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Background: Multiple myeloma (MM) is still an intractable disease for modern clinical system, and more 
researches are necessary for development of more effective therapeutic strategies. This study attempted to 
screen and validates the biomarkers in the progression of MM via excavating Gene Expression Omnibus 
(GEO) database. Identification of a biomarker may help not only facilitate early diagnosis and management 
but also identify individuals at risk for poor prognosis and development of MM.
Methods: The mRNA expression profile of the GSE87900 dataset was analyzed by GEO2R. Using the 
SangerBox online program, differentially expressed genes (DEGs) in high-risk MM samples were screened 
with the filter criteria of P<0.05 and |logFC| >1. The SangerBox online analysis tool was used to analyze the 
volcano plot. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment 
analysis was performed for DEGs. Twenty patients with high-risk MM and 20 patients with standard-risk 
MM from Taian City Central Hospital were included. Real-time quantitative polymerase chain reaction (RT-
qPCR) was used to verify the selected key genes in MM tissues. 
Results: A total of 611 DEGs were obtained. GO functional enrichment analysis showed that the DEGs 
were mainly enriched in the DNA replication process at the biological level, and the top DEGs were 
CACYBP, PCNA, MCM6, SMC1A, DTL, GINS4, MCM2, CDT1, RRM2, BRCA1, RFC5, MCM4, 
GINS3, GINS1, MCM10, CDC7, CDAN1, BRIP1, GINS2, CDK1, NFIB, and BARD1. The expression 
of CDC7 and PCNA was significantly different in high-risk MM and standard-risk MM as determined by 
RT-qPCR. Receiver operating characteristic (ROC) analysis showed that the areas under the curve predicted 
by CDC7 and PCNA were 0.900 and 0.8863, respectively, which allowed the identification of CDC7 and 
PCNA could be a potential biomarker of MM. Kaplan-Meier survival analysis showed that MM patients with 
high CDC7 and PCNA expression had shorter 2-year overall survival (OS) (P<0.05).
Conclusions: CDC7 and PCNA can be used as biomarkers for the prognosis of high-risk MM and 
evaluate the prognosis of MM patients, which is helpful for guiding the clinical treatment of MM patients.
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Introduction

Multiple myeloma (MM) is an abnormal proliferative 
malignancy originating from plasma cells, accounting 
for 10–15% of hematological malignancies. MM is 
characterized by abnormal infiltration of clonal plasma 
cells in bone marrow, and is the second most common 
hematological malignancy after non-Hodgkin’s lymphoma 
(1-3). In recent years, the diagnosis and treatment of 
MM patients have consistently improved. However, 
about 20–30% of MM patients still have progression-free 
survival (PFS) less than 1.5 years and overall survival (OS) 
less than 2–3 years (4). These MM patients have severe 
clinical manifestations, short survival time, are insensitive 
to standard treatment, and have poor prognosis, and are 
considered as high-risk MM (5). 

The pathogenesis of MM is complex, and cytogenetic 
abnormalities play a crucial role in the risk stratification 
of MM. Several cytogenetic abnormalities, such as t(4;14), 
del(17/17p), t(14;16), and t(14;20), are closely associated 
with poor prognosis (5,6) . According to the International 
Myeloma Working Group (IMWG), myeloma cells can be 
classified as high-risk MM by any of the following cytogenetic 
abnormalities detected by fluorescence in situ hybridization 
(FISH): t(4;14), 17p−, t(14;16), 1+q, or 1p− (5,7). 

Genetic alterations and tumor-microenvironment 
interaction play crucial roles in the occurrence and 
development of MM (3,8,9).  The occurrence and 
development of MM is accompanied by a variety of specific 
changes in the number or structure of related genes at the 
cytogenetic level. In addition, accumulating studies have 
revealed that disordered epigenetic gene mutations play 
an important role in the pathogenesis of MM (6,10,11). 
Genetic testing techniques suggest that high-risk MM 
patients often have more severe clinical symptoms. The 
study of differentially expressed genes (DEGs) in high-risk 
MM patients and standard-risk MM patients has deepened 
our understanding of cytogenetic abnormalities in MM, and 
helped to identify important biomarkers and rapidly explore 
effective molecular targets (6,7). For all the prognostic 
gene signatures having been developed to predict the 
clinical outcome in patients with MM, however, serious 
concerns regarding these signatures have diminished their 
utility in clinical practice. The most striking deficiency of 
the previous signatures is non-reproducibility in external 
datasets. In light of the limitations of the current staging 
system, it is necessary to identify novel biomarkers 

and establish a prognostic model based on cytogenetic 
characterization to distinguish good prognosis from poor 
prognosis patients, thereby improving patients’ final 
prognosis.

In this study, we downloaded the microarray data of high-
risk MM and standard-risk MM from the Gene Expression 
Omnibus (GEO) database, and obtained the DEGs with 
significant differences in high-risk MM. Moreover, the 
genes that might be involved in the development of high-
risk MM were screened out, which provides a basis for 
exploring the pathogenesis, diagnosis, and treatment 
of high-risk MM. We present the following article in 
accordance with the STROBE reporting checklist (available 
at https://atm.amegroups.com/article/view/10.21037/atm-
22-2656/rc).

Methods

Microarray datasets

The GEO database (https://www.ncbi.nlm.nih.gov/geo/) 
in NCBI was used to search the gene expression profiles 
with the filter criteria of ‘Multiple myeloma, Homo’. After 
screening, the gene chip GSE87900, which was submitted 
by Sonneveld et al. (5) and based on GPL570 [HG-U133_
plus_2], was downloaded from the GEO database. A total 
of 180 samples were collected from the gene expression 
profile, including 24 high-risk MM samples and 156 
standard-risk MM samples.

Analysis of DEGs

DEGs of high-risk MM were analyzed using online 
analytical tools GEO2 R (http://www.ncbi.nlm.nih.gov/geo/
geo2r/), which is based on GEOquery (12), and limma (13). 
With the filter criteria of ‘P<0.05 and |logFC| >1’, DEGs 
in the GSE87900 chip were screened. 

Functional enrichment analysis and regulatory pathway 
analysis of DEGs in MM

Gene Ontology (GO) functional annotation and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) signaling 
pathway analysis were performed for DEGs (P<0.05) using 
SangerBox (http://sangerbox.com/), which is based on the 
R software package clusterProfiler (14). GO functional 
annotation included cell composition (CC), biological 

https://atm.amegroups.com/article/view/10.21037/atm-22-2656/rc
https://atm.amegroups.com/article/view/10.21037/atm-22-2656/rc
https://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/geo2r/
http://www.ncbi.nlm.nih.gov/geo/geo2r/
http://sangerbox.com/
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process (BP), and molecular function (MF).

Heatmap analysis of DEGs in key pathways

The SangerBox online analysis tool (http://sangerbox.com/) 
was used for heatmap clustering analysis.

Patient information

A total of 40 MM patients diagnosed in the Hematology 
Department of Taian City Central Hospital from January 
2017 to July 2019 were included in this study. All patients 
had de novo MM, had not received any radiotherapy or 
chemotherapy before sampling. These MM patients were 
graded according to the Revised International Staging 
System (R-ISS) and SMART risk stratification (15), and 
were divided into groups of 20 high-risk MM and 20 
standard-risk MM patients. After marrow puncture, the 
bone marrow samples were transferred to liquid nitrogen 
immediately, and stored in a refrigerator at −80 ℃ for 
subsequent detection and analysis. The included MM 
patients were followed up for 24 months (median follow-
up time was 17 months) by outpatient department visits 
and telephone to calculate the OS of MM patients. The 
study was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013). The study was approved by 
ethics board of The Second Affiliated Hospital of Tianjin 
Medical University (No. 2021-06-65). Written informed 
consent was taken from all the patients.

RNA extraction and RT-qPCR detection

Total  RNA was  extracted from MM tissues  with 
Trizol reagent (Invitrogen, USA). After extraction, the 
concentration and purity of total RNA were determined by 
the NanoDrop Lite spectrophotometer (Thermo Scientific, 
USA). Then, the RNA was reversely transcribed into cDNA 
with a special reverse transcription kit (Vazyme, China). A 
fluorescence quantitative reagent (Vazyme, China) was used 
for RT-qPCR detection. GAPDH was used as the internal 
reference gene. The 2−∆∆CT method was used to calculated 
the relative gene expression levels. 

Statistical analysis

The data was presented as mean ± SD. The t-test was used 
to compare differences between the 2 groups. The gene 
expression level was taken as the index to be measured, and 

the R-ISS and SMART scoring systems were used as the 
gold standard for MM diagnosis. The receiver operating 
characteristic (ROC) curve for predicting the expression 
level of genes in high-risk MM was plotted to determine 
the optimal cut-off value and calculate the sensitivity 
and specificity. According to the optimal critical value 
determined by the ROC curve, MM patients were divided 
into a high gene expression group and low gene expression 
group. The influence of gene expression level on the OS of 
MM patients was observed after 2 years of follow-up. The 
survival curve was calculated in each dataset and survival 
was compared between the two distinguished groups using 
Kaplan-Meier analysis and the logrank test at a P value of 
less than <0.05. All statistical analyses were performed using 
GraphPad Prism 8 software. When P<0.05, the difference 
was considered statistically significant.

Results

Screening of DEGs in high-risk MM

According to the screening conditions, there were  
611 DEGs between high-risk and standard-risk MM in 
the GSE87900 chip, including 251 up-regulated genes and 
360 down-regulated genes. According to the differences 
in |logFC|, the top 3 up-regulated genes were cancer/
testis antigen 1 (CTAG1), cancer/testis antigen 2 (CTAG2), 
and fibroblast growth factor receptor 3 (FGFR3), and the 
top 3 down-regulated genes were G1/S-specific cyclin-D1 
(CCND1), CCN family member 2 (CTGF), and cannabinoid 
receptor 1 (CNR1) (Figure 1).

Enrichment analysis of DEGs in high-risk MM

Enrichment analysis showed that the DEGs mainly 
regulated DNA replication, nuclear division, organelle 
fission, chromosome segregation, and other processes at the 
biological level. The changes of DNA replication were the 
most significant (Figure 2).

The variation of DEGs during DNA replication in 
enrichment analysis

In the DNA replication pathway, there were 21 DEGs 
in the high-risk MM group compared with the standard-
risk MM group. According to the differences in multiples 
|logFC| size sorting, the up-regulated genes were GINS1, 
RRM2, BRCA1, CDT1, PCNA, GINS3, MCM10, RFC5, 

http://sangerbox.com/
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CDC7, GINS4, MCM4, BRIP1, CDK1, MCM2, GINS2, 
DTL, SMC1, BARD1, and MCM6, and the down-regulated 
genes were NFIB and CDAN1 (Figure 3).

Validation of key predictive genes in the DNA replication 
pathway

Bone marrow tissues collected from 20 high-risk MM 
patients and 20 standard-risk MM patients were further 
analyzed by RT-qPCR (the clinical characteristics of MM 
patients are listed in supplemental document Table S1). 
According to the differences in multiples |logFC| size 
sorting, the levels of the top 10 DEGs were verified by RT-
qPCR (the primer sequences are listed in supplemental 
document Table S2). The results showed that only the 
relative expression levels of CDC7 and PCNA were 
significantly different between the high-risk MM group and 
the standard-risk MM group (Figure 4).

Value analysis of CDC7 and PCNA in high-risk MM

The area under the curve predicted by CDC7 in high-risk 
MM was 0.825 (P=0.0004), the optimal cut-off value was 
1.145, the sensitivity was 95%, and the specificity was 75%. 
The area under the curve predicted by PCNA in high-risk 
MM was 0.8488 (P=0.0002), the optimal cut-off value was 

1.305, the sensitivity was 85%, and the specificity was 80% 
(Figure 5).

Survival relative to CDC7 and PCNA in MM patients

A total of 40 MM patients were divided into a high gene 
expression group and low gene expression group by the 
ROC cut-off value. The Kaplan-Meier survival curve 
showed that patients with high expression of CDC7 had 
a lower 2-year OS (P<0.05, Figure 6A). Similarly, patients 
with high PCNA expression had a lower 2-year OS (P<0.05, 
Figure 6B).

Discussion

In this study, 611 DEGs were screened from the GEO 
dataset of high-risk MM. Through GO and KEGG 
pathway enrichment analysis, these differential genes were 
significantly enriched in DNA replication-related functions 
and pathways. Moreover, CDC7 and PCNA were screened 
out by RT-qPCR. These 2 key genes are involved in the 
regulation of DNA replication and other mechanisms, 
and may be involved in the regulation of cytogenetic 
abnormalities in the occurrence and development of MM. 
ROC analysis and Kaplan-Meier survival curve analysis 
demonstrated that CDC7 and PCNA have guiding 
significance in the diagnosis and evaluation of the OS of 
high-risk MM patients.

The main mechanism of MM involves cyclin D, 
an important mediator of cell cycle regulation. Cyclin 
D leads to direct or indirect loss of control, such as 
malignant behaviors, through non-random primary 
translocation involving IgH/L sites (16). In this process, 
the cyclin-dependent kinases family (CDKs) plays an 
important biological role. Cell division cycle 7 (CDC7) 
protein is an important S phase kinase, and is a member 
of the cell division cycle protein family. Overactivation 
of CDKs during G1 phase can drive cells into S phase 
and initiate DNA replication from multiple sources 
throughout chromosomes (17). CDC7 is directly involved 
in the activation of replicating DNA helicase, the 
minichromosome maintenance (MCM) complex, and the 
formation of active replication forks (18). Previous studies 
have confirmed that inhibition of CDC7 expression can 
induce reversible cell cycle arrest in normal cells, and induce 
p53-independent apoptosis in various cancer cells (19,20). 
Therefore, abnormal CDC7 expression has an important 
effect on the stability of cell cycle regulation mechanisms. 
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In our study, the expression level of CDC7 was significantly 
correlated with the disease stage and the clinical prognosis 
of MM. Patients with high expression of CDC7 often had 
severe clinical symptoms and poor prognosis.

Proliferating cell nuclear antigen (PCNA) was first 
discovered and named by Matsumoto et al. in the serum 
of patients with systemic lupus erythematosus (SLE) in 
1987 (21). In the mid-1980s, PCNA was thought to be 
involved in DNA replication based on its staining patterns 
throughout the cell cycle (22). PCNA, an important 
participant in DNA replication and repair, forms a 
homotrimeric ring that embraces and slides along DNA 
to anchor DNA polymerase and other DNA editing 
enzymes (23). Moreover, PCNA interacts with regulatory 
proteins through PCNA interacting protein box (PIP-
box) (24). Previous studies have confirmed that PCNA is 
closely related to the occurrence, development, staging, 

and prognosis of tumors. Silencing PCNA can inhibit the 
proliferation and induce apoptosis of various cancer cells, 
such as osteosarcoma, cervical cancer, laryngeal cancer, and 
non-small cell lung cancer cells. Overexpression of PCNA 
can promote the proliferation of tumor cells and indicates 
the degree of malignancy of tumors (25). In addition, 
studies found that the higher the expression level of PCNA, 
the worse the prognosis of patients. PCNA plays its role by 
regulating the cell cycle and DNA replication (26-28). Our 
study revealed that PCNA was highly expressed in high-risk 
MM patients and was closely associated with poor prognosis 
in MM patients.

Conclusions

In our study, DEGs between high-risk MM patients and 
standard-risk MM patients were analyzed by bioinformatics 
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technology. DNA replication was found to play an 
important role in the occurrence and development of 
high-risk MM. In addition, 2 key genes related to DNA 
replication, CDC7 and PCNA, can be used as biomarkers 
for diagnostic and prognostic assessments of MM patients.
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