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Introduction: Infections in hematological cancer patients are common and usually life-
threatening; avoiding them could decrease morbidity, mortality, and cost. Genes
associated with antineoplastics’ pharmacokinetics or with the immune/inflammatory
response could explain variability in infection occurrence.

Objective: To build a pharmacogenetic-based algorithm to predict the incidence of
infections in patients undergoing cytotoxic chemotherapy.

Methods: Prospective cohort study in adult patients receiving cytotoxic chemotherapy to
treat leukemia, lymphoma, or myeloma in two hospitals in Santiago, Chile. We constructed
the predictive model using logistic regression. We assessed thirteen genetic
polymorphisms (including nine pharmacokinetic—related genes and four inflammatory
response-related genes) and sociodemographic/clinical variables to be incorporated into
the model. The model’s calibration and discrimination were used to compare models; they
were assessed by the Hosmer-Lemeshow goodness-of-fit test and area under the ROC
curve, respectively, in association with Pseudo-R2.

Results: We analyzed 203 chemotherapy cycles in 50 patients (47.8 ± 16.1 years; 56%
women), including 13 (26%) with acute lymphoblastic and 12 (24%) with myeloblastic
leukemia.

Pharmacokinetics-related polymorphisms incorporated into the model were CYP3A4
rs2242480C>T and OAT4 rs11231809T>A. Immune/inflammatory response-related
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polymorphisms were TLR2 rs4696480T>A and IL-6 rs1800796C>G. Clinical/
demographic variables incorporated into the model were chemotherapy type and
cycle, diagnosis, days in neutropenia, age, and sex. The Pseudo-R2 was 0.56, the
p-value of the Hosmer-Lemeshow test was 0.98, showing good goodness-of-fit, and
the area under the ROC curve was 0.93, showing good diagnostic accuracy.

Conclusions: Genetics can help to predict infections in patients undergoing
chemotherapy. This algorithm should be validated and could be used to save lives,
decrease economic costs, and optimize limited health resources.

Keywords: pharmacogenetics, hematological malignancies, infections, Prediction, Algorithm, pharmacogenomics,
CYP3A4, OAT4

INTRODUCTION

Infections in patients diagnosed with hematological malignancies
are common and usually life-threatening (Green 2017); 30% of
patients undergoing chemotherapy for the treatment of these
illnesses experience infection, and 11% dying as a result
(Castagnola et al., 2007; Yilmaz et al., 2008; Dutronc et al.,
2009). Several variables have been described as risk or
protector factors. In addition to clinical variables associated
with a high risk of infection, neutropenia, defined as an
absolute neutrophil count lower than 500 cells/mm3

(Klastersky et al., 2016), is common in patients undergoing
cytotoxic chemotherapy (Li et al., 2016). Genetics can modify
the occurrence of chemotherapy-related neutropenia. A
polymorphic variant can alter the metabolism or elimination
of the cytotoxic agent; this could increase the plasmatic level of
the antineoplastic, and therefore increase the risk of dose-related
toxicity (Lyman et al., 2014; Buaboonnam et al., 2019). Among
these pharmacokinetics-related genetic factors, CYP3A4 and
CYP3A5 are two enzymes that participate in the metabolism
of most drugs used in the treatment of hematological
malignancies (Lee et al., 2013; Daly 2015), and polymorphic
variants in the genes that encode those proteins are known to
decrease their expression or functionality, decreasing drug
metabolism (Lamba et al., 2012; Park et al., 2014; Zhu et al.,
2014). Moreover, polymorphic variants in genes that codify for
drug transporters could affect the elimination of antineoplastic
medications (Choi et al., 2015). Some of the transporters
associated with cancer medications are ATP-Binding Cassette
(ABC), specifically ABCB1, ABCC2, and ABCG2 (Jedlitschky
et al., 2006; Vasiliou et al., 2009), and Solute Linking Carrier
(SLC), specifically SLC22A11 that codifies for the Organic Anion
Transporter 4 (OAT4) (Burckhardt 2012). Genetic variants in
these genes could increase the risk of adverse events due to
decreased elimination leading to toxic drug concentrations
(Vormfelde et al., 2006; Lewis et al., 2013).

Furthermore, some immune/inflammatory response-related
proteins can improve the aggregation and survival of neutrophils.
Interleukin 6 and 1β (IL6 and IL-1β) participate in the maturation
and apoptosis inhibition of white blood cells (WBC) (Rose-John
et al., 2017; Chiba et al., 2018). A lower expression of the genes
that encode these interleukins could enhance the risk of

neutropenia, make it more severe or prolong the length of
neutropenia (Wright et al., 2014; Loft et al., 2018; Badawy
et al., 2019). The caspase recruitment domain 8 (CARD8)
participates in the activation of IL-1β, and a polymorphism
that affects CARD8 functionality could have the same
consequences of having less interleukin signal (Paramel et al.,
2015). Toll-like receptor 2 (TLR2) is a protein that senses
pathogen molecules and develops the intracellular signaling in
response to a possible infection (Beutler et al., 2006); a genetic
variant that affects the functionality of this receptor could
increase the risk of infections (Hawn et al., 2009; Bielinski
et al., 2011; Esposito et al., 2014).

No tool can predict the incidence of infections in
hematological cancer patients in chemotherapy that use
clinical and genetic variables. By accurately predicting which
patients are likely to develop an infection while undergoing
chemotherapy, dose adjustments and enhanced monitoring
could be targeted to prevent infection, thereby reducing
morbidity, mortality, and healthcare costs. Our study aims to
create an algorithm to predict the incidence of infections among
patients undergoing chemotherapy, using pharmacokinetics and
immune response-related genetic polymorphisms in addition to
clinical variables.

MATERIALS AND METHODS

Study Design
We carried out a prospective cohort study from November
2017 to October 2018 at the Oncologic Hospital “Fundación
Arturo Lopez Pérez” (FALP) and the Clinical Hospital of the
University of Chile (HCUCH) in Santiago, Chile. Patients
were enrolled at those clinical centers before the first
chemotherapy cycle, and they were followed prospectively
through every cycle of chemotherapy. Infection was
established by clinical criteria, including fever not
explained by chemotherapy, positive bacterial cultures, or
compatible imaging. A multidisciplinary team compound
by specialist physicians and clinical pharmacists reviewed
every febrile episode and decided if it was due to infection
or not according to local practice. The occurrence of any
infections was recorded.
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Patients and Data Source
The study included patients 18 years or older diagnosed with
leukemia or non-Hodgkin’s lymphoma and undergoing cytotoxic
chemotherapy. We excluded patients regularly taking
immunosuppressive medication, pregnant women, and
patients with a diagnosis of immunodeficiency. All clinical
data were obtained from the medical record. We collect the
information that allows clinic, pharmacotherapeutic, morbid,
and demographic characterization of the sample.

Ethics Statement
All patients signed a written informed consent and an agreement
to participate in this study. The study was carried out following
the strict ethical procedures recommended by the Ethics
Committee of the Clinical Hospital of the University of Chile
(approval received on July 18, 2017) and the Eastern
Metropolitan Health Service (approval received on July 4,
2017), following the procedures suggested in the Declaration
of Helsinki, with Chilean Laws 20.120, 20.584, and 19.628 and
with the guidelines of the Good Clinical Practices from theWorld
Health Organization.

Genotyping Analysis
Genomic DNA was isolated from the subjects’ peripheral blood
samples using the High Pure PCR Template Preparation Kit
(Catalog Number, 11796828001; Roche Diagnostics GmbH,
Mannheim, Germany). The blood sample was collected after
the first remission.

The nine pharmacokinetics-related polymorphisms were
SLC22A11 rs11231809; ABCB1 rs2032582, rs1045642y
rs1128503; CYP3A4 rs2740574, rs2242480, CYP3A5 rs15524,
ABCC2 rs12762549, and ABCG2 rs2231142. The immune
response-related polymorphisms were IL6 rs1800796, IL1β
rs1143627, CARD8 rs2043211, and TLR2 rs4696480. The
potential effect in protein was the main criteria to pick the
polymorphic variants in addition to the relationship with drug
toxicity reported in the literature. Another factor considered was
the minor allele frequency of more than 5% in the Latinamerican
population when available.

All polymorphisms were analyzed using TaqMan® SNP
Genotyping Assay (Catalog number, 4362691; Thermo Fisher
Scientific, Waltham, MA, United States) in a Stratagene Mx3000p
real-time PCR system (Agilent Technologies, Santa Clara, CA,
United States). Every sample was analyzed in triplicate to ensure
reliability. The datasets presented in this study can be found in
online repositories. The names of the repository/repositories and
accession number(s) can be found below: [10.6084/m9.figshare.
13444211].

Statistical Analysis
To determine which genetic variants were associated with
infection incidence, it was a binary variable, and it was
assessed in every chemotherapy cycle. We carried out
multivariate logistic regression models to establish the
relationship between every polymorphism by itself and the
outcome. We assessed the inheritance in a dominant,
recessive, and co-dominant model, and they were added

depending on their statistical significance. These models
included one genetic variable and the following control
variables: sex; age (in groups: from 18 to 40 years; from 41 to
60 years and older than 60 years); the number of chemotherapy
cycle; kind of chemotherapy scheme (induction or consolidation),
diagnosis (acute lymphoblastic leukemia, acute myeloblastic
leukemia, other leukemias or lymphoma) and the number of
days in profound neutropenia, defined as an absolute neutrophil
count of 0 cells/mm3.

Adjusted Odds Ratios (OR) were obtained from
exponentiating the coefficient given by the regression model.
The ORs were used to determine which variables were risk or
protective factors of having an infection.

To develop the final model, we added all the control variables
and those genetic factors that had a statically significant
association with infection in the previous step. The best model
was chosen according to the value of Pseudo-R2, the calibration,
and the discrimination of the model. The control variables were
chosen based on the univariate relationship or previous reports of
the association’s association with the event.

We use a mixed-effect model to account for intraindividual
variability regarding chemotherapy scheme and cycle and use
correlated outcome data (also known as hierarchical models).
Here we used a three-level model, so we had a random intercept
for three characteristics. The first one was the patient level, the
second chemotherapy scheme, and finally cycle level, where
infections were assessed.

Calibration is the degree of similarity between the
probability given by the model and the observed incidence.
The goodness-of-fit test of Hosmer—Lemeshow compares
frequencies of cases and controls using a chi2 test. In this
case, a higher p-value indicates fewer differences between the
predicted frequencies and the frequencies observed in the
sample.

On the other hand, discrimination is the degree to which the
proposed model can distinguish between patients who experience
the event from those who do not; that is, the ability to indicate
that a patient will experience an infection, and, on the other hand,
the ability to predict when the patient will not experience it.
Discrimination between cases and non-cases of infection was
tested using the area under the Receiver Operating Characteristic
curve (AUC-ROC).

TABLE 1 | Sample characteristics.

Characteristics n = 50 (%)

Age, years (median ± IQR) 40 (31–52)
18–40 years 17 (34)
41–60 years 20 (40)
>60 years 13 (26)
Female 27 (54)
Male 23 (46)
Diagnosis
Acute lymphoblastic leukemia 13 (26)
Acute myeloblastic leukemia 12 (24)
Other leukemias 5 (10)
Lymphoma 20 (40)
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The sample characteristics were mainly presented as
proportions. The Shapiro–Wilk test was used to assess the
normality of the distribution of continuous variables, and
when the distribution was skewed, the variable was presented
as median and interquartile range. All the analyses and figures
were performed using STATA 15.0 software ®.

RESULTS

Sample Characteristics
Participants’ median age was 40 years (IQR 31–52), and 27
(54.0%) were women. Half of the patients had acute leukemia
[13 (26%) lymphoblastic and 12 (24%) myeloblastic] (Table 1).
We detected infection in 82 (40.8%) of 203 total chemotherapy
cycles, including 31(62.0%) of the 50 patients recruited. No
patients died during the follow-up period. The genotype
distribution of the thirteen polymorphisms assessed in the
study is given in Table 2.

CONSTRUCTION OF THE PREDICTIVE
MODEL

Model With Non-genetic Variables
To assess how genetics can improve the predictive model’s
performance, we carried out primarily a non-genetic

algorithm. For this, we incorporated chemotherapy type and
cycle, diagnosis, days in neutropenia, age, and sex. The p-value
of the Hosmer – Lemeshow test was 0.29, the AUC-ROC was
0.82, and the Pseudo-R2 was 0.23.

Model With Genetic Variables
We found that Toll-Like Receptor 2 (TLR2), Interleukin 6 (IL6),
CYP3A4, Solute Linking Carrier family 22 member 11
(SLC22A11) or Organic Anion Transporter 4 (OAT4), and
ATP-Binding Cassette Subfamily C member 2 (ABCC2)
polymorphisms were associated with the incidence of infection
by themselves (Supplementary Table S1), and they were added
to the final model.

In Figure 1, we summarize the OR obtained from the adjusted
final model. There we found that TLR2, IL6, OAT4, and CYP3A4
were significantly associated with the occurrence of infection. The
Pseudo R2 of the model was 0.5327; i.e., the model explained 53%
of the variability of the incidence of infections.

The multilevel model with a random intercept for patient,
chemotherapy scheme, and cycle variables gave the same
calibration and discrimination performance. As we had a
predictive objective and allowing a more straightforward
application in clinical practice, we construct the model only
with fixed intercepts, i.e., a “normal” logistic regression.

Calibration of the Model
The p-value of the test of Hosmer—Lemeshow was 0.9516; this
means that the model had an excellent goodness-of-fit or, in other
words, there is no statistical difference between the frequency of
cases detected by the model and that observed in the sample.

Discrimination of the Model
The AUC-ROC indicates the probability of assigning a higher
probability of incidence to patients who develop an infection
than those who do not. The ROC curve compares sensitivity,
that is, the ability to assign the event correctly when it
occurred, and one- specificity, that is, the proportion of
patients who did not have an infection, but the model
indicated that they would present it.

The AUC-ROC curve can range from 0 to 1, with 0.5
indicating that the instrument cannot discriminate outcomes
better than chance. A value of one would be for a model that
perfectly predicts the occurrence of the event. For our proposed
model, the AUC-ROC curve was 0.93. Figure 2 shows the ROC
curve for the model to predict the incidence of infections in the
sample. Concerning non-genetic variables, we found that the
number of chemotherapy cycles was a protective factor. This
result could be interpreted as follows: with each cycle of
chemotherapy that passes, the risk of infection decreases,
perhaps because if the patient had an infection in an initial
cycle, in the following cycles, the prophylaxis would be
optimized to avoid futures events. Besides, the male sex was
protective compared to the female sex; induction was associated
with more risk than consolidation, and the longer neutropenia
episodes were associated with more risk of infection.

The coefficients for every variable obtained from the final
regression model allow us to build an equation to predict the

TABLE 2 | Allele and genotypic frequencies of the studied polymorphism.

Genetic polymorphism Allele
frequency

Genotypic frequency, n (%)

CARD8 rs2043211 A T A/A A/T T/T
0,64 0,36 19 (39) 25 (51) 5 (10)

TLR2 rs4696480 T A T/T T/A A/A
0,63 0,38 20 (42) 20 (42) 8 (17)

IL-6 rs1800796 G C G/G G/C C/C
0,50 0,50 11 (22) 28 (56) 11 (22)

IL-1β rs1143627 G A G/G G/A A/A
0,54 0,46 16 (33) 21 (43) 12 (24)

OAT4 rs11231809 T A T/T T/A A/A
0,38 0,62 11 (24) 13 (28) 22 (48)

ABCB1 rs2032582 C A C/C C/A A/A
0,68 0,32 21 (53) 12 (30) 7 (18)

ABCB1 rs1045642 A G AA AG GG
0,33 0,67 3 (6) 27 (54) 20 (40)

ABCB1 rs1128503 A G AA AG GG
0,38 0,62 7 (14) 24 (48) 19 (38)

CYP3A4 rs2740574 T C T/T T/C C/C
0,83 0,17 31 (74) 8 (19) 3 (7)

CYP3A4 rs2242480 C T CC CT TT
0,71 0,29 29 (59) 12 (24) 8 (16)

CYP3A5 rs15524 A G AA AG GG
0,84 0,16 37 (74) 10 (20) 3 (6)

ABCC2 rs12762549 G C G/G G/C C/C
0,62 0,38 19 (42) 18 (40) 8 (18)

ABCG2 rs2231142 G T G/G G/T T/T
0,90 0,10 37 (80) 9 (20) (0)

Some samples could not be fully genotyped.
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probability of infection occurrence. Thus, the model, including
genetic and non-genetic variables, is:

ln( p
1 − p

) � 3.47 × (TLR2 TT) − 13.9 × (IL6GG)5.4 × (OAT4AT) − 10.5 × (OAT4 TT) +

2.8 × (ABCC2GG) + 11.1 × (CYP3A4 CC) − 1.1 × (Cycle) − 2.4 × (Male sex) + 3.4 ×
(From 18 to 40 years) + 9.4 × (From 41 to 60 years) + 0.2 × (Induction) + 4.6 × (AML) +
1.3 × (Other leukemias) + 9.6 × (Lymphoma) + 0.5 × (Days in deep neutropenia) − 1.9

where p is the probability of occurrence of infection, with values
ranging from 0 to 1 (or 0%–100% of occurrence probability).
Some factors increased the odds of having an infection (positive
factors), and others decreased the odds of the event (negative
factor), according to the OR.

For genetics, the model works with dichotomous variables
(i.e., 0 and 1). Thus when the variant showed in the model is
present, we should use a 1, and when it is another genotype, we
should use a 0. For example, in the OAT variant, if the genotype
TT were determined, the coefficient for OAT AT would be
multiplied by 0 (5.4 × 0) because the patient presents another
genotype, and the coefficient for TT genotype should be
multiplied by 1 (10.5 × 1). Alternatively, if the genotype AA
were determined, the coefficients for TT and AT should be
multiplied by 0. Days in neutropenia should be used as a
continuous variable. Meanwhile, the days in neutropenia
increase, also the risk of infection does.

DISCUSSION

Infections are frequent and potentially lethal events in patients
treated with cytotoxic chemotherapy for hematological

malignancies. Neutropenia due to the medication and the
illness by itself is common in these patients, and it is one of
the more critical factors in the incidence of infections. This study

FIGURE 1 |Genetic and non-genetic factors associated with infection in patients treated with cytotoxic chemotherapy. The figure presents the point estimate of the
odds ratio for infection, and the bars around each point show the 95% confidence interval.

FIGURE 2 |Receiver Operating Characteristic (ROC) curve for themodel
proposed to predict infections in patients undergoing cytotoxic
chemotherapy. (References TLR2 TA/AA, IL6 GG, OAT4 AA, ABCC2 CC/CG,
CYP3A4 TT and CT, Female sex, 60 years or older, Consolidation
chemotherapy, Acute Lymphoblastic Leukemia, respectively for each category).
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is the first that aims to predict their occurrence using genes
associated with both antineoplastic pharmacokinetics and
immune response.

Relationship Between Genetics and the
Incidence of Infections
Concerning immune response-related genes, we found two
polymorphisms significantly associated with infections. One of
them was IL6 rs1800796 (−572C>G), which is a variant located in
the promoter of the gene and where the G allele is related to a
lower expression of the protein (Sharma et al., 2018). We found
that the GG genotype was a risk factor for having an infection,
agreeing with previous reports (Tang et al., 2014; Badawy et al.,
2019), probably due to a lower neutrophil mobilization and
activation (Wright et al., 2014; Rose-John et al., 2017).

The other immune response-related polymorphism associated
with infections was TLR2 rs4696480 (c.-373+1614T>A).
Although the variant’s effect at the protein level is not well
established, the T allele has been associated with lowering
receptor functionality (Loft et al., 2018), a decreased function
of TLR2 prevents the pathogen recognition and delay the immune
response (Hawn et al., 2009). We found the TT genotype was a
risk factor of having an infection compared to TA and AA
genotypes as we expected because the TLR2 receptor also
promotes neutrophil recruitment and survival (Malcolm et al.,
2003; Sabroe et al., 2005).

Concerning pharmacokinetics–related polymorphisms,
SLC22A11 rs11231809 polymorphism was associated with the
risk of infection. We found that the genotype TT and AT are
protector factors compared to the AA genotype. This finding is
consistent with previous reports describing that the A allele is
associated with a lower functionality of the protein OAT4. This
variant has been associated with a decreased clearance of some
drugs (Vormfelde et al., 2006; Lima et al., 2015), so perhaps a
lower elimination leads to a higher plasmatic level of
antineoplastic that causes dose-related toxicities.

We found the polymorphic variant rs2242480 in the gene
CYP3A4 that encodes the biotransformation enzyme CYP3A4
was related to the incidence of infection. The allele CC genotype
has been related to higher levels of some drugs (Zhu et al., 2014),
and we found that the CC genotype was associated with an
increased risk of infections, so this could be due to higher
plasmatic levels of antineoplastic and, therefore, a higher
probability of adverse events.

The Usefulness of the Model
We can calculate the probability of having an infection by
combining all factors and coefficients in the model we
developed. Nevertheless, the clinical action taken due to the
calculated value should be consistent with the clinical
objective. An important issue is determining the output
probability over which the patient will be considered as a
probable case or not. Depending on the probability cutoff
selected, the model’s sensibility and specificity would change,
and it is relevant to ponder which indicator will be better for
clinical outcomes, workflows, and resources.

Figure 3 shows the change of sensitivity (blue line) and
specificity (red line) of the proposed model according to
different cutoffs. If a balance between sensitivity and specificity
is sought, a better cutoff point would be 0.6 (that is, above 0.6, the
patient would be classified as having an infection and under the
value, as without infection). This cutoff is the intersection point of
curves, where both specificity and sensitivity are in values
around 85%.

If it is more important that all or a large part of the possible
cases are correctly classified, sensitivity should be privileged, and
a lower probability cutoff should be chosen. For example, with a
cutoff point of 0.3, the sensitivity is 100%, which ensures that
most cases (true positives) are detected, with the disadvantage
that some patients who will not suffer an infection will be
misclassified (false positives). In this example, the model could
be used to give medical discharge to those patients who have a low
risk or probability of infection.

On the other hand, if it is sought to correctly classify all
patients (or the vast majority) who will not suffer an infection
(true negatives), a higher cutoff point should be set. For example,
by setting a cutoff point of 0.9, we ensure that no patient (or very
few) who will not suffer an infection are classified as a case. The
disadvantage of this approach is that the rate of those classified as
non-cases would increase, even though they will present an
infection (false negatives). In this example, the model could
help patients at high risk of infection be referred to an
isolation room or receive optimized antimicrobial prophylaxis
from the start of chemotherapy since the model indicates the
patient has a high probability of suffering an infection.

Concerning the performance of the proposed model, the
value of the AUC-ROC is high. With an AUC-ROC value over
0.8, the model makes a proper classification of people who will
have the event and who will not (Harrell, 2015). The
Hosmer–Lemeshow test p-value indicates that the
frequency of cases predicted by the model was similar to
our sample’s observed values.

FIGURE 3 | Change in sensitivity and specificity of the model proposed
to predict infections in patients undergoing cytotoxic chemotherapy according
to the cutoff point for the definition of case.
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Several studies have tried to predict the incidence of
infections in patients with hematological malignancies, but
no one has combined genetic and clinical factors in a
single model. Webb et al. created an algorithm to
predict the incidence of bloodstream infections due to
vancomycin-resistant enterococcus in patients undergoing
leukemia induction and included severe neutropenia as one
of the factors adding to the use of some antimicrobials
previously; they found an AUC-ROC curve of 0.84 (Webb
et al., 2017).

Schalk et al. used a modified Infection Probability Score
(mIPS) to predict the incidence of central venous catheter-
related bloodstream infections in patients with hematological
malignancies. The mIPS includes clinical variables such as the
heart and respiratory rates and also the WBC count. They
compared the patients’ score at the moment of catheter
insertion and removal; the AUC-ROC curve was 0.77 (Schalk
et al., 2015). Apostolopoulou et al. included in their model the
presence and length of neutropenia, and similarly to what we
found with longer neutropenia associated with more risk of
infection, they also identified chemotherapy as a risk factor
(Apostolopoulou et al., 2010).

Non-Genetic Factors Associated With the
Risk of Infections
Other risk factors we identified as associated with the risk of
infection were acute lymphoblastic leukemia diagnosis
compared to acute myeloblastic leukemia and the number
of days in profound neutropenia. The first factor could be due
to differences in treatment and even the illness’s
pathophysiology (Sung et al., 2007; Chandran et al., 2012;
Inaba et al., 2017). An absolute neutrophil count lower than
500 cells/mm3 is one of the more significant factors associated
with infection, so the longer neutropenia lasts, the higher the
risk (Gil et al., 2007). Male sex seems to be a protective factor.
It could be because women are more susceptible to
hematological toxicities during chemotherapy, increasing
the risk of infection (Singh et al., 2005), making them more
likely to have a bloodstream infection with hematology-
oncology illness (Apostolopoulou et al., 2010).
Additionally, women often have smaller body size than
men and may be more likely to experience chemotoxicity.

It is necessary to consider non-genetic variables in the analysis
because they can explain the intraindividual variability of
infection, having genetics unchanged. Differences could be
attributed to changes in the chemotherapy scheme or doses,
different use of G-CSF or prophylaxis, and other unmeasured
variables as food, visits, or bed availability. With this model, we
can better understand some of the factors (genetic or not)
involved in chemotherapy response.

Limitations
This study aimed to create a preliminary algorithm and identify
genetic and clinical variables associated with infection risk in
patients undergoing chemotherapy. Nevertheless, these results
could be used as a base for new studies. Because of the small

sample size, we could not split our cohort into a training and test
cohort for the model development. As a result, the performance
metrics of our prediction model likely reflect a degree of
overfitting. The prediction algorithm should not be directly
applied to clinical practice. Future studies are needed to
validate the model and set cutoff decision parameters to
improve clinical care and outcomes.

One of the proposed model’s main limitations is that it uses
the number of days in profound neutropenia as an
explanatory variable and other data obtained directly from
the clinical record. However, if we want to use this prediction
model at the beginning of the treatment cycle, we should use
the expected number of days, causing the model to lose
accuracy because it would be an approximate number, not
the actual length of neutropenia. A solution to this problem is
to generate a second model to predict neutropenia duration
and feed its results into the previous model to predict
infection risk.

Due to the sample size, we decided not to incorporate some
pharmacotherapeutic variables, mainly the specific
chemotherapy scheme or the use of granulocyte colony-
stimulating factors. In a larger sample, these variables should
be included to improve the precision of the model. Besides, other
possible not measured explanatory variables, such as the severity
of the illness or the gut microbiome, may influence infection risk
(Hakim et al., 2018).

The sample size should be analyzed in the context of a
developing way country, with a population of 18 million and
an incidence of hematological malignancies of 15 cases per
100,000 habitants/year. Also, the prospective character of the
study makes the rate of recruitment similar to the incidence rate.
This sample size means almost all the new cases in a year in two
hospitals in Chile. Although we did not reach a power to discard
other polymorphisms, we got the confidence of four
polymorphism were related to the event.

CONCLUSION

CYP3A4 rs2242480C>T, SLC22A11 (OAT4) rs11231809T>A,
TLR2 rs4696480T>A, and IL6 rs1800796C>G genetic
polymorphisms are associated with the incidence of infections
among patients undergoing cytotoxic chemotherapy. Including
these genetic variables with clinical variables leads to a useful
prediction tool. This study is the first to use genetic variables in
addition to clinical variables to predict the incidence of infections
in patients with hematological malignancies undergoing
cytotoxic chemotherapy and could lead to improved clinical
outcomes for patients.
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