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Dysregulation of calcium homeostasis has been linked to multiple neurological
diseases. In addition to excitotoxic neuronal cell death observed following stroke, a
growing number of studies implicate excess excitatory neuronal activity in chronic
neurodegenerative diseases. Mitochondria function to rapidly sequester large influxes
of cytosolic calcium through the activity of the mitochondrial calcium uniporter (MCU)
complex, followed by more gradual release via calcium antiporters, such as NCLX.
Increased cytosolic calcium levels almost invariably result in increased mitochondrial
calcium uptake. While this response may augment mitochondrial respiration, limiting
classic excitotoxic injury in the short term, recent studies employing live calcium imaging
and molecular manipulation of calcium transporter activities suggest that mitochondrial
calcium overload plays a key role in Parkinson’s disease (PD), Alzheimer’s disease (AD),
amyotrophic lateral sclerosis (ALS), and related dementias [PD with dementia (PDD),
dementia with Lewy bodies (DLB), and frontotemporal dementia (FTD)]. Herein, we
review the literature on increased excitatory input, mitochondrial calcium dysregulation,
and the transcriptional or post-translational regulation of mitochondrial calcium transport
proteins, with an emphasis on the PD-linked kinases LRRK2 and PINK1. The impact
on pathological dendrite remodeling and neuroprotective effects of manipulating MCU,
NCLX, and LETM1 are reviewed. We propose that shortening and simplification of
the dendritic arbor observed in neurodegenerative diseases occur through a process
of excitatory mitochondrial toxicity (EMT), which triggers mitophagy and perisynaptic
mitochondrial depletion, mechanisms that are distinct from classic excitotoxicity.

Keywords: mitochondrial calcium uniporter, PINK1, LRRK2, calcium overload, Parkinson Disease/Lewy body
dementia, Alzheimer Disease, FTD-ALS, dendrite degeneration
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INTRODUCTION

Neuronal function is dependent upon the formation,
maintenance, and activity-regulated remodeling of
multiple synaptic contacts supported by extensive
axo-dendritic arborization. The primary excitatory
neurotransmitter is glutamate. Glutamate binds to calcium-
permeable ionotropic receptors that are also activated by
N-methyl-D-aspartate (NMDA) or α-amino-3-hydroxy-
5-methyl-4-isoxazolepropionate (AMPA). These NMDA
receptors (NMDAR) and AMPA receptors (AMPAR) are present
predominantly in dendritic spines, but also exist in perisynaptic
regions. NMDA receptors are composed of NR1 and NR2
subunits; the four NR2A-NR2D subunits confer different kinetic
properties, channel open probabilities, ion conductance, and
effects on synaptic plasticity. Excitatory synaptic activity engages
NMDAR subsets that contain the NR2A subunit, resulting in
activation of Akt, ERK1/2, and CREB (Lau and Zukin, 2007). In
addition to ligand-gated channels, L-type voltage gated calcium
channels are also involved in activating ERK1/2 and CREB to
regulate activity-dependent transcription (West et al., 2002).
Transient activation of these signaling pathways is implicated in
neuronal survival as well as in synaptic plasticity.

Due to its essential role in signaling both pre-synaptic
and post-synaptic processes, as well as cellular processes of
differentiation, cell death, vesicular transport, and cytoplasmic
motility, calcium undergoes exquisitely precise regulation in
neurons that allow simultaneous engagement of multiple
spatially separated calcium-dependent processes. Dendritic
spines function as physical compartments that isolate and
concentrate calcium signals arising from synaptic activity (Koch
et al., 1992). Following depolarization or ligand-stimulated
calcium uptake, calcium signal recovery is mediated by channel
inactivation, plasma membrane sodium-calcium exchangers
(NCX) that extrude calcium, and sequestration of calcium into
mitochondria, endoplasmic reticulum, and other intracellular
stores. The mitochondrion plays a key role in rapid, post-
stimulatory calcium recovery by taking up massive amounts of
calcium into its matrix (White and Reynolds, 1997), while also
fueling ATP-dependent pumps on other membranes (Budd and
Nicholls, 1996).

While increased excitatory stimulation has been extensively
studied in the context of acute neuronal injury and cell death,
it has become clear in recent years that increased neuronal
calcium handling may also play a pathogenic role in chronic
neurodegenerative diseases. Shortening and simplification of the
dendritic arbor and spine loss, often accompanied by loss of
dendritic mitochondria (Cherra et al., 2013; Dagda et al., 2014)
are observed in post-mortem studies of Alzheimer’s disease (AD),
Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS)
(Hammer et al., 1979; Patt et al., 1991; Baloyannis et al., 2004;
Stephens et al., 2005) or their experimental models (MacLeod
et al., 2006; Wu et al., 2010; Dagda et al., 2014; Fogarty et al.,
2016). Although inhibiting calcium uptake from the extracellular
space is frequently neuroprotective (Ilijic et al., 2011; Cherra et al.,
2013; Esposito et al., 2013; Plowey et al., 2014), the mechanism(s)
by which sublethal increases in cytosolic calcium fluxes trigger

dendritic retraction have been unclear. A series of recent studies
discussed below implicate increased mitochondrial calcium stress
as a key factor by which increased excitatory neuronal activity
triggers mitochondrial depletion from and retraction of dendritic
structures. Moreover, several mitochondrial calcium transporters
are regulated by genes mutated in familial PD, causing functional
changes that increase susceptibility to this neurodegenerative
mechanism, which we have termed excitatory mitochondrial
toxicity (EMT). Genetic and aging- or disease-related signaling
alterations may also predispose to EMT in sporadic PD, AD, and
the ALS-frontotemporal dementia (FTD) spectrum.

A BRIEF SUMMARY OF
EXCITOTOXICITY

Over the past 40–50 years, it has become well recognized that
excessive glutamatergic neurotransmission leads to neuronal cell
death, which was first described by Olney (1971). While this has
been studied most extensively in the context of brain ischemia
from stroke or trauma, excitotoxic cell death has also been
implicated in epilepsy and to a lesser extent in AD (Tannenberg
et al., 2004), PD (Caudle and Zhang, 2009), and ALS (Shi et al.,
2010).

In classic excitotoxicity, a transient episode of ischemia causes
the extracellular concentrations of glutamate to rise. This results
in widespread stimulation of both synaptic and extrasynaptic
NMDARs, resulting in massive influx of sodium and calcium
(Figure 1A). Ischemia induced neuronal damage is attenuated by
pretreatment with an NMDAR antagonist, implicating glutamate
toxicity (Simon et al., 1984). Apart from glutamate, earlier
studies also implicated kainate and N-methyl-DL-aspartate in
calcium dependent neuronal cell death (Berdichevsky et al.,
1983). Whereas sodium may mediate the initial, reversible
swelling of neurons, irreversible excitotoxic injury is believed to
be mediated primarily by elevated calcium levels (Choi, 1995).
The data suggest that transient elevations of intracellular calcium
is tolerated by the cell and is reversible, whereas sustained calcium
overload causes activation of intracellular enzymes (Choi, 1987)
and a wave of mitochondrial collapse propagating to the cell body
(Greenwood et al., 2007) to cause cell death. The initial glutamate
stimulated calcium influx also triggers secondary increases in
cytosolic calcium through other mechanisms, which are tightly
correlated with neuronal cell death (Randall and Thayer, 1992).
Classic excitotoxicity thus involves multiple calcium-dependent
pathways initiated in the cytosolic compartment.

In addition to activating calcium-dependent degradative
enzymes, such as calpains, phospholipases, and endonucleases,
engagement of extrasynaptic NMDARs shuts off CREB signaling
(Hardingham et al., 2002), while activating death associated
protein kinase 1 (DAPK1) and neuronal nitric oxide synthase
(nNOS) bound to the NR2B cytosolic tail (Tu et al., 2010;
Martel et al., 2012). Calpain inhibitors confer dose-dependent
protection from excitotoxic cell death, as well as preventing
mitochondrial permeability transition and release of pro-
death factors (Lankiewicz et al., 2000). In turn, inhibiting
mitochondrial calcium uptake confers at least partial protection
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FIGURE 1 | Pathogenic mechanisms in excitotoxicity and dendritic EMT. (A) In classic excitotoxicity an insult, such as ischemia or trauma, causes increased release
of excitatory neurotransmitters (glutamate) leading to post-synaptic uptake of calcium through channels (AMPAR, α-amino-hydroxy-5-methyl-4-isoxazolepropionic
acid receptor; LTCC, L-type calcium channel; NMDAR, N-methyl-D-aspartate receptor; VGCC, voltage gated calcium channel). Falling ATP levels impair calcium
pumps, contributing to cytosolic calcium overload. Sustained intracellular calcium elevation activates a variety of degradative enzymes (calpains, endonucleases,
proteases, and lipases), ER stress and mitochondrial permeability transition (MPT), leading to cell death within hours of initiation of excitotoxicity. (B) In
neurodegenerative diseases (PD/PDD/DLB, ALS/FTD, and AD), various changes including enhanced glutamate neurotransmission contribute to increased cytosolic
calcium flux. In PD/PDD/DLB, aggregated α-synuclein (SNCAagg) can insert into the membrane forming calcium permeable pores. Mutations in the LRRK2 gene
contribute to more frequent excitatory post-synaptic potentials and increased calcium influx via NMDAR, AMPAR, and/or LTCC. In AD, soluble amyloid beta (Aβ) can
either directly stimulate VGCC or aggregates to form calcium permeable pores. Chronically elevated calcium transients, while insufficient in magnitude to trigger
calcium-dependent cell death, results in greater calcium uptake by mitochondria. In addition to elevating cytosolic calcium, mutations in LRRK2 (R1441C/G2019S)
transcriptionally upregulate MCU through activation of ERK1/2. On the other hand, loss of function (LOF) mutations in PINK1 result in impaired activation of
NCLX-mediated calcium efflux from the mitochondria. Dysregulation of mitochondrial calcium handling, whether driven by increased excitatory cytosolic calcium
uptake or changes in the function of mitochondrial calcium transporters, results in mitochondrial injury sufficient to trigger mitophagy. Depletion of dendritic
mitochondria precedes subsequent shortening and simplification of the dendritic arbor. Inhibiting NMDAR, LTCC, MCU or autophagy/mitophagy, or stimulating the
activity of NCLX, each confers protection against excitatory dendritic mitochondrial toxicity.

against cell death, depending on the severity of injury
(Stout et al., 1998; Qiu et al., 2013), and mitochondrial
permeability transition further amplifies calpain as well as
caspase activation (Ferrand-Drake et al., 2003). However, adult
neurons dying from ischemic/hypoxic injuries do not exhibit
classic apoptotic morphology, most likely due to calpain-
mediated inactivation of procaspase-9 (Volbracht et al., 2005).
These data implicate m-calpain activation as a major factor
in both mitochondrial and non-mitochondrial mechanisms of
excitotoxic cell death.

CALCIUM DYSREGULATION IN
CHRONIC NEURODEGENERATION

In recent years, it has become clear that calcium dysregulation
also contributes to chronic neurodegeneration in relation to
AD (Lopez et al., 2008; Anekonda and Quinn, 2011), ALS
(Joo et al., 2007), and PD (Cali et al., 2014) and its related
dementias: Parkinson disease with dementia (PDD) (Verma
et al., 2017) and Dementia with Lewy Bodies (DLB) (Overk
et al., 2014), which by convention are distinguished by the
relative timing of cognitive and motor symptoms. A variety of
clinical studies have converged on the possible neuroprotective

role of calcium channel inhibitors for PD. In particular, both
substantia nigra pars compacta neurons and cortical neurons
express L-type voltage-gated channels (Guzman et al., 2009).
Interestingly, L-type calcium channel inhibitors confer protection
of SN and cortical neuron types in both toxic (Ilijic et al.,
2011) and genetic (Cherra et al., 2013) models of PD. Moreover,
use of centrally acting dihydropyridine L-type calcium channel
blockers for hypertension treatment may reduce the risk of
PD (Becker et al., 2008; Ritz et al., 2010). These studies
emphasize the importance of understanding how neuronal
calcium dysregulation contributes to structural and functional
changes early in the neurodegenerative process.

In the remainder of this review, we summarize data that
supports the concept of a new pathway of sublethal excitatory
injury focused near sites of calcium entry, which contributes
to dendrite retraction rather than propagating to the soma to
cause cell death. We propose the term EMT, to emphasize the
key role of mitochondrial calcium dysregulation in this pathway
of neurodegeneration. Dysregulation of post-synaptic calcium
handling may be triggered by several mechanisms involving
proteins implicated in PD, ALS, or AD. The resultant elevations
in cytosolic and mitochondrial calcium result in mitochondrial
calcium injury, mitochondrial autophagy (mitophagy) and
depletion of mitochondria from dendrites (Figure 1B).
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In contrast to excitotoxicity, which is predominantly triggered
by excessive extracellular glutamate release, this pathway may
also be triggered by post-synaptic changes in excitability,
calcium buffering/recovery, and mitochondrial calcium influx or
efflux.

CALCIUM, MITOCHONDRIAL
CONTENT/DISTRIBUTION, AND
NEURONAL ARBORIZATION

Mitochondria play a key role in buffering and shaping cytosolic
calcium transients, as well as a critical permissive role for neurite
outgrowth, maintenance, and remodeling of axo-dendritic
extensions. Before considering disease-linked alterations, basic
mechanisms underlying these processes are briefly summarized
below.

Regulation of Mitochondrial Calcium
Handling
Mitochondrial act to buffer intracellular calcium levels through
high capacity, low affinity uptake by the mitochondrial calcium
uniporter (MCU) complex (Baughman et al., 2011; De Stefani
et al., 2011). As such, disease-associated changes in excitatory
activity or other sources of increased cytosolic calcium will
invariably affect mitochondria. Fine-tuning of MCU function
is mediated by accessory proteins MICU1 (Perocchi et al.,
2010), MICU2 (Plovanich et al., 2013), EMRE (Sancak et al.,
2013), MCUR1 (Mallilankaraman et al., 2012), and MCUb
(Raffaello et al., 2013). Mitochondrial calcium uptake is
balanced by the activity of sodium/calcium antiporters, such
as NCLX (Palty et al., 2010), which release calcium back
into the cytosol. Another mitochondrial inner membrane
protein LETM1 may act to mediate calcium uptake in
response to moderate increases in cytosolic calcium as well
as acting in calcium extrusion from the matrix (Doonan
et al., 2014), although this latter effect is controversial (De
Marchi et al., 2014). Changes to the numbers or function of
ER-mitochondrial contact sites may also affect mitochondrial
calcium homeostasis (Raffaello et al., 2016), and this process may
be regulated by Parkin (Cali et al., 2013), whose mutations cause
recessive PD.

From a physiological perspective, calcium uptake into the
mitochondrial matrix results in enhanced respiratory function,
tuning mitochondrial function to synaptic activity (Bianchi et al.,
2004; Vos et al., 2010). However, with massive or sustained
calcium stress, this response may result in mitochondrial injury
from calcium overload. Following classic excitotoxic glutamate
stimulation, excess mitochondrial calcium uptake results in
ROS production (Reynolds and Hastings, 1995), collapse of
membrane potential and opening of the permeability transition
pore (Li et al., 2009), and induction of neuronal cell death (Stout
et al., 1998). Indeed, MCU overexpression exacerbates NMDAR-
mediated mitochondrial depolarization and excitotoxic cell death
(Qiu et al., 2013). As discussed below, calcium uptake via MCU
may also contribute to sublethal pathways of mitochondrial

injury sufficient to trigger mitophagy and subsequent dendritic
remodeling.

Calcium, Mitochondria and Dendritic
Remodeling
Mitochondria play a key role in the maintenance of dendritic
integrity in neurons. Neurons are heavily dependent on
the proper function and distribution of mitochondria to
stay healthy (Gusdon and Chu, 2011). These accumulate
or move toward regions of high energy demand, such
as the growth cones of developing neurons (Morris and
Hollenbeck, 1993) or regions of higher synaptic activity
(Chang et al., 2006). The density and distribution of dendritic
mitochondria regulates dendritic morphology, spinogenesis,
and the plasticity of spines and synapses (Li et al., 2004).
Moreover, in genetic models of neurodegeneration, loss of
dendritic mitochondria precedes dendritic retraction (Cherra
et al., 2013). This may relate to the requirement for sufficient
mitochondrial densities not only to support synaptogenesis
during development (Ishihara et al., 2009), but also for
maintenance of dendritic arbors in mature neurons (Lopez-
Domenech et al., 2016). Depletion of dendritic mitochondria
may occur through reduced mitochondrial biogenesis, increased
mitochondrial degradation, or alterations in mitochondrial
transport.

Two important signals affect mitochondrial movement
within a neuronal cell. (i) The energy status of the neuron
modulates the transport of mitochondria, wherein high ATP
levels increases mobility and high ADP concentration causes
either slowing or total arrest of mitochondrial movement.
Interestingly, mitochondrial velocity is also decreased in the close
vicinity of a spine (Mironov, 2007). (ii) Changes in intracellular
calcium levels regulate mitochondrial motility, wherein high
cytosolic calcium levels decrease mitochondrial mobility. This
may account for the tendency of mitochondria to accumulate
near glutamate receptors, where they are situated to provide ATP
and to buffer incoming intracellular calcium. Activity dependent
mitochondrial movement was elegantly shown by Li et al.
(2004), with the number of mitochondria in dendritic protrusions
increased by repetitive KCl depolarization. Although the majority
of mitochondria were present in the dendritic shaft, a small
fraction of mitochondria was observed in the spine itself (Li
et al., 2004). Interestingly, even under basal conditions, levels of
mitochondria derived oxidative stress is higher in dendrites than
in the soma, consistent with an increased bioenergetic demand
associated with buffering calcium near a synapse (Dryanovski
et al., 2013).

The stimulation of NMDA receptors leads to the activation
of protein kinases, such as Ca(2+)/calmodulin-dependent protein
kinase (Ojuka, 2004), AMP kinase, and mitogen activated protein
kinases, such as ERK1/2 (Yun et al., 1999). Whereas AMP kinase
(Ojuka, 2004) and ERK1/2 (Wang et al., 2014) show opposite
effects on mitochondrial biogenesis, activation of either signaling
pathway serves to promote autophagy or mitophagy (Pattingre
et al., 2003; Meijer and Codogno, 2007; Dagda et al., 2008;
Bootman et al., 2018). The ability of neuronal cells to undergo
mitochondrial biogenesis regulates the outcome of mitophagy
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stimulation (Zhu et al., 2012). It is reasonable to surmise
that an imbalance in the rates of mitochondrial degradation
by mitophagy and replacement by biogenesis/transport will
similarly determine the degree of mitochondrial depletion from
dendrites.

SUBLETHAL EXCITATORY CALCIUM
DYSREGULATION IN CHRONIC
NEURODEGENERATION

In contrast to classic excitotoxicity, in which massive, acute
elevations in glutamatergic neurotransmission results in
both non-mitochondrial and mitochondrial pathways of
cell death, functional impairment and shrinkage of the
synaptic-dendritic arbor likely occur long before cell death
in chronic neurodegenerative diseases. Interestingly, sublethal
stimulation of NMDA receptors decreases dendrite outgrowth
in immature neurons (Monnerie et al., 2003), but the impact
on dendritic integrity in mature neurons is less understood.
Nevertheless, there are a growing number of studies implicating
chronic elevations in excitatory post-synaptic potentials and
cytosolic calcium in models of neurodegenerative diseases,
which may be due to either pre-synaptic or post-synaptic
changes.

Parkinson’s Disease
The movement symptoms that characterize PD result from
degeneration of dopaminergic substantia nigra neurons in the
midbrain, which project to the striatum. In addition, PD patients
frequently experience olfactory and autonomic dysfunction,
mood disorders, and cognitive/executive dysfunction. In
addition to playing a key role in cortical neuron function,
glutamate plays an important role in modulating dopaminergic
neurotransmission, acting on both pre-synaptic and post-
synaptic sides. Dopaminergic midbrain neurons express both
synaptic and extrasynaptic glutamate receptors (Wild et al.,
2015) and are susceptible to classic NMDA excitotoxicity
(Kikuchi and Kim, 1993). Excitatory cortical input also
modulates striatal neurotransmission in both direct and
indirect basal ganglia pathways (Stocco, 2012). While
dementia may represent a late stage development in some
forms of PD, early cognitive-executive dysfunction represents
the defining feature of DLB as well as in several forms of
familial PD.

Mutations in the LRRK2 gene, which encodes leucine-rich
repeat kinase 2, represent the most frequent known cause of
PD (Gandhi P.N. et al., 2009). Recent studies using cultured
primary neurons transfected with disease-linked G2019S and
R1441C mutations of LRRK2 implicate increased excitatory
neurotransmission as one of the earliest pathogenic changes,
preceding subsequent dendritic degeneration (Plowey et al.,
2014). EPSP frequency was elevated basally, and neurons
showed enhanced responses to NMDA and AMPA. Interestingly,
memantine, a partial NMDA antagonist conferred protection
against subsequent dendritic simplification and loss, implicating
an excitatory pathogenesis (Plowey et al., 2014). Increased

post-synaptic excitatory neurotransmission was also observed
in hippocampal slice cultures of LRRK2-G2019S transgenic
mice (Sweet et al., 2015). Interestingly, LRRK2-G2019S knockin
mice exhibit an early stage of hyperactivity, accompanied by
increased striatal glutamate and dopamine neurotransmission
(Volta et al., 2017). Thus, primary neuron cultures, slice
cultures and in vivo studies all support an early role for
increased excitatory synaptic activity in several mutant LRRK2
models.

Other mechanisms may also contribute to increased
intracellular calcium in mutant LRRK2-expressing neurons.
As mentioned above, L-type voltage-gated channels contribute
to Ca2+ influx during an action potential. Expression of
either the G2019S or the R1441C mutation in LRRK2
dysregulates intracellular calcium homeostasis in response
to KCl depolarization (Cherra et al., 2013). Calcium chelators
or inhibitors of L-type calcium channels confer protection in
this system. Calcium release from lysosomal stores has also been
implicated in mutant LRRK2 pathogenesis (Gomez-Suaga et al.,
2012; Hockey et al., 2015).

Oligomeric α-synuclein, implicated in both dominant familial
and sporadic PD/DLB, elicits increased cytosolic calcium
uptake through effects on AMPARs (Huls et al., 2011). This
creates increased susceptibility to MPP+ toxicity (Lieberman
et al., 2017). Interestingly, α-synuclein oligomers can act to
increase intracellular calcium levels by forming pores in the
plasma membrane (Pacheco et al., 2015). Furthermore, the
neurite retraction and increased intracellular calcium elicited
by the A53T mutation in α-synuclein are exacerbated by
concurrent expression of PINK1-W437X (Marongiu et al., 2009),
implicating a mechanistic convergence between dominant and
recessive forms of PD. It has been proposed that the reduced
mitochondrial membrane potential often observed in PINK1
knockdown/knockout cells (Exner et al., 2007; Dagda et al.,
2011, 2014; Huang et al., 2017) may serve to limit mitochondrial
calcium uptake, exacerbating excitotoxic injury (Heeman et al.,
2011). When post-synaptically expressed, Parkin participates in
pruning excitatory synapses (Helton et al., 2008). This may
represent another point of convergence between dominant and
recessive PD, as either loss of Parkin function or dominant
LRRK2 mutations would tend to increase excitatory synapses,
conferring enhanced vulnerability to excitatory injury. Taken
together, dysregulated neuronal calcium handling resulting in
increased cytosolic levels forms a common theme in multiple
forms of familial Parkinsonism.

Alzheimer’s Disease
Alzheimer’s disease is the most common age-related
neurodegenerative disease, characterized by memory deficits and
the pathological hallmarks of neuritic plaques and neurofibrillary
tangles. Proteins that are pathologically implicated in AD include
the amyloid beta peptides (Aβ) and the microtubule associated
protein tau. Calcium mishandling has been implicated in AD and
elevated serum calcium levels are well correlated with cognitive
decline in aging (Lopez et al., 2008; Popugaeva et al., 2017).
Oligomeric Aβ, proteolytic products of the amyloid precursor
protein (APP) that is mutated in familial AD (fAD), are enriched
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in the plaques that typify the disease and are primary culprits
for initiating this calcium dysregulation. Neurons exposed to Aβ

oligomers elicit elevations in somatic, dendritic, and synaptic
calcium in neurons (Arbel-Ornath et al., 2017; Zhao et al., 2017)
and contribute to excitotoxic neuron death (Mattson et al.,
1992; Shankar et al., 2008). In mice engineered to co-express
fAD mutations in APPswe and Presenilin 1(PS1G384A), a gamma
secretase that cleaves APP to generate Aβ peptides, hyperactive
neurons are observed in the hippocampus and cortex of young
animals, prior to formation of plaques (Busche et al., 2012).
Mutations in presenilins alone have also been reported to elicit
endoplasmic reticulum calcium overload, with post-translational
modification of neuronal ryanodine receptors further promoting
calcium leakage into the cytosol (Lacampagne et al., 2017;
Popugaeva et al., 2017). Emerging theories suggest long-term
Aβ-dependent calcium dysregulation may trigger a cascade
of deficits in homeostatic machinery that result in loss in
neural network activity (Frere and Slutsky, 2018). For example,
elevated calcium plays a key role in promoting tau pathology
(Zempel et al., 2010), a component of neurofibrillary tangles that
characterize an intermediate step in AD progression, through
activation of numerous kinases thought to mediate tau’s effects
(Mairet-Coello et al., 2013).

ALS-FTD
Amyotrophic lateral sclerosis is a debilitating disorder affecting
upper and lower motor neurons in the cortex, brainstem,
and spinal cord (Rowland and Shneider, 2001). Similar to
other neurodegenerative diseases, most of the ALS cases are
sporadic and 10% of the cases are familial. There is both
genetic and pathological overlap between ALS and forms of FTD
characterized by accumulations of TAR DNA binding protein-
43 (TDP-43) and/or with mutations in C90rf72 (Ling et al.,
2013). Motor neurons in ALS are vulnerable to excitotoxic
injury as these neurons highly express AMPAR calcium channels
(Williams et al., 1997; Corona and Tapia, 2007), accompanied
by low expression of calcium buffering proteins (Alexianu et al.,
1994; Jaiswal, 2013). In addition, mitochondrial dysfunctions
have been reported in post-mortem brain tissues of ALS
patients (Sasaki and Iwata, 1996; Kong and Xu, 1998) as
well as in animal models of ALS (Nguyen et al., 2009;
Santa-Cruz et al., 2016). Given the susceptibility of these
neurons to calcium overload induced toxicity, mitochondria
play important calcium buffering roles in these neurons
(Smith et al., 2017). Excessive exposure to glutamate can
lead to glutamate induced excitotoxicity (Stout et al., 1998).
Increased glutamate toxicity could be due to enhanced synaptic
activity (Milanese et al., 2011) or dysfunctional reuptake by
neighboring glial cells (Fray et al., 1998), which can cause
persistent activation of AMPAR and increased cytosolic calcium
burden leading to mitochondrial calcium overload (Goodall
and Morrison, 2006). Interestingly, increased excitatory activity
and dendritic spine numbers are observed in early pre-
symptomatic stages of the TDP-43(Q331K) model of ALS
(Fogarty et al., 2016). Thus, genetic mouse models of all three
diseases, PD, AD, and ALS indicate an early phase of excitatory
hyperactivity.

EXCITATORY MITOCHONDRIAL
TOXICITY (EMT) IN CHRONIC
NEURODEGENERATIVE DISEASES

In this section, we discuss how PD-linked changes in
mitochondrial calcium transport proteins act in concert
with sublethal elevations in excitatory neurotransmission
to elicit mitochondrial injury and mitochondrial depletion
from dendrites. Mitochondrial depletion then contributes
to retraction and simplification of the dendritic arbor. In
contrast to excitotoxicity, which rapidly results in the classic
red, dead neuron observed in stroke, calcium injury triggered
autophagy/mitophagy plays a key role in dendritic simplification
observed in several models of PD. Given that dendritic pathology
is observed in post-mortem studies of PD (Patt et al., 1991),
AD (Brizzee, 1987), and ALS (Genc et al., 2017), the review
closes with a discussion of the potential implications of the
EMT mechanism for sporadic PD and other neurodegenerative
diseases.

EMT in the LRRK2 Model
Shrinkage of the dendritic arbor represents one of the most
frequently reported phenotypes exhibited by neurons expressing
disease-linked mutations in LRRK2 (MacLeod et al., 2006;
Ramonet et al., 2011; Winner et al., 2011; Cherra et al., 2013;
Reinhardt et al., 2013; Plowey et al., 2014; Verma et al.,
2017). This may be related to effects on microtubule dynamics,
endosomal trafficking and/or autophagy [Reviewed in Ref.
(Verma et al., 2014)]. Among the earliest changes exhibited
by primary cortical neurons transfected with LRRK2-G2019S
or LRRK2-R1441C are increased activity-dependent calcium
influx through glutamate receptors and L-type calcium channels
(Cherra et al., 2013; Plowey et al., 2014). This is followed by loss
of mitochondria specifically from the dendritic compartment,
which precedes subsequent neuritic retraction (Cherra et al.,
2013). The loss of mitochondria can be blocked by inhibiting
autophagy or expressing a phosphomimicking mutation of the
autophagy protein LC3 (Cherra et al., 2013), which is predicted to
impair the cardiolipin pathway of mitophagy (Chu et al., 2014).
Mitochondrial fission is often required for efficient mitophagy
(Twig et al., 2008; Dagda et al., 2009). Interestingly, mutant
LRRK2 regulates Drp1-dependent mitochondrial fission as well
as activating ULK1 to mediate mitophagy (Zhu et al., 2012;
Su and Qi, 2013). The mechanism that leads to mitophagy of
dendritic mitochondria downstream of mutant LRRK2-induced
cytosolic calcium uptake was recently delineated using primary
neurons transfected with genetically encoded calcium sensors
(Verma et al., 2017). As expected, LRRK2-G2019S and -R1441C
increased intracellular calcium uptake in response to stimulation,
and this was accompanied by increased mitochondrial calcium
uptake in dendrites. The increased dendritic mitochondrial
calcium uptake persisted even in permeabilized neurons exposed
to the same calcium concentrations, implicating increased
mitochondrial calcium transport capacity in dendrites of mutant-
LRRK2 expressing neurons. Further investigation revealed that
mutant LRRK2-transfected neurons, as well as fibroblasts from
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PD patients with the G2019S and R1441C mutations, showed
increased mRNA and protein expression of MCU and MICU1,
with no changes in MICU2 or NCLX expression (Verma et al.,
2017). Neurons treated with MCU inhibitors exhibited decreased
mitophagy and were protected from dendritic simplification
induced by mutant LRRK2. These data implicate calcium-
dependent injury to mitochondria within dendrites, and their
subsequent mitophagic elimination, as mechanisms linking
increased excitatory input with dendritic simplification.

EMT in the PINK1 Model
The recessive PD-linked gene PINK1, which is targeted
to mitochondria via a classic N-terminal mitochondrial
targeting sequence, has also been implicated in regulation
of mitochondrial calcium homeostasis. As mentioned above,
decreases in mitochondrial membrane potential are likely to have
multiple consequences including decreased cytosolic calcium
buffering and the loss of mitochondria due to mitophagy.
Indeed, PINK1-deficient systems exhibit impaired calcium
recovery (Heeman et al., 2011) and elevated basal mitophagy in
neuronal cells (Dagda et al., 2009; Chu, 2010) and in pancreatic
beta cells in vivo (McWilliams et al., 2018), evidently through
one of several PINK1- and Parkin-independent mechanisms
(Chu et al., 2013; Strappazzon et al., 2015; Bhujabal et al.,
2017). In particular, mitochondrial calcium overload has been
implicated, as inhibiting mitochondrial calcium uptake, in cells
co-expressing α-syn A53T and Pink1 W437X, restores 19m and
rescues neurite outgrowth (Marongiu et al., 2009).

Like primary neurons expressing mutant LRRK2, neurons
cultured from PINK1 knockout mice to model recessive
PD pathogenesis exhibit reduced dendritic arbors (Dagda
et al., 2014). Interestingly, PINK1 was shown to regulate
calcium efflux via NCLX, with PINK1 deficiency causing
mitochondrial calcium overload (Gandhi S. et al., 2009).
Indeed, it has recently been shown that PINK1 promotes
PKA-dependent phosphorylation and activation of NCLX
(Kostic et al., 2015). PINK1-deficient neurons are susceptible
to dopamine toxicity, and expression of the NCLX-S258D
phosphomimic mutant restores mitochondrial calcium efflux
and confers neuroprotection. LETM1, another mitochondrial
calcium transporter, represents a direct phosphorylation target of
PINK1 (Huang et al., 2017). As LETM1 mediates both calcium
influx and efflux (Doonan et al., 2014), the effects of LETM1
activation or loss of function are difficult to predict. Nevertheless,
impaired mitochondrial calcium efflux, in a parallel pathway to
the effects of PINK1 deficiency on NCLX activity, appears to
represent the key pathogenic factor.

Converging Mechanisms in
Neuroprotection
Whereas episodic calcium entry into the mitochondrial
matrix stimulates respiration to adjust mitochondrial output
to bioenergetic needs, chronically elevated cytosolic calcium
oscillations elicit mitochondrially derived ROS, elevated
mitophagy and decreased basal mitochondrial content in
dopaminergic substantia nigra neurons (Liang et al., 2007;

Guzman et al., 2018). While this occurs under normal conditions
for pacemaking cells, such as substantia nigra neurons (Guzman
et al., 2018), the mitochondrial response to cytosolic calcium
influx is exaggerated in disease states, triggering mitophagy
and loss of dendritic mitochondria, followed by a delayed
degeneration of dendritic processes (Cherra et al., 2013; Verma
et al., 2017). Inhibiting cytosolic calcium influx through NMDA
receptors (Plowey et al., 2014) or L-type calcium channels
(Cherra et al., 2013; Guzman et al., 2018) prevents the elevated
dendritic mitophagy and restores mitochondrial density and
dendrite lengths. Inhibiting mitochondrial calcium uptake via
MCU confers complete restoration of dendrite lengths (Verma
et al., 2017), supporting a central role for mitochondrial calcium
mishandling in EMT.

It is likely that increased mitochondrial calcium uptake
in the mutant LRRK2 model represents, at least initially, a
compensatory response to increased excitatory input. Indeed,
MCU and MICU1 are transcriptionally upregulated in mutant
LRRK2-expressing neurons and fibroblasts through activation
of the ERK1/2 signaling pathway (Verma et al., 2017), which
has been proposed to mediate several effects of mutant
LRRK2 (Carballo-Carbajal et al., 2010; Reinhardt et al., 2013).
Interestingly, a similar elevation in phospho-ERK2, MCU, and
MICU1 expression is observed in cortical brain samples from
patients with sporadic PD/PDD (Verma et al., 2017, suggesting
that enhanced susceptibility to mitochondrial calcium overload
could contribute to sporadic disease as well.

One of the models of sporadic disease involves complex I
inhibitors, such as MPP+ and rotenone, as PD patients exhibit
systemically decreased complex I activity (Greenamyre et al.,
2001). Mitochondrial calcium overload has been implicated
specifically in the substantia nigra, but not the relatively resistant
ventral tegmental area, in the MPP+ model of parkinsonian
complex I deficiency (Lieberman et al., 2017). Downregulating
autophagy through PKA-mediated phosphorylation of LC3
confers protection against neurite retraction in this model
(Cherra et al., 2010), although the potential protective role of
modulating MCU or NCLX activities remains unexplored.

While stimulated mitochondrial calcium uptake is either
unchanged (Kostic et al., 2015) or slightly decreased (Huang
et al., 2017) in PINK1-deficient cells, future studies are needed
to determine whether or not there may be concurrent disruption
of mitochondrial efflux mechanisms in the mutant LRRK2 model.
Irregardless, mutant forms of NCLX that mimic phosphorylation
at the PINK1/PKA-regulated NCLX-S258 site (Kostic et al.,
2015) confer protection from mutant LRRK2-mediated dendritic
simplification to the same extent as inhibiting MCU (Verma
et al., 2017). Likewise, inhibition of MCU is neuroprotective
in a zebrafish model of PINK1 deficiency (Soman et al., 2017),
indicating that reducing the likelihood of mitochondrial calcium
overload through either the influx or efflux pathways may be
effective irregardless of the original predisposing mechanism.

Implications for Other Diseases
It is known that inhibiting mitochondrial calcium uptake via
MCU is beneficial in protecting against neuronal cell death after
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stroke (Abramov and Duchen, 2008) or during NMDA induced
excitotoxic neuronal cell death (Qiu et al., 2013). Recent studies
have also shown neuroprotective effects of inhibiting of MCU
on Aβ induced microglial cell death (Xie et al., 2017), loss of
hippocampal neurons in pilocarpine induced status epilepticus
(Wang et al., 2015) or ischemia/reperfusion injury (Zhao et al.,
2013). Interestingly, inhibition of MCU protects against neuronal
ischemia-reperfusion injury by inhibiting excess mitophagy (Yu
et al., 2016), similar the mechanism described in the mutant
LRRK2 model (Verma et al., 2017). However, the potential role
of sublethal mitochondrial injuries in triggering EMT has been
much less studied outside of PD.

In particular, it is unknown if changes in MCU or NCLX
expression or post-translational modifications may contribute
to sensitivity to excitatory injury in these other diseases. It
would be important to delineate whether or not the activities
of kinases that regulate mitochondrial calcium transporters are
altered in susceptible neurons. In addition to being elevated in
patient brains with familial LRRK2 mutation (Verma et al., 2017),
elevated ERK1/2 is also observed in sporadic PD/PDD/DLB
(Zhu et al., 2002; Verma et al., 2017), AD (Perry et al., 1999),
hypoxia-ischemia (Wang et al., 2003), and in organotypic spinal
cord culture models of ALS-related TDP-43 pathology (Ayala
et al., 2011). As ERK1/2 drives the changes in MCU and MICU
expression observed in familial PD patient cells and models,
it is possible that EMT contributes to dendritic retraction and
simplification in a spectrum of neurodegenerative conditions.

While experiments involving the inhibition of autophagy
support the conclusion that mitophagy contributes to
mitochondrial depletion from dendrites, another key question to
be considered is to understand why aging or diseased neurons fail
to replace the degraded mitochondria. These factors may include
age- or disease-related decline in mitochondrial biogenesis as
observed in PD (Zheng et al., 2010; Zhu et al., 2012) or alterations
in mitochondrial transport in neuronal processes as implicated
in AD (Calkins and Reddy, 2011) and ALS (Magrane et al., 2012).
Mitochondrial depletion would persist only if mitophagy is not
balanced by mechanisms to replace the degraded mitochondria.
It is thus conceivable that therapies targeting mitochondrial
biogenesis or transport may also rescue the ill effects of dendritic
EMT.

CONCLUSION

Dendritic simplification is observed in mutant LRRK2-expressing
neurons, in PINK1 knockout neurons, in post-mortem sporadic

PD patient neurons and in other neurodegenerative and
neuropsychiatric conditions. We propose that dominant,
recessive and sporadic contributions to altered mitochondrial
calcium homeostasis converge on a process of EMT to
mediate degeneration of the dendritic arbor observed in
many neurodegenerative diseases. This may result from
effects on the MCU complex itself, on mitochondrial calcium
extrusion mechanisms and/or any change that result in
greater cytosolic calcium levels. While an alteration in
mitochondrial calcium handling on its own may be insufficient
to cause neuronal injury, when combined with increased
post-synaptic calcium fluxes that accompany excitatory
synaptic activity, EMT leads to dendritic shortening and
simplification by triggering unbalanced mitophagy and
perisynaptic mitochondrial depletion, mechanisms that are
distinct from classic excitotoxicity. Moreover, while dominant
and recessive contributions to dendritic EMT occur through
different mechanisms, interventions that either reduce
mitochondrial calcium uptake via MCU or that target NLCX
to enhance mitochondrial calcium release are reciprocally
effective in both systems (Kostic et al., 2015; Soman et al.,
2017; Verma et al., 2017). Future studies to determine whether
increased excitatory activity observed in AD and ALS-FTD
is also linked to dendritic simplification and spine loss via
mitochondrial calcium overload will help determine whether
or not therapies targeting EMT may have even broader
applicability.
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