) = α + β x1 + γx

2
 + ix

1 
x

2
 and  

logit(p) = α

•  LR1: logistic regression on 1 df, comparing (via a likelihood 
ratio test) the models logit(p) = α + β x

1
 + γx

2
 + ix

1 
x

2
 and logit(p) 

= α + β x
1
 + γ x

2

•  LRI: logistic regression on 1 df with only an interaction  
term, comparing (via a likelihood ratio test) the models logit(p) = 
α + ix

1 
x

2
 and logit(p) = α 

These logistic regression-based tests all use an allelic (rather than 
a genotypic) coding of the genotype variables in order to reduce 
the df6,8,17. This assumption of allelic effects has proved extremely 
effective in GWAS analysis of single SNPs12 and is generally the 
default option used in most GWAS; even if the true effects do not 
precisely follow an allelic model, the reduction in df achieved can 
lead to higher power for tests that make this assumption18.

While LR8, LR3 and LRI can be considered as tests of associa-
tion allowing for interaction, (since the null hypothesis in each case 
corresponds to no relationship between genotype and phenotype), 
LR1 corresponds to a test of pure statistical interaction, under the 
assumption of an allelic model. Given the focus of interest of Wang 
et al.1 on testing for epistasis, we additionally considered four other 
previously-proposed tests17 designed to test pure statistical inter-
action: the Joint Effects (JE), Adjusted Wu (AWU), Adjusted Fast 
Epistasis (AFE) and Wellek and Ziegler (WZ) tests, all of which are 
implemented in our software package CASSI (https://www.staff.
ncl.ac.uk/richard.howey/cassi/downloads.html).

Figure 3 shows the performance (type I error and power) of these 
tests under a variety of generating models. Given that no simulation 
replicates resulted in issues of sparse data, the performances of the 
full and reduced versions of Pearson’s χ2 test (CHI-f and CHI-r) are 
identical, as expected. All tests show appropriate type I error rates 
under the null hypothesis of no association between genotype and 
phenotype (top left panel). In the presence of main effects only, the 
tests of pure interaction show appropriate type I error rates, whereas 
the tests of association allowing for interaction show vastly inflated 
error rates if considered as tests of interaction per se (top right 
panel, noting that ‘Power’ corresponds to power if considered as a 
test of the null hypothesis of no association, but corresponds to type 
I error if considered purely as a test of the interaction effect). Under 
the alternative hypotheses considered here, the tests of association 
allowing for interaction (W-test, Pearson’s χ2 test, LR8, LR3, LRI) 
show higher power than the tests of pure interaction (JE, AWU, 
AFE, WZ, LR1), consistent with the known lower power of interac-
tion tests compared to tests of main effects19.

The overall power of the W-test is seen to be similar to that of LR8 
and Pearson’s χ2 test; in some cases (e.g. Figure 3, bottom panels) 
the power of the W-test is higher than that of LR8 and Pearson’s 
χ2 test, whereas in other cases (e.g. Figure 3, middle and top right  
panels) the power of the W-test is lower than that of LR8 and  
Pearson’s χ2 test. The W-test with values of h and f estimated from 
genome-wide (WTCCC) data (denoted W) gave consistently slightly 
higher power than using the default values (denoted W′). For simu-
lations under complex effects, where the generating model is not 
well-approximated by an allelic model (Figure 3, bottom panels), 
the three genotypic tests (W-test, χ2 test, LR8) of association, allow-
ing for interaction, all have higher power than the corresponding 
allelic tests (LR3, LRI), with the W-test (with values of h and f esti-
mated from genome-wide data) showing the overall highest power.  
However, for simulations where the structure of the generating 
model matches an allelic model, (Figure 3, middle and top right 
panels), the allelic tests show higher power than the genotypic tests.

Similar results to those described above were found when we 
repeated our simulations under further scenarios where the two loci 
were assumed to be in LD (data not visualised). We note that neither 
our simulations nor those presented by Wang et al. can be consid-
ered a fully comprehensive evaluation; given the effectively infinite 
number of possible association models that could exist between two 
SNPs and a disease phenotype, such an evaluation would be quite 
hard to achieve. It is thus very difficult to know in practice, in any 
given situation, which method is likely to have the highest power, 
making it difficult to specify in advance which test to use. The sim-
ulation results presented here are not intended to address the ques-
tion of how often the underlying association model will be more 
or less amenable to testing using the W-test compared to alterna-
tive methods, but rather to point out that there are situations where 
existing alternative approaches show higher power. Our study thus 
redresses the balance in comparison to the study of Wang et al., 
who only presented results from models where the W-test showed 
highest power.

In particular, in their simulation study, Wang et al. found the W-test 
to have considerably higher power than both Pearson’s χ2 test and 
logistic regression (by which we believe they mean LR3, although 
they do not actually specify which logistic regression model they 
employed), particularly for low MAFs, see Figures 1 and 2 and 
Tables 1 and 2 of Wang et al.1. The higher power of the W-test 
compared to LR3 is easily explained by the fact that the generat-
ing models used by Wang et al. did not follow an allelic pattern, 
which is the pattern that LR3 is best-configured to detect. The 
higher power compared to Pearson’s χ2 test is more complicated to 
explain, but may be related to the fact that, in Wang et al.’s simula-
tions, in addition to showing lower power, the χ2 test also showed 
considerably lower type I error rates than the W-test (see Tables 1 
and 2 of Wang et al.), with the W-test showing approximately cor-
rect (nominal) type I error rates and the χ2 test showing deflated 
levels of type I error. While the correct control of type I error is an 
attractive property of the W-test, it makes the ‘powers’ shown by 
Wang et al. difficult to compare, since one would normally only 
compare power for tests that are well-calibrated, i.e. that show the 
same (correct) type I error rate.
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Figure 3. Power and Type I error plots for different effect models and tests. The simulating model is indicated above the plot for linear 
effects and for complex effects the log odds for each genotype combination is shown in the table in the bottom left plot. Tests considered 
are JE: Joint effects; AWU: Adjusted Wu; AFE: Adjusted Fast Epistasis; WZ: Welleck-Ziegler; LR1: Logistic regression with 1 df testing for 
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Given that this power difference was most profound at low  
MAFs, we wondered if it could be explained by the fact that, at low 
MAFs, we expect many χ2 tests to be undefined (as demonstrated  
in Figure 1 and Figure 2) if implemented based on the full genotype 
table (CHI-f implementation). If one uses the CHI-f implementa-
tion and counts an undefined result (an ‘NA’) as a non-detection, 
while using the total number of simulation replicates (detections 
and non-detections) as the denominator, then this will result in a 
decrease in both power and type I error. We illustrate this phenom-
enon in Figure 4. Here we repeated our simulations using lower 
MAFs of 0.1 for the two SNPs and considered a variety of dif-
ferent scenarios both with and without LD. We denote by CHI-f′ 
the power obtained when you count an undefined result as a non- 
detection, while using the total number of simulation replicates 
as the denominator. We denote by CHI-f the power obtained  
when you instead ignore undefined results, and use the number 
of detections as the numerator with the number of simulation 
replicates in which a result was obtained as the denominator.  
Figure 4 demonstrates that the CHI-f′  method of counting does 
indeed result in an apparent lower power for Pearson’s χ2 test, 
although it is unclear whether this effect is sufficient to explain the 
differences in power presented by Wang et al. The powers of the 
W-test and LR8 remain, by and large, comparable, with sometimes 
one and sometimes the other showing highest power. However  
LR8 suffers from a slightly inflated type I error (whereas the  
W-test has an over-conservative type I error rate), suggesting that 
the W-test should be the preferred method in this instance. The 
allelic tests (LR1, LRI, LR3) all show well-calibrated type I error, 
while LRI and/or LR3 also show the highest power (particularly 
in the bottom four panels of Figure 4), reflecting the fact that the  
generating model in these simulations follows an allelic structure.

As a final comparison of methods under a situation that the W-test is 
specifically designed to address, we performed an additional set of 
simulations for pairs of SNPs with very low MAFs (MAF≈0.01 in 
controls, MAF≈0.03 in cases), in strong LD (R2 = 0.64 in controls, 
R2 = 0.83 in combined cases and controls) and operating via com-
plex effects (see generating model shown in the bottom left panel 
of Figure 3). The results are shown in Figure 5. In this instance, 
we can see that Pearson’s χ2 test based on the full genotype table 
while ignoring undefined results (CHI-f) is undefined (0/0 repli-
cates gave a significant result), while counting an undefined result 
as a non-detection (CHI-f′ ) has very low power (0/1000 replicates 
gave a significant result), possibly explaining its poor performance 
in Wang et al.’s simulations. The highest power is obtained with the 
logistic regression-based test LRI and with the W-test (with values 
of h and f estimated using real WTCCC data); reasonable but lower 
levels of power are seen with logistic regression-based tests LR3 
and LR8, and with Pearson’s χ2 test based on the reduced genotype 
table (CHI-r).

Evaluation of previous application of W-test to bipolar 
disorder data sets
Wang et al.1 also applied their W-test to two real genome-wide 
association data sets of bipolar disorder obtained from the  
Wellcome Trust Case Control Consortium (WTCCC)12 and Genetic 
Association Network (GAIN). We show in Table 2 the SNP and 

gene pairs reported by Wang et al. as significant in WTCCC that 
they considered to be replicated in GAIN (see listing given in 
Wang et al.’s Supplementary Table S6 “Replicated and signifi-
cant gene-gene interactions”), together with their WTCCC W-test  
P-values. Examination of the single-SNP P-values listed in  
Table 2 (and comparison of these P-values to those given in the 
original WTCCC publication12) sounds an immediate warning  
note: these P-values seem suspiciously small for a modestly-
sized GWAS of a complex neuropsychiatric disorder, and, more 
importantly, do not seem compatible with the results presented in  
Figure 4, Table 3 and Supplementary Table 7 of the original 
WTCCC publication (in which only one SNP, rs420259, achieved 
a P-value less than  5E-07 for bipolar disorder). Supplementary 
Figure S5 of Wang et al. (upper panel) shows the Manhattan plot 
obtained when using the single-SNP (main effects) version of 
Wang et al.’s W-test; this Manhattan plot does not seem consist-
ent with the results presented in the original WTCCC publication. 
Even given that the most significant P-values have been cut out of  
Wang et al.’s Supplementary Figure S5 (owing to the choice of 
an upper limit of 10 for the y axis), the large number of remain-
ing isolated significant SNPs, not supported by other SNPs in the  
same genetic region in LD with the significant SNP, suggests 
that these significant single-SNP results are highly likely to be  
artefacts, most likely due to genotyping errors.

Together with raw genotype data, the WTCCC distributes a list of 
SNPs (exclusion-list-snps-26_04_2007.txt) that 
have failed various quality control checks and should therefore 
be considered unreliable. We compared the SNPs listed in Table 2 
with those appearing in exclusion-list-snps-26_04_2007.
txt and found that all but three of the rows of Table 2 contain at 
least one SNP that appears on the WTCCC recommended exclusion 
list. An additional list of 561 SNPs that failed manual visual check-
ing of the cluster (intensity) plots was obtained from the WTCCC  
(Jeffrey Barrett, personal communication; Supplementary File 1). 
This list includes rs1048194, which appears in each of the remain-
ing three rows of Table 2. Thus, every SNP pair identified by  
Wang et al. as significant in a pairwise W-test (of association  
allowing for interaction) in the WTCCC data contains at least 
one SNP that has been flagged as unreliable by the WTCCC. We 
therefore consider the WTCCC results presented by Wang et al. as  
highly suspect and likely to be explained by poor quality genotyp-
ing in cases, controls or both. We note that it is not necessary to  
obtain such lists of SNPs failing quality control from the WTCCC  
in order to spot this problem; visual inspection of the Manhattan  
plots (and comparison to the original WTCCC publication) is 
enough to at least flag up the problem, and implementation of  
standard GWAS quality control procedures would, in any case, 
eliminate the vast majority of these suspect SNPs.

Turning to the GAIN results presented by Wang et al., we note that 
the single-SNP (main effects) Manhattan plot presented in Wang  
et al.’s Supplementary Figure S5 (lower panel) contains one highly 
significant result on chromosome 22. This result appears to cor-
respond to an isolated significant SNP, not supported by other  
SNPs in the same genetic region in LD with the significant 
SNP, suggesting again that this result is likely to be an artefact  
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Figure 4. Power plots for different effect models and tests for SNPs with low minor allele frequencies (MAF=0.1). The simulating model 
is indicated above the plot. Test abbreviations are described in the legend to Figure 3 and CHI-f′  is the χ2 test where a undefined test result 
is counted as a non-detection and included in the denominator. Plots on the left show results for independent SNPs and plots on the right for 
SNPs in LD (R2 = 0.24 in controls, R2 = 0.29 in combined cases and controls).
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Table 2. SNP pairs in WTCCC (with WTCCC W-test P-values) considered as replicated in GAIN.

SNP Pair SNP1a SNP2a 

Network SNP1a SNP2a P-value P-value P-value Gene 1 Gene 2

1 rs6741692 rs1048194 5.84E-38 8.48E-06 7.19E-25 DPP10 CENPN 

1 rs3867492 rs17108944 1.03E-27 1.32E-23 5.08E-03 TMEM132D NRXN3 

1 rs1864952 rs1048194 1.91E-35 2.93E-03 7.19E-25 SLIT3 CENPN 

1 rs17637311 rs3867492 1.01E-25 1.38E-03 1.32E-23 SLIT3 TMEM132D 

1 rs2407594 rs1048194 9.76E-36 5.49E-03 7.19E-25 CSMD1 CENPN 

1 rs17068332 rs3867492 8.17E-28 6.50E-03 1.32E-23 CSMD1 TMEM132D 

1 rs3867492 rs6030385 5.05E-24 1.32E-23 4.89E-03 TMEM132D PTPRT 

2 rs17170832 rs17135053 3.86E-18 3.02E-06 3.97E-03 ELMO1 A2BP1 

2 rs2849605 rs17135053 3.28E-29 4.27E-10 3.97E-03 PARK2 A2BP1 

2 rs7666328 rs9559408 4.82E-17 1.90E-11 2.75E-04 NDST4 MYO16 

2 rs7666328 rs17135053 6.97E-16 1.90E-11 3.97E-03 NDST4 RBFOX1 

2 rs7666328 rs1494451 1.31E-21 1.90E-11 1.60E-06 NDST4 CNTNAP2 

2 rs7666328 rs17170832 9.99E-24 1.90E-11 3.02E-06 NDST4 ELMO1 

2 rs17170832 rs13433234 3.08E-23 3.02E-06 3.68E-03 ELMO1 MACROD2 

2 rs11222695 rs6043524 5.51E-11 8.91E-03 3.49E-05 HNT MACROD2 

2 rs1494451 rs13433234 7.43E-12 1.60E-06 3.68E-03 CNTNAP2 MACROD2 

2 rs2849605 rs2785061 9.79E-19 4.27E-10 7.43E-03 PARK2 ACCN1 

2 rs2849605 rs11222695 2.65E-25 4.27E-10 8.91E-03 PARK2 HNT 

a SNPs marked in bold were flagged as unreliable by the WTCCC

Figure 5. Power plots for SNPs showing complex effects with very low minor allele frequencies (MAF=0.01) and in strong LD (R2 = 0.64 
in controls, R2 = 0.83 in combined cases and controls). Test abbreviations are described in the legends to Figure 3 and Figure 4.
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Table 3. SNP pairs in GAIN (with GAIN W-test P-values) considered to replicate findings from WTCCC.

SNP Pair SNP1a SNP2a 

Network SNP1a SNP2a P-value P-value P-value Gene 1 Gene 2

1 SNP_A-8429018 SNP_A-8715766 1.95E-23 5.91E-18 7.50E-03 RTN4R CSMD1 

1 SNP_A-2229791 SNP_A-8429018 1.18E-19 3.71E-03 5.91E-18 SLIT3 RTN4R 

1 SNP_A-8429018 SNP_A-8630842 1.56E-22 5.91E-18 5.94E-03 RTN4R TMEM132D 

1 SNP_A-2050329 SNP_A-8715766 5.70E-11 0.001258 0.007499 PTPRT CSMD1 

1 SNP_A-8429018 SNP_A-8705647 1.11E-18 5.91E-18 4.56E-04 RTN4R DPP10 

2 SNP_A-8429018 SNP_A-8528492 1.68E-22 5.91E-18 5.36E-03 RTN4R MYO16 

2 SNP_A-2095851 SNP_A-8429018 3.18E-22 6.97E-04 5.91E-18 ELMO1 RTN4R 

2 SNP_A-4233559 SNP_A-8429018 5.12E-20 2.28E-03 5.91E-18 HNT RTN4R 

2 SNP_A-2248688 SNP_A-8429018 4.69E-19 6.82E-03 5.91E-18 PARK2 RTN4R 

2 SNP_A-8429018 SNP_A-8624018 1.87E-18 5.91E-18 4.87E-03 RTN4R ACCN1 

2 SNP_A-8429018 SNP_A-8599143 1.70E-19 5.91E-18 4.81E-03 RTN4R CNTNAP2 

2 SNP_A-8366063 SNP_A-8429018 5.12E-20 3.82E-03 5.91E-18 RBFOX1 RTN4R 
a SNPs marked in bold appear unreliable based on the Manhattan plot presented by Wang et al.

attributable to genotyping error. In Table 3 we list the SNP and gene 
pairs in GAIN that Wang et al. consider to replicate their WTCCC 
findings (see listing given in Wang et al.’s Supplementary Table S6 
“Replicated and significant gene-gene interactions”). We note that 
every row, but one, of the GAIN results contains SNP_A-8429018, 
which has a (suspiciously small) single-SNP P-value of 5.91E-18. 
We also note that SNP_A-8429018 (in Affymetrix nomenclature) 
corresponds to rs9606296 on chromosome 22, and thus most likely 
corresponds to the aforementioned likely artefactual result shown in 
Wang et al.’s Supplementary Figure S5 (lower panel).

The remaining row of GAIN results (see Table 3) contains SNP_
A-2050329 and SNP_A-8715766, corresponding to rs3787282 
and rs17070836 on chromosomes 20 and 8, respectively. The 
pairwise W-test P-value is given as 5.70E-11, with single-SNP  
P-values of 0.00125821 and 0.00749938. Although we have no 
particular reason to distrust this result, the fact that it is being 
interpreted as a replication of an interaction between PTPRT and 
CSMD1 (genes which appear in our list of untrustworthy ‘significant’ 
WTCCC results shown in Table 2), means that, at best, we would 
consider this as an isolated finding requiring further replication.

Figure 3 of Wang et al.1 presents a quantile-quantile (Q-Q) plot of 
their pairwise W-test results from the real genome-wide data sets, 
although Wang et al. do not specify whether this Q-Q plot relates 
to results from WTCCC, GAIN or both. Unusually, this plot does 
not show any particularly significant results (no P-values less than 

1.0E-07), even though, in their Supplementary Table S6, Wang  
et al. had listed a number of SNP pairs exceeding this level of  
significance. The legend of Wang et al.’s Figure 3 states that the 
W-test was computed on real genome-wide data with ‘permuted 
phenotype’. This seems an odd procedure; Q-Q plots are generally 
plotted using the real observed results (based on the real pheno-
types) in order to determine whether the genome-wide distribution 
of test statistics is as expected12. By definition, if one permutes 
the phenotype (to mimic data generated under the null hypothe-
sis), one would indeed expect the Q-Q plot to follow the line of 
equality, but it does not provide any information about whether  
the observed results follow their expected distribution (and may  
thus be considered reliable). On closer investigation of the W-test 
software (R version) developed by Wang et al.1, we found that the  
Q-Q plot function takes as input genotype data, but not phenotype 
data, and does indeed calculate W-test results using randomly per-
muted phenotypes with an equal number of cases and controls. 
Therefore, the function does not actually plot a Q-Q plot of the 
real observed results. As an example, Figure 6 shows the W-test 
demo data plotted as a standard Q-Q plot and then plotted three 
times using the Q-Q plot function from the W-test (R package) 
software. In contrast to the true W-test demo data results (which 
are highly significant, presumably because of the simulation 
model chosen by Wang et al.), the Q-Q plots generated within the  
W-test software suggest (somewhat misleadingly) that the observed 
test statistics are largely consistent with the null hypothesis of no  
association.
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Figure 6. Q-Q plots of interaction tests. The top left plot shows a Q-Q plot of the W-test P-values using the W-test demo data. The remaining 
plots show Q-Q plots generated using the Q-Q plot function from the W-test R package each time using the same W-test demo data.

Discussion
Here we have re-examined the novel W-test for pairwise epista-
sis recently proposed by Wang et al.1 via theoretical evaluation, 
computer simulations and application to real data. We find that the 
W-test has strong similarities to both Pearson’s χ2 test and logistic 
regression on 8 df, with the advantage over these tests (at lower 
minor allele frequencies) of generating no undefined test results, 
having no inflation in type I error, and in some cases – dependent 
on the underlying disease model assumed – showing higher power. 
For common variants, the advantages of the W-test over existing 
methods are less clear, and, indeed, there are situations where exist-
ing methods perform better.

In a real-data application, Wang et al. apply their W-test to genome-
wide association data for bipolar disorder and highlight a number of 
significant detections of pairwise epistasis. We have not ourselves 

re-analysed these data using alternative methods, but, given the 
high level of similarity between the W-test and alternative methods  
found in analysis of real (Figure 1 and Figure 2) and simulated  
(Figure 3–Figure 5) genotype data, we anticipate that similarly sig-
nificant results would be obtained when applying alternative meth-
ods such as logistic regression to the bipolar data. Unfortunately,  
all but one of the results presented by Wang et al. can most likely be 
attributed to SNP genotyping error (resulting in highly significant 
single-SNP P-values for one or both SNPs of a pair) and so are 
probably artefactual. We therefore consider the subsequent network 
analysis performed by Wang et al. of the identified interactions as 
being, at best, uninterpretable and, at worst, potentially highly mis-
leading, and we urge researchers to exercise caution in their inter-
pretation of these results. This warning illustrates the importance of 
using standard quality control checks (such as Q-Q and Manhattan 
plots of real observed test statistics) when analysing genome-wide 
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association data, even when the primary focus of a study is on pre-
senting novel methodology.

In summary, our investigations of the W-test suggest that this test 
remains an attractive option for testing for association, while allowing  
for interaction (although it does not test for pure interaction - the 
test can be sensitive to main effects of any or all SNPs included 
in the model), and it does offer some advantages over alternative 
tests (such as Pearson’s χ2 test and logistic regression on 8 df) at 
lower minor allele frequencies. The fact that in some scenarios the 
W-test shows higher power, whereas in other scenarios alternative  
approaches show higher power, makes it difficult to specify in 
advance which test should be preferred. One attraction of logistic 
regression is its flexibility, allowing one to tailor the test to impose 
greater structure on the assumed alternative hypothesis (such as 
assuming multiplicative allelic effects), which can offer a power 
advantage when the imposed structure matches the true underlying 
data structure. Extensions of the W-test that would allow similar 
flexibility might be an interesting topic for further investigation.

Data availability
The W-test demo data set is distributed with the W-test software  
(R version) developed by Wang et al. and is available at:  
http://www2.ccrb.cuhk.edu.hk/wtest/download.html. The WTCCC 
data set contains the exclusion-list-snps-26_04_2007.
txt file. This can be applied for at: https://www.ebi.ac.uk/ega/
studies/EGAS00000000001. The WTCCC2 data can be applied  
for at: https://www.ebi.ac.uk/ega/studies/EGAS00000000028.
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Howey and Cordell have done an elegant job in assessing the W-test method recently published as a
powerful approach for detecting pairwise epistatic interactions. Their comprehensive assessment covered
the properties and caveats of the W-test, the key results of simulation and real data analysis in the original
paper, as well as additional comparisons of W-test against a set of existing methods. The assessment led
them to conclude that W-test had virtually no advantages over the existing methods in explicitly testing
pairwise epistatic interactions, but could be a useful alternative in GWAS for detection of low frequency or
rare variants.
 
I like to thank the authors for their efforts because detection of epistasis or statistical gene-gene
interaction has been challenging for a long time, and is longing for not only innovative but also robust
methods and examples (Zietz H.,   100: 379-84, 2017). The study is well designed, wellAm J Hum Genet
executed and technically sound. The paper is well written and easy to follow. I hope the comments below
are helpful to improve the paper:

Slightly surprisingly, neither the current nor the original W-test paper cited the recent review of
detecting epistasis in human complex traits (Wei  ,   15: 722-33, 2014), whereet al. Nat Rev Genet
methods for testing interactions, rather than the whole pair effects, have been discussed. Issues of
LD, marginal/main effects and capturing rare or low frequency variants have also been discussed
in the review. Addition of the review in citation would make the discussion more interesting.
 
It seems important to make clear that testing epistasis is to test interaction terms, not the overall
effects of the whole pair. From that perspective, it might help to slightly reshape the presentation of
the power results, e.g. high power in W-test when no interactions simulated to be interpreted as a
disadvantage/problem instead? Nonetheless, it is good to point out that W-test can be a useful
filter to select candidate pairs for explicit interaction tests, at a price of missing true interactions
without important main effects.
 
It seems also important to make clear that two markers in high LD carry little epistasis, although the
pair could be statistically significant by haplotype effects. The property that a pair of closely located
markers may capture rare haplotypes in the form of significant statistical epistasis has been
explored for identifying rare variants and/or functional regulatory mechanisms (Wei   et al. PLoS

 8: e71203, 2013;   23: 5061-8, 2014). W-test seems to have advantages in thisOne Hum Mol Genet
aspect, particularly in situations of multiple markers.
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In this paper, Howey and Cordell further investigated the theoretical properties of a novel W-test that
measures pairwise epistasis effect, and applied the method in additional simulations. The authors
especially compared the method to the logistic regression with 8 degrees of freedom. The simulation

studies showed that the W-test has good/conservative type I error rates and better power than the
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1.  

2.  

3.  

4.  

studies showed that the W-test has good/conservative type I error rates and better power than the
Chi-squared test and Logistic regression under certain scenarios. Howey and Cordell pointed out a data
quality control problem in the original paper, and raised concerned about the reported real bio-markers.
The paper concluded that the W-test was a useful and practical method in real GWAS data analysis,
especially for low frequency and rare variants.  The specific comments are as follows.

The authors raised an interesting point about the theoretical properties of the W-test. They argued
that the Wang  estimates the distribution of a pair of SNPs based on bootstrapping many otheret al 
pairs, therefore pulling information from the entire data set. They suggestion that one could rather
bootstrap only using a single pair to achieve a more accurate distribution. However,
single-pair-based estimation would require that bootstrapping to be separately conducted for every
pair under consideration, versus the current approach of Wang that uses a pooled distribution et al. 
from many pairs, such the B=200~400 bootstrapping is performed once for all. Single-pair based
bootstrap falls in-between permutation tests and current approach. While Wang s approach is et al’
more suitable for exhaustive pairwise evaluation in GWAS, the single-pair bootstrap is more
suitable for candidate set study. A combination of the two methods could be realized in a
stage-wise selection, the pooled distribution can be first used to screen the entire data set,
followed by single pair bootstrap performed only for the top or significant interactions.
 
In the simulation study of the paper (Figure 5), the authors simulated a data with high LD and low
frequency SNPs. When applying the W-test, the parameters h and f that determine the test
distribution are borrowed from an external data with a different genetic architecture, rather than
bootstrapping the working data. This would render the power of the W-test. One important
advantage of the W-test is that the its distribution parameters are estimated using the working data
to correct the bias of p-values due to complex data structures. Though in the current outcome
(Figure 5), W-test still performed slightly better than LR8 and CHI-r, its performance should be
even better if the distribution’s parameters are actually bootstrapped using the working data.  The
same point also applies to other simulation results in Figure 3, 4, though the problem is less serious
there as the simulation data are less complex.
 
We thank the authors to report the SNPs with genotyping errors and to share the list of exclusion
SNPs. The real data analysis part by the W-test was re-done by us and posted on the following
website: 
http://www2.ccrb.cuhk.edu.hk/wtest/materials/W-test%20-%20revised%204%20Aug%202017.pdf
. This highlights the importance of data quality control, that inappropriate raw data processing
would greatly affect the final result, and the importance of validation.
 
The Q-Q plot presented in Wang aimed to show that the W-test’s estimated probability et al. 
distribution under null hypothesis matches the data set’s distribution, therefore showing the
reliability of the W-test p-values. The Q-Q plot was not intended to show the observed p-value
distribution. The fact that the Q-Q plot was generated using “permutated phenotypes” was stated
clearly in the original manuscript. However, the point of Howey and Cordell is well taken that
QQ-plot is usually performed using observed data. The wtest R package has updated (in CRAN,
and in   ) to incorporate this option – user canhttp://www2.ccrb.cuhk.edu.hk/wtest/download.html
choose to draw a QQ plot using either permutated phenotype or observed phenotype, according to
different purposes.
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