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Tuberculosis (TB) is one of the communicable diseases caused by Mycobacterium
tuberculosis (Mtb) infection, affecting nearly one-third of the world’s population. However,
because the pathogenesis of TB is still not fully understood and the development of anti-TB
drug is slow, TB remains a global public health problem. In recent years, with the gradual
discovery and confirmation of the immunomodulatory properties of mesenchymal stem cells
(MSCs), more and more studies, including our team’s research, have shown that MSCs
seem to be closely related to the growth status of Mtb and the occurrence and development
of TB, which is expected to bring new hope for the clinical treatment of TB. This article
reviews the relationship betweenMSCs and the occurrence and development of TB and the
potential application of MSCs in the treatment of TB.
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INTRODUCTION

Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (Mtb) infection,
which is mainly transmitted through the respiratory tract. According to the World Health
Organization’s Global TB Report 2020, it is estimated that 10 million people worldwide will be
affected by TB in 2019, with 7.1 million new cases. In addition, nearly half a million people suffer
from rifampin-resistant tuberculosis (RR-TB), of which 78% suffer from multidrug resistant
tuberculosis (MDR-TB). Despite continuous progress in TB diagnosis and effective drug
treatment, about 1.21 million people still died of TB in 2019, and the gap between the reported
number of registered TB patients and the estimated number remains large (1). During Mtb
infection, Mtb may invade various organs throughout human body, it is generally believed that Mtb
can be transmitted through atomized particles, and infectious droplets particle size range is
generally 0.65 to 7 µm. Droplets below 0.65mm are mainly deposited in the distal airway through
org July 2021 | Volume 12 | Article 6952781
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the nasopharynx or tracheobronchial area. The droplets with
larger particle size were deposited in the upper respiratory tract
or oropharynx, causing TB in oropharynx or cervical lymph
node (2). Once in the lower respiratory tract, Mtb is mainly
devoured by macrophages, while the inflammatory response
causes a large number of immune cells to attract to the
infected site, hyaluronic acid-mediated macrophage
aggregation, then macrophage and its evolutionary cellular
limitation immersion and proliferation of the state of clear
nodule lesions, results the formation of tuberculosis granuloma
(TG), which is the pathological mark of TB (3, 4). At the same
time macrophages and fibroblasts, endoskines, and neutrophils
produce a large number of proteases (metal proteases, lysosome
proteases, as well as fibrosygen/fibrosase systems and their
activators urine kinases) to promote the formation of TG by
mediating antigen processing, forming extracellular matrix
(ECM) and cell fragments, and processing cytokines and
hormones (5, 6). The formation of TG is a key event to
prevent the spread of infection and inflammation, during this
period, Mtb can escape the host immune response and remain
dormant for decades (7). Once the host’s immune response is
weakened or suppressed, dormant Mtb may be reactivated and
escape from TG, causing lesions in other parts of the tissue (8).
Mtb can coexist with the host, but the mechanism of its resistance
to the host’s strong immune response remains uncertain.

Mesenchymal stem cells (MSCs) are pluripotent stem cells,
which adhere to plastic under standard culture conditions
in vitro, showing long spindle and fibroblastic appearance,
expressing mesenchymal surface markers CD29, CD73, CD90
and CD105, but not expressing hematopoietic stem cell surface
markers CD11b, CD14, CD34, CD45 and HLA-DR (9). MSCs
have been confirmed to exist in bone marrow, fat, skin, thymus,
placenta, gingival, umbilical cord tissue, etc., and can be induced
to differentiate into osteoblasts, adipocytes, chondroblasts and
neuron cell under certain conditions (10, 11), etc. In addition, a
number of studies have shown that MSCs can migrate to the site
of injury in the body and effectively play the role of anti-
inflammatory immune regulation and tissue regeneration by
differentiating into damaged tissues and paracrine cytokines
(12, 13), which have been widely used in the field of immune
and inflammatory diseases and regenerative medicine (14, 15).
Almost everything that is known about the lifestyle of Mtb in
host cells of TG mainly through the study of macrophages. But
recent studies have found that the occurrence and development
of TB seems to be closely related to MSCs.
MSCS AND TG

MSCs Regulates Mtb Growth
TG is an aggregate of cells composed of several types of infected
and uninfected phagocytes (macrophages, monocytes, dendritic
cells, and neutrophils) and T lymphocytes, and is the hallmark
histopathological structure of TB (16). It represents the niche of
long-term persistence of Mtb as well as host sequestration of
bacteria in order to limit dissemination. To better understand
Frontiers in Immunology | www.frontiersin.org 2
pathogenesis of TB requires tackling its epicenter, the
granuloma. More and more studies have found that MSCs are
involved in formation and development of TG. Raghuvanshi
et al. used CD29 as the identification marker for MSCs and
found that MSCs were distributed over human TG and there
were active acid-fast bacteria in the MSCs cluster. In addition,
MSCs seem to play a complex role in granuloma. On the one
hand, MSCs can produce the same specification of nitric oxide
(NO) to inhibit T cell response with limiting the human immune
response to kill Mtb, on the other hand, NO can inhibit the
growth of Mtb and limit the bacteria within the granuloma (17),
the persistent infection of Mtb in vivo and the formation of TG
may be related to this mechanism. Moreover, Das et al. found
that MSCs can be used as “niches” for Mtb dormancy in TG,
because the live Mtb can be isolated from CD271+/CD45- bone
marrow mesenchymal stem cells (BM-MSCs) of TB patients that
have successfully completed anti-TB treatment for several
months (18). Hypoxia is known to cause Mtb dormancy (19),
and Garhyan et al. found that Mtb containing CD271+MSCs are
elevated in human subjects who have previously been treated for
pulmonary TB, and proves the potential location of Mtb
containing CD271+MSCs in the hypoxic niche (20).
Interestingly, CD271+MSCs function and activity were
significantly increased in adults or older adults compared to
children (21), suggesting that CD271+MSCs may be closely
related to the occurrence and development of TB. A recent
study found that Mtb expressed dormancy related genes in
CD45-Sca1+MSCs that sorted from bone marrow of infected
mice (22). These evidences further confirm that MSCs are the
natural host of latent Mtb infection. Additionally, recent studies
have found that MSCs do exist in human pulmonary and
extrapulmonary TG (23).

Besides, studies have shown that MSCs do regulate the growth
of Mtb. Schwartz et al. found that MSCs could promote the
growth of Mtb in splenic granuloma, while MSCs treated with
Poly (A: U) could inhibit the growth of Mtb in splenic granuloma
(24). In addition, MSCs display a novel phagocytom-like
function and restrict Mtb growth via scavenger receptors (SR)-
mediated internalize or phagocytosis and autophagy during TB
infection (25). After MtB infection, MSCs also paracrine
prostaglandin E2 (PGE2) and mediate Mtb resistance by
affecting the bacteriophilic properties of MSCs (23). Notably,
the metabolic activity of Mtb in MSCs will be at a low state and
will gradually acquire resistance to first-line anti-TB drugs (26).

It has been reported that altruistic stem cells (ASCs) exhibit
niche regulation or altruistic stemness in Mtb infected
microenvironment of hypoxia/oxidative stress, and thus act as
a niche defense mechanism (27). Therefore, dormant Mtb in cells
may promote the reprogramming of MSCs in the lungs of acute
respiratory infection (ARI) to the ASCs phenotype. The
reprogrammed ASCs can then stimulate the replication of
dormant Mtb and subsequently release them to neighboring
MSCs and/or macrophages (28). This process will lead to
primary TB in the lungs. Whereas in a coronavirus infected
mouse model, dormant Mtb reprogrammed host CD271+MSCs
into ASCs phenotype, which enabled the dormant bacteria to
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reactivate (18). Also, MSCs carrying live Mtb can be
reengineered into ASCs by producing extracellular vehicles
(EVs) that secrete Mtb antigens including ESAT-6 (29). EVs
are disseminated through aerosols in the community and come
into contact with mucosal immune cells of healthy subjects,
leading to natural inoculation (29). These reports suggest that
MSCs can regulate Mtb growth, mediate bacterial resistance, and
involve in the formation of granuloma. Therefore, clarifying the
status of bacteria and host cells in TG will greatly improve our
understanding of the pathophysiology of TB and promote the
development of new treatment methods.

MSCs Promotes Fibrin Deposition
Fibrin deposition is crucial in TG. TGF-b is the primary activator
of fibroblasts, and plays a key role in promoting wound healing.
It stimulates muscle fiber cells to enhance repaired wounds and
produces ECM to support the formation of granulation tissue
(30). Additionally, the highly expression of tissue factor (TF) on
the surface of MSCs is an activator of the exogenetic clotting
pathway, in which the expression of TF and the ability to activate
local coagulation triggers the activation of fibrin and leads to
fibrin deposition required for TG formation (31–33). It provides
a new idea for the study of the mechanism of MSCs-mediated
TG formation.

Possible Forms of MSCs in TG
TG is an aggregate of a variety of immune cells, and its unique
environment may affect the biological functions of MSCs.
However, there are few studies on the relationship between
MSCs and TG. It is still unclear which form of MSCs exist in
TG and what role they play. Mature adipocytes from adipose
tissue can inhibit the accumulation of lymphocytes and
neutrophils, but the destruction of normal tissue matrix
homeostasis, such as chronic inflammatory diseases, may lead
to “abnormal” lipogenesis. Studies have shown that MSCs-
differentiated adipocytes lost their ability to inhibit neutrophils
from adhering to TNF-a stimulated endothelial cells in co-
culture system with human umbilical vein endothelial cells but
had the ability to inhibit lymphocyte adhesion (34). Chen et al.
found for the first time that lysophosphatidic acid (LPA) had an
abnormally high abundance in the plasma of untreated patients
with TB, but with the progression of treatment, the abundance of
LPA significantly decreased (35). LPA activates intracellular
transcription factor peroxisome proliferator-activated receptor-g
(PPAR-g) (36), during Mtb infection PPAR-g induce accumulation
of lipid droplets (LDs) in foamy macrophages (37, 38). Interestingly,
PPAR-g is recognized as a major inducer of adipogenesis, regulating
the differentiation of MSCs into adipocytes (39). In addition, adipose
tissue has been proposed as an extrapulmonary niche in which Mtb
can exist for a long time (40). Therefore, we speculate that in TG,
MSCs may partially differentiate into adipocytes, which on the one
hand provide the energy needed for the survival of Mtb, and on the
other hand reduce the damage ofMtb caused by immune reaction by
inhibiting lymphocyte adhesion.

Multinucleated giant cell (MGC) is the characteristic cells of TG,
but the formationmechanism and role ofMGC are still controversial.
Frontiers in Immunology | www.frontiersin.org 3
Most views believe that MGC originates from the fusion between
monocytes and macrophages (41). Another view suggests that
MGC may be formed from epithelioid macrophages during
mitosis or without cytoplasmic division during amitosis (42,
43). Notably, recent research has found that some MSCs tend
to fuse and form multinucleate cells at 5 days after Mtb infection
(25). But whether the formation of MGC is related to MSCs
remains to be further confirmed.

Studies have found that local delivery is known to cause MSCs
to aggregate into “spheroids,” This aggregation phenomenon has
been observed in rodents after intraperitoneal and subcutaneous
(13, 44), and intraventricular (45) injections. Although adherent
MSCs can effectively inhibit T cells, the aggregation of MSCs into
globules will result in the loss of their ability to inhibit T cells and
enhance their anti-inflammatory ability (46, 47). TG is a
collection of various cells. It is not clear whether MSCs
converge in this space-restricted location, and whether the
accumulation of MSCs affects their own functions. We believe
that MSCs may have multiple “identities” in granulomas, but
further verification is needed.

Physical Location of MSCs in TG
The classical TG exhibits the following structures. Central
acellular necrotic core, surrounded by a variety of macrophages
that is itself circumscribed by a lymphocytic cuff of T cells and B
cells, and may have a peripheral fibrotic edge (16). As a “new
member” in TB, it is not clear whether MSCs have a specific
physical location in TG. It was found that MSCs surrounds the
granulomatous structure and inhibits T cell activation and
restricts the growth of Mtb by producing NO. This is due to
the fact that MSCs is very close to living Mtb and IFN-g-
producing T cells, thus creating an environment conducive to
the production of NO by these cells (17). Therefore, we guess that
MSCs are not disorganized, but have a specific physical location
distribution between them and the host immune cells in the TG.
In addition, the lymphocyte-rich area of the granuloma is usually
located in the outer layer, and this distribution may limit the
interaction of T cells with infected macrophages that are mainly
located in the inner area of the granuloma (48). However, the
immunomodulatory effects of MSCs and their distribution in
granulomas and whether they are affected by the distribution of
lymphocytes are not yet fully understood (Figure 1). In general,
determining the distribution of MSCs may be a key step in
exploring the formation mechanism of TG.
POTENTIAL APPLICATION OF
MSCS IN TB

MSCs as Potential Therapeutic Targets
It has been found that cytokines such as IFN-g and TNF-a
activate macrophages and promote the secretion of oxidants
such as nitric oxide and superoxide, thereby killing Mtb (25).
However, the bacterial colony forming unit (CFU) increased in a
dose-dependent manner after IFN-g and TNF-a were applied to
Mtb infected MSCs (23). Several vaccine candidates rely on
July 2021 | Volume 12 | Article 695278
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CD4+ and CD8+T cells that secrete IFN-g well (49–51). These
vaccines may be effective on macrophages instead of Mtb in
MSCs, so the efficacy may be affected. Lipid droplets(LDs) are
independent organelles composed of lipid ester nuclei and a
surface phospholipid monolayer, which are involved in various
cellular functions (52). Recent studies have shown that Mtb in
MSCs induces lipid synthesis and hides within LDs, thus
impeding antimicrobial host defense mechanisms, while
inhibition of lipid synthesis prevents dormancy and sensitized
the organisms to isoniazid (22). Notably, Knight et al. found that
IFN-g/HIF-1a signaling drives LDs formation in macrophages,
and that LDs formation is inversely correlated with bacterial lipid
acquisition and growth (53). Although the mechanism of LDs
formation in MSCs remains unclear, we believe that the
mechanism of LDs formation in MSCs may be independent of
IFN-g. In a word, the mechanism of lipid synthesis induced by
Mtb in MSCs should be clarified. By effectively inhibiting the
lipid synthesis of MSCs, cutting off the energy supply of Mtb, and
activating the host defense mechanism, it is of great significance
for the treatment of TB. Current TB treatment relies on a
combination of antibiotics. However, antibiotics focus on the
elimination of replicating rather than dormant Mtb (22). There is
an urgent need to find new ways to eliminate persistent bacteria.
Interestingly, recent research has found that MSCs are natural
reservoir for latent Mtb infection, whereas macrophages support
the replicating form of Mtb (22). Therefore, understanding the
mechanism by which Mtb adapts to MSCs and the targets of
MSCs allowing the long-term existence of Mtb is the key to
achieve sterilizing TB cure. In the process of TB infection, the
intracellular events of macrophages and MSCs are different
(Table 1). Understanding the differences in macrophages and
MSCs after Mtb infection may help to achieve this goal.
Frontiers in Immunology | www.frontiersin.org 4
Therapeutic Potential of MSCs in TB
MSCs as Modulators of Immune Cells
It is known that the emergence of MDR-TB and the pandemic of
novel coronavirus in recent years have posed a major threat to
global TB prevention and control (60, 61). Immune dysfunction
in TB patients and the emergence of Mtb resistant strains lead to
unsatisfactory therapeutic effects, so it is critical to find a new
therapeutic regimen. It is considered that the incidence of TB is
largely dependent not on primary infection or re-infection, then on
the reactivation of persistent latent Mtb due to immunodeficiency
(62). Therefore, it is essential to improve the body immunity for TB
treatment. In recent years, host-directed therapy (HDT) has
emerged as an emerging approach, especially in chronic pathogen
infections such as TB. HDT aims to improve the control of infection
and the alleviation of inflammation by modulating the host
immune response, thus reducing tissue damage (63). MSCs have
attracted wide attention due to their powerful immunomodulatory
functions and their ability to replace or repair damaged tissue and
may be ideal candidates for chronic diseases.

MSCs can affect the immune system of human body through
“direct interaction between cells”, enzyme production and
soluble cytokines. It has been reported that MSCs can promote
the functions of Tregs and Th2, inhibit the release of IFN-g by
Th1 and regulate the balance of Th1/Th2 though PGE2 secretion
(64). In addition, MSCs can regulate T cell response and promote
the polarization of M1 to M2 macrophages by expressing
indoleamine 2,3-dioxygenase (IDO) and activating the CD39/
CD73/adenosine signaling pathway (65, 66). FasL expressed by
MSCs may bind to Fas expressed by activated T cells to up-
regulate Treg and promote T cell apoptosis through the Fas/FasL
signaling pathway (67). In addition, PGE2 released by MSCs can
inhibit the maturation and function of dendritic cells (DCs),
FIGURE 1 | Possible structure and cellular constituents of TG. TG is an organized aggregate of immune cells. In classic TG, there is a necrotic area in the center,
surrounded by a large number of immune cells such as T cells, B cells and macrophages. MSCs have been found to exist in TG and may be involved in the
formation and development of granuloma. However, the location of MSCs in TG and their relationship with immune cells are still unclear.
July 2021 | Volume 12 | Article 695278
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resulting in a decrease in IL-12 expression (68). MSCs can inhibit
the activation of B cells and promotes the transformation of B cells
into IL-10-producing Breg, and IDO partially participates in the
MSCs-mediated effects on Breg cells (69, 70) (Figure 2A). In
addition, the effect of MSCs has been attributed to cell-to-cell
communication released by EVs (Figure 2B). EVs are lipid
vesicles secreted by cells that mediate intercellular communication.
According to their size and intracellular origin, EVs can be divided
into exosomes, microvesicles and apoptotic bodies (71). EVs can be
used as antigen to bind to recipient cells and can also be used as a
carrier to deliver functional substances such as protein, DNA, mRNA
and non-coding RNA to recipient cells (Figure 2C). Studies have
shown that MSCs-derived extracellular vesicles (MSCs-EVs) also
have strong immunomodulatory ability (Figure 2D). MSCs-EVs can
down-regulate Th1 response in vitro, reduce the number of Th17
cells and IL-17 secretion, and increase the proportion of Treg cells
(72). They also affect B cell lineage function by inhibiting
immunoglobulin secretion (73). In addition, MSCs-EVs can be
effectively internalized by mononuclear macrophages, promote the
polarization of M0 macrophages to M2, inhibit the expression of
CCR7 in DC cells and weaken the function of DC cells by carrying
miR-21-5p (74, 75). In a word, MSCs-EVs can produce a wide
range of immunomodulatory effects on different cells of the
immune system.

Therapeutic Theories of Immunomodulatory
T cells are known to play a key role in the host’s immune
response against Mtb infection. It has been found that T cells are
necessary for long-term control of Mtb infection and may play
an important role in the prevention of TB (48, 76). However, a
strong T-cell response is not necessarily beneficial, and TB
patients must strike a fine balance between immune system
activation and tolerance. In healthy people, Th1 and Th2
cytokines are in a dynamic equilibrium state. During Mtb
infection, Th1 cytokines mainly enhance the activity of
macrophages to kill bacteria, while Th2 cytokines inhibit the
Frontiers in Immunology | www.frontiersin.org 5
release of Th1 cytokines, thereby weakening the immune
response. The imbalance of Th1/Th2 is directly related to the
occurrence and development of TB (77). As previously described,
both MSCs and MSCs-EVs have been shown to regulate Th1/
Th2 homeostasis, and whether MSCs have the same effect in the
Mtb infection microenvironment needs to be further confirmed.

Neutrophils are the most abundant cell type in the innate
immune system. They target pathogens through phagocytosis,
release of bactericidal molecules and so-called neutrophil
extracellular traps, and they are key promoters of antibacterial
response (78). During Mtb infection, neutrophil inflammation
may be related to lung pathology and TB progression (79, 80).
However, neutrophils have a short lifespan. Strategies for
enhancing the lifespan and activities of neutrophil can be
useful in TB. It has been found that MSCs can recruit
neutrophils and extend their life span and pro-inflammatory
activity (81). The results of a murine sepsis model showed that
MSCs injection assisted bacterial clearance by enhancing the
phagocytic activity of neutrophils (82).

Macrophages are the main host cells of Mtb in the body and
they are also important cells that constitute TG. It has been
found that MSCs and MSCs-EVs can regulate the polarization of
M1-type macrophages to M2 (83). And the activation state or
polarization of macrophages is crucial to host immune response
to pathogen invasion (84). It is reported that the M2
macrophages were found to predominate in both necrotizing
and non-necrotizing granulomas of TB patients. In addition, M1
macrophages have high bactericidal activity in vitro and promote
the formation of granulomas, while M2 macrophages inhibit
these effects and play a leading role in the formation of advanced
granulomas (85). MSCs reprogram host macrophages in a PGE2-
dependent manner to significantly reduce bacteremia and
mortality in sepsis (86). Host lipids are an important energy
source for Mtb and a safe place for bacteria. Mtb infection can
induce the accumulation of cholesterol esters and glycerides in
macrophages, leading to the formation of foamy macrophages
TABLE 1 | The differences between macrophages and MSCs after Mtb infection.

Item Macrophages MSCs

LDs IFN-g/HIF-1a promotes the formation of intracellular LDs (53); lower levels
of LDs accumulation (26)

Mechanism is unknown; high levels of LDs accumulation (26)

IFN-g
stimulation

Activating macrophages to kill Mtb; The expression of ROS increased; No
increase in PGE2 release (54)

The CFU of intracellular Mtb increased in a dose-dependent manner; ROS
production is not affected; The expression of PGE2 increased; increasing
autophagy flux (23)

Phagocytosis
of Mtb

Mannose receptor (MR) is a major receptor (55) MR was not involved (25)

Autophagy Decreasing Mtb viability (56)
Autophagy is induced by activated macrophages (56, 57)

Intracellular Mtb growth restriction; MSCs have inherent autophagy (25)

Intracellular
Mtb

Active replication (22); no significant change in morphology (26); most
of Mtb are located to early endosomes immediately after infection (22)

No proliferation and dormancy state (22, 25); increasing bacterial cell
density and reduction in cell size (26); Most of Mtb are located in cytosol
(22)

Cellular states Cells die at very low levels of infection (26) Cells enter into a quiescent state (22)
Oxidizing
reaction

Releasing lower levels of NO (58) Releasing higher levels of NO (25)

Phagocytic
ability of Mtb

Stronger (22) Weaker (22)

Mtb efflux
pumps

Rv0194, Rv1218c, Rv1272c, Rv1273c, Rv1463, Rv1687c, Rv2686c,
Rv2687c, Rv2688c, Rv1348, Rv1349, Rv3239c, Rv3728, Rv1183,
Rv1146, Rv0969, Rv3578 (59)

ABC transporters ABCC1 and ABCG2 (23)
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and TG. Studies have shown that foam macrophages containing
LDs promote the persistence of Mtb (87). Furthermore, Mtb-
induced LDs formation attenuates host cellular microbicidal
activities, thus creating a niche that is ideally suited to its
persistent lifestyle (1). Zhang et al. found that MSCs can regulate
the expression of scavenger receptor (SR) such as CD36, SRA1 and
ABCA1, thereby affecting the lipid homeostasis of macrophages and
inhibiting the formation of foam cells. In addition, MSCs can reduce
the expression of MHCII in macrophages, thereby reducing the
uptake of oxidative low-density lipoprotein (66) (Figure 2E).
Therefore, MSCs may block Mtb’s energy source for survival and
reproduction by regulating the lipid metabolism of macrophages.

Regulate Cell Survival
Mtb can infect alveolar epithelial cells, which may provide a
protected intracellular environment that is conducive to bacterial
replication (88). However, recent work has shown that the Mtb
pathogen phosphatidylinositol mannoside may increase the
production of reactive oxygen species (ROS) and TGF-b to
induce alveolar epithelial cell apoptosis and promote the
spread of Mtb (89). Interestingly, keratinocyte growth factor
(KGF) and hepatocyte growth factor (HGF) secreted by MSCs
protect alveolar epithelial cells from apoptosis under hypoxic
conditions by stabilization of endogenous Bcl-2, inhibition of
HIF-1a expression and ROS production (90) (Figure 2F).
Whether MSCs can reduce the transmission of Mtb by
Frontiers in Immunology | www.frontiersin.org 6
inhibiting the apoptosis of alveolar epithelial cells remains to
be further studied.

Antibacterial Action
MSCs display further disease limiting capacities. Although it has
been studied that MSCs can restrict the growth of Mtb by
secreting NO, whether MSCs can affect the growth of Mtb
through other ways still needs further study (Figure 2H).
Antimicrobial peptides are an important part of the body’s
natural immune system, and they have anti-microbial activity
(91). MSCs exhibit direct or indirect antimicrobial activity
against a variety of bacterial pathogens, including Escherichia
coli, Pseudomonas aeruginosa, Staphylococcus aureus, and
Streptococcus pneumoniae, by secreting antimicrobial peptides
and inducing host innate responses (92–94). It is not known
whether MSCs affect the growth of Mtb in the same way.

Autophagy occurs at the basal level of all eukaryotic cells and
maintains bioenergy homeostasis by controlling molecular
degradation and organelle renewal (95). It is also an emerging
innate mechanism of phagocytes. Mtb infection can induce
autophagy in phagocytes, thus reducing the viability of
intracellular mycobacterium (56, 57, 96). Moreover, autophagy
seems to be an inherent feature of many types of stem cells and is
closely related to self-renewal, pluripotency and differentiation
(97). It was found that MSCs could also hamper the growth of
intracellular Mtb through autophagy (25). An in vitro study
FIGURE 2 | The possible mechanism of MSCs in the treatment of TB. MSCs may achieve the purpose of treating TB by regulating the inflammatory response of TB,
alleviating the lung injury of TB, affecting the survival of host cells and clearing bacteria. (A) The functions of innate immune cells and adaptive immune cells can be
effectively regulated by MSCs through “direct interaction between cells”, secreting enzymes and cytokines. (B) EVs secreted by MSCs are lipid vesicles that mediate
intercellular communication. (C) EVs can be used as antigen to bind to the target cells, or as a carrier to deliver proteins, DNA, mRNA and non-coding RNA to the
target cells. (D) The function of immune cells can be regulated by MSCs through the release of EVs. (E) Macrophages can differentiate into foam cells, which are
characterized by lipid accumulation. And MSCs can affect the lipid homeostasis of macrophages, inhibit the formation of foam cells, and reduce the expression of
MHCII in macrophages, thereby reducing the uptake of oxidized low density lipoprotein. (F) KGF and HGF secreted by MSCs protect alveolar epithelial cell from
apoptosis under hypoxic conditions. (G) MSCs can enhance pulmonary microvascular endothelial cell autophagy through PI3K/Akt signal transduction. (H) MSCs
exhibited antimicrobial activity by secreting antimicrobial peptides and NO, enhancing the activity of lipoprotein-2, and enhanced autophagy.
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showed that rapamycin can reduce the load of dormant Mtb in
MSCs by inducing autophagy (22). In addition, Cen et al. found
that rapamycin can activate the autophagy of MSCs and then
regulate the recruitment of CD4+T cells by MSCs through
affecting CXCL8 and TGF-b1, effectively alleviating the
inflammatory response (98). However, the autophagy of MSCs
may contribute to the spread of Mtb. Granuloma is a hypoxic
microenvironment (99). MSCs have a strong role in promoting
angiogenesis in hypoxic microenvironment (100). Although
angiogenesis can benefit the host by providing a direct source
for the arrival of immune system cells against the pathogen, it
also facilitates Mtb growth and spread to other tissues (46).
Research found that rapamycin-induced autophagy caused
MSCs to secrete higher levels of vascular endothelial growth
factor (VEGF), which in turn promoted angiogenesis (101).
Whether the autophagy of MSCs is an “assist” of Mtb
dissemination or a “good medicine” to inhibit the growth of
Mtb still needs to be further confirmed.

Repairing Lung Damage
TB is a destructive process that leads to scarring of the lungs,
parenchymal changes and bronchiectasis, resulting in reduced
lung volumes and effects on pulmonary function (102). In
addition, studies have shown that there is lung damage after
TB treatment (103, 104), and increases risk for airflow
obstruction and chronic obstructive pulmonary disease
(COPD) (105, 106). And in the preclinical model of
Bronchopulmonary dysplasia, MSCs was effective in cytokine
accumulation and by improving alveolar and vascular lung
structure and function (107, 108). MSCs enhance autophagy of
pulmonary microvascular endothelial cells through PI3K/Akt
signal transduction, thereby reducing the severity of lung injury
caused by ischemia/reperfusion (109) (Figure 2G). And in a
mouse model of E. coli pneumonia, the activation of toll-like
receptor 4 (TLR4) on mouse MSCs enhanced lipocalin-2 activity,
improved survival, reduced lung injury, and promotes bacterial
clearance (110, 111) (Figure 2H). Furthermore, MSCs can
attenuate the severity of Escherichia coli-induced acute lung
injury, decrease physiologic indices of lung dysfunction, and
reduce structural lung injury (112). Besides, MSCs-EVs reduce
lung inflammation and protein permeability therefore
preventing the formation of pulmonary oedema (113). In the
model of silica induced lung injury in mice, MSCs-EVs were able
reduce the size of silicotic nodules (114). They also reduce the
accumulation of neutrophils and lymphocytes in bronchial
lavage fluid and the expression of pulmonary inflammation
and pro-fibrosis genes.

MSCs can also be used to treat pulmonary fibrosis (PF). PF is
a chronic lung disease in which fibrous granuloma tissue is
formed during the progression. Patients with idiopathic
pulmonary fibrosis (IPF) are at higher risk of developing TB,
Cao et al. have shown that pulmonary resistant mesenchymal
stem cells (LR-MSCs) can be activated and differentiated by
Wnt/b-catenin signal and participate in the progression of
pulmonary fibrosis (115). In another study using MSCs to treat
pneumonia, it was found that early intervention of MSCs
reduced inflammation and slowed down the process of PF (116).
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Due to the reduction of pulmonary interstitial inflammatory cells
after MSCs infusion, there is less collagen fiber deposition in the
lung tissue (116). Therefore, the damage to the lung structure is
correspondingly reduced. Furthermore, MSCs can also reduce
the degree of fibrosis in the lungs by reducing levels of hydroxy
proline, collagen type 1 (COL-1) and COL-3, as well as by
paracrine (117).

Applications of MSCs Therapy
Lung tissue is the main site of Mtb infection. MSCs has been
reported to preferentially accumulate in the lungs following
intravenous administration but it is located in the alveolar
septa as cell aggregates and does not penetrate into the
inflammatory lesions. In addition, during Mtb infection, MSCs
cannot significantly regulate the local immune response and
disease course of mice, indicating that MSCs cannot effectively
treat active TB (118). MSCs infusion may worsen TB or
reactivate latent Mtb through immunosuppressive function.
However, systemic transplantation of autologous MSCs were
found to have a favorable therapeutic effect on 15 patients with
MDR-TB and 12 patients with extensive drug resistance TB
(XDR-TB) (119). And the results of a phase I trial of autologous
BM-MSCs infusion for adjunct treatment of terminally patients
with XDR/MDR-TB in Belarus indicated that MSCs infusion
may be safe as an adjuvant therapy (120). Then clinical studies
showed that 81 percent of patients were treated successfully.
Although there are side effects such as hypercholesterolemia and
nausea, MSCs therapy does improve the prognosis of MDR-TB
to a great extent (121). A model of bladder TB in New Zealand
rabbits found that a single-dose administration of MSCs into the
bladder mucosal layer significantly reduced the wall deformation
and inflammation, and hindered the development of fibrosis,
which confirmed the therapeutic efficacy of the interstitial
injection of bone-derived MSCs combined with standard anti-
TB treatment in the restoration of the bladder function was
demonstrated (122). Therefore, MSCs also have good application
value in the treatment of extrapulmonary TB. Notably, some
reports in the literature indicate that MSCs can trigger rather
than inhibit lymphocyte activation when a very low number of
MSCs are co-cultured with lymphocytes (123). This means that
the ratio between the number of MSCs and immune cells is the
key to predict whether MSCs will inhibit or activate the immune
system. Consequently, the appropriate dosage for treatment with
MSCs may be the key to treatment. In general, in vivo results are
encouraging, but the safety and effectiveness of MSCs in treating
TB remains to be further confirmed due to the lack of a large
number of clinical data (Figure 3). Through searching the
Pubmed and ClinicalTrials.gov database, 4 MSCs-based clinical
application for TB were identified which were described in detail
in the Table 2.

Unanswered Questions and Future Perspectives of
MSCs for TB
At present, MSCs are the hot point cells in the medical field in
recent years, which have a good application prospect in the
treatment of inflammatory or immune-related diseases and
regenerative medicine. Although several clinical studies of
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tuberculosis treatment based on MSCs have shown positive
results, the research on the relationship between MSCs and TB
is still in the exploratory stage. Therefore, MSCs-based TB
treatment should pay attention to the following issues. 1).
There were some differences in the biological functions of
MSCs in different tissue sources and different culture
conditions in vitro (124, 125). It is very important to select
MSCs from appropriate tissue sources and optimize the culture
Frontiers in Immunology | www.frontiersin.org 8
conditions in vitro to obtain high-quality and efficient MSCs.
2). At present, MSCs treatment still has some side effects (126).
AlthoughMSCs are safe as an adjuvant therapy for TB treatment,
it cannot be fully proved due to the lack of extensive clinical trial
data. 3). Studies have found that TB has different symptoms,
different microbial composition, different immune responses and
pathological characteristics, and there are multiple forms of
infection even in a single individual (127). Therefore, treatment
TABLE 2 | MSCs-Based Clinical Application for TB.

Type of Cells Actual
Enrollment

Curative
effect

Adverse events Phase Country Status Clinical trials
identifier

References

MSCs Spinal TB(n=20) unknown – Phase 2 Indonesia Recruiting NCT04493918
(USA)

https://
clinicaltrials.gov

Autologous MSCs MDR-TB(n=15)
XDR-TB(n=12)

positive – – Russia Completed – (119),

Autologous
BM-MSCs

MDR/XDR-TB
(n=30)

positive high cholesterol levels (14/30,
nausea (11/30) lymphopenia or
diarrhea (10/30)

phase I Belarus Completed DRKS00000763
(German)

(120),

Autologous
BM-MSCs

MDR/XDR-TB
(n=36)

positive hypercholesterolaemia and
nausea

– Belarus Completed – (121)
Ju
ly 2021 | Volume 12
MSCs, mesenchymal stem cells; BM-MSCs, bone marrow mesenchymal stem cells; MDR-TB, multidrug-resistant tuberculosis; XDR-TB, extensive drug resistance tuberculosis.
FIGURE 3 | MSCs-based clinical application and possible outcomes for TB. MSCs are used in the treatment of bacterial pneumonia and PF, and have achieved
good results. Nevertheless, the safety and effectiveness of MSCs in the treatment of tuberculosis need to be further confirmed. (A) MSCs can reduce the severity of
bacterial pneumonia, reduce the bacterial load in the lungs and inhibits inflammation, and reduce lung injury. (B) After MSCs infusion, there are fewer inflammatory
cells in the lung interstitium and collagen fibers. The deposition in lung tissue is reduced and the degree of pulmonary fibrosis is reduced. (C) MSCs infusion can
effectively reduce the inflammatory response in vivo, hinder the development of fibrosis in the lesion site, and does improve the prognosis of TB patients to a large
extent. However, the safety and effectiveness need to be verified. (D) During Mtb infection, MSCs may not be able to effectively regulate the local immune response
and the course of disease. In addition, MSCs have immunosuppressive properties, and its infusion may have the risk of worsening of TB or the reactivation of latent
Mtb, so the safety and effectiveness of MSCs in the treatment of TB are issues worthy of in-depth exploration. +: outcomes are effective; ?: outcomes are uncertain.
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should be carefully selected according to individual immune status. In
addition, various factors should be considered when using MSCs for
treatment, such as the stage of the disease, related HIV infection or
other conditions, including genetic susceptibility, and indications for
MSCs infusion. 4). Mtb can infect macrophages, alveolar epithelial
cells and MSCs. However, there are differences in the lifestyle of Mtb
in host cells, which may be one of the reasons for Mtb resistance.
Therefore, fully understanding the relationship betweenMtb and host
cells is the key to the treatment of TB. 5). MSCs-EVs also have
immunomodulatory and pluripotency (128), and EVs have relatively
single structure and small volume, which may have stronger
permeability and safety (129). However, MSCs-EVs could act via
different mechanisms from that of their progenitor MSCs (130).
Therefore, MSCs-EVs may be a potential treatment tool for TB.

Application Value of MSCs in TB Model
The current research on the pathogenesis of TB is limited to the
representative human TG model. The method of establishing
TG model is very limited, mainly relying on animal models.
The most common laboratory animals are mice, guinea, pigs
and zebrafish. However, the dormancy properties of Mtb in
humans cannot be generalized in any available animal model.
So a new system is needed to study and understand the natural
processes of infection and disease progression (131). In
addition, TG in non-human primates is most similar to
human TG but cannot be widely used due to high operating
costs and ethical issues.

In recent years, many scientists have established human TG
models in vitro for TB research (132–134). Although these
models are physiologically relevant to human TB and are less
costly and have no ethical concerns than animal models, they
have some limitations, such as the inability to simulate the
chronic course of TB. Interestingly, in vitro studies have shown
that Mtb can survive long-term in a non-proliferative state in
MSCs without affecting the viability of host cells at low levels of
infection (26). In addition, Mtb gradually increases resistance to
antibiotics, a phenotype associated with dormant bacilli (26).
However, infection of the human macrophage THP-1 showed a
time-dependent increase in Mtb burden while also causing host
cell death, even at a low MOI of 1:1 (26). In addition, it is
speculated that the invasion and replication of Mtb in alveolar
epithelial cells may overwhelm them, leading to cell death and
bacterial dissemination (135). Therefore, compared with the
commonly used in vitro TB models of macrophages and
alveolar epithelial cells, MSCs can better reflect the incubation
period of Mtb and simulate the chronic course of TB.
Unfortunately, the existing in vitromodels do not include MSCs.

The granulomatous response is considered to be a necessary
step for the anti-TB response. A good vaccine candidate must be
a good granuloma inducer (136). As we have mentioned before,
MSCs may be candidates for TB vaccines due to their strong
immunoregulatory ability and may be involved in the formation
of TG. It is important to note that although the BCG vaccine
showed good granulomatous induction, it did not protect 100%
of the immunized individuals against TB (136). Therefore,
inducing TG formation may not be a sufficient condition for
inducing protection, but it can be used as a screening index for
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TB vaccine. Therefore, our research team is currently using in
vitromodels to study the ability of MSCs and existing vaccines to
promote the formation of TG, which may help to develop
alternative vaccines for TB.

Potential of MSCs to Diagnose
Pulmonary tuberculosis (PTB) can be diagnosed with clinical
symptoms (chronic cough, sputum expectoration, low fever,
night sweats, hemoptysis, etc.), pulmonary CT, skin test, and
sputum smears. However, the diagnosis of latent tuberculosis
infection (LTBI) is fairly indirect relying on evidence of cellular
immune response to mycobacterial antigens (137). The most
commonly used tests for LTBI diagnosis are the introcyte
tuberculosis mycosin test (TST) and IFN-g release assays
(IGRA) (138, 139). The IGRA is based on the detection of
lymphocytes stimulated by a peptide specifically encoded by
Mtb diagnostic test for in vitro secretion of IFN-g. However,
IGRA is based on the quantification of IFN-g after only brief
lymphocyte stimulation (16-24 hours) but may not be enough to
cause the release of markers from central memory T cells (140).
In addition, an important proportion of subjects with advanced
PTB can be insulating to immune stimulation and IGRAs can
also lead to false negative or indeterminate results, so neither
TST nor IGRA can be used to distinguish between PTB and LTBI
(141). Granulocyte-macrophage colony-stimulating factor (GM-
CSF) and IL-2 were more active than IGRA reported at the
highest specificity, distinguish PTB from LTBI and uninfected
TB (142). In addition, these tests cannot be used to predict
whether patients with LTBI will develop PTB, and treatment of
LTBI cannot effectively reduce the risk of PTB.

Recently, the frequency of CD57-expressing cells may provide
another way to distinguish between the two subjects. CD57-
expressing cells are more frequently expressed in PTB patients
than LTBI, and can be used to identify patients with active
disease prone to LTBI infection. Studies have shown that the
frequency of CD57-expressing cells may provide another way to
distinguish these two subjects. The expression frequency of
CD57-expressing cells in PTB patients is higher than that of
LTBI, and can be used to identify LTBI infection patients who are
prone to develop active diseases (143). In addition, compared
with LTBI, patients with extrapulmonary tuberculosis (EPTB)
and PTB have a higher frequency of CD4+ T cells expressing
CD38+, HLADR or Ki67 (P <0.001), which can separate active
TB from LTBI and EPTB from PTB (144). These parameters
provide an attractive way to develop blood-based diagnostic tests
for PTB and LTBI. And T-cell enzyme-linked immune speckle
method (T-SPOT®. TB) is highly sensitive and specific to TB and
PTB, and is not affected by previous TB or BCG vaccination
history (145). However, patients with poor immunity, nutritional
status, and decreased T cell quantity and function in the elderly
may reduce the sensitivity of T-SPOT®.TB. In addition,
Escherichia coli, Mycobacterium kansasii, or Mycobacterium
gordonae infection can cause false positives in experimental
results (145). A recent study found that large volumes are
required to get adequate cerebrospinal fluid mononuclear cells
when the assay is used on cerebrospinal fluid, which hinders its
clinical use (146). Therefore, the specificity and sensitivity of
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T-SPOT® needs to be further improved. Notably, Banerjee et al.
found that MSCs surface marker CD73 was of reference value in
the differential diagnosis of intestinal TG and granuloma in
Crohn’s disease (147, 148). Crohn’s disease is an inflammatory
bowel disease caused by dysregulation of immune tolerance in
genetically susceptible individuals (149), it presents as chronic
granulomatous disorder but is not significantly associated with
pathogen infection. And it is tempting to suggest that
CD73+MSCs are involved in TG formation and may have Mtb
or bacterial specificity. In addition, MSCs can regulate T cell
function, and the addition of MSCs to the T-SPOT®. TB system
may amplify the antigen-specific T cell effect and enhance the
sensitivity and specificity of the assay.
CONCLUSION

As a new class of phagocytes and immune cells, MSCs have been
found to exist in TG, which can not only provide a drug-tolerant
and immune-privileged niche for Mtb dormant, but also have the
ability to restrict the growth of Mtb to a certain extent and may
be involved in the occurrence and development of TB. In
addition, dormant Mtb induced quiescence in MSCs and
promoted their long-term survival. Like macrophages, DCs,
classical T cells and non-classical immune cells, MSCs also
have strong immunomodulatory/anti-inflammatory, antibacterial,
repair of damaged tissue and other abilities during the period
Frontiers in Immunology | www.frontiersin.org 10
involved in regulating TB immune responses, so they can not only
be used as an immune target or immunotherapy agent for the
treatment of TB, but also may provide a screening model for the
development of new drugs or vaccines for TB. In summary, we
believed that with further in-depth research on the relationship
between MSCs and TB, it will surely bring good news to TB
patients worldwide.
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