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In today’s society, image resources are everywhere, and the number of available images can be overwhelming. Determining how to
rapidly and effectively query, retrieve, and organize image information has become a popular research topic, and automatic image
annotation is the key to text-based image retrieval. If the semantic images with annotations are not balanced among the training
samples, the low-frequency labeling accuracy can be poor. In this study, a dual-channel convolution neural network (DCCNN)
was designed to improve the accuracy of automatic labeling. *e model integrates two convolutional neural network (CNN)
channels with different structures. One channel is used for training based on the low-frequency samples and increases the
proportion of low-frequency samples in the model, and the other is used for training based on all training sets. In the labeling
process, the outputs of the two channels are fused to obtain a labeling decision. We verified the proposed model on the Caltech-
256, Pascal VOC 2007, and Pascal VOC 2012 standard datasets. On the Pascal VOC 2012 dataset, the proposed DCCNN model
achieves an overall labeling accuracy of up to 93.4% after 100 training iterations: 8.9% higher than the CNN and 15% higher than
the traditional method. A similar accuracy can be achieved by the CNN only after 2,500 training iterations. On the 50,000-image
dataset from Caltech-256 and Pascal VOC 2012, the performance of the DCCNN is relatively stable; it achieves an average labeling
accuracy above 93%. In contrast, the CNN reaches an accuracy of only 91% even after extended training. Furthermore, the
proposed DCCNN achieves a labeling accuracy for low-frequency words approximately 10% higher than that of the CNN, which
further verifies the reliability of the proposed model in this study.

1. Introduction

With the rapid development and increasing popularity of
multimedia devices and network technologies, increasing
amounts of information are being presented in image form.
*e large number of rich image resources has attracted users,
who can find the information that they need in the images.
According to statistics from Flickr, a website for social image
sharing on the Internet, image storage is growing at an
annual rate of 100 million units, while Facebook image
storage is growing at a rate of 15 billion units per year [1].
However, this massive amount of image information can
easily overwhelm users. Determining how to rapidly and
effectively query, retrieve, and organize image information
has become a major problem that must be solved [2]. As a
result, the field of image retrieval technology has emerged

and received considerable attention. Specifically, image
annotation can provide more search information than
traditional methods and result in rapid retrieval of corre-
sponding images. However, because images often contain
complex and diverse semantic information, they are typi-
cally labeled with more than one label; thus, it is necessary to
consider the case of multilabel annotation.

Generally, the methods for automatically labeling
multilabel images can be divided into three main categories:
generative models, discriminant models, and nearest
neighbor models. Generative models can generate training
data randomly, particularly when certain implicit parame-
ters are given. *ese models construct the joint distribution
probability of the visual features and the text semantic tags
first and then calculate the posterior probability of each
semantic feature of the known image with a Bayesian
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probabilistic model, which they use to complete the semantic
annotation of the image [3]. Duygulu et al. [4] proposed a
generative model called the translation model, which
transforms the image semantic annotation process into a
translation process by transforming visual image keywords
into semantic keywords. Jeon et al. [5] proposed the cross-
media relevance model (CMRM), which models images to
perform image annotation by constructing the joint prob-
ability of the visual and semantic information. Although the
above model considers the semantics of objects and regions,
the discrete processing of visual features can result in the
feature loss. In addition, the labeling effect is largely
influenced by the clustering granularity, but the ideal
granularity parameters are difficult to determine in advance.
To solve this problem, Feng et al. [6] proposed the multiple
Bernoulli relevance model (MBRM), and Alkaoud et al. [7]
proposed the fuzzy cross-media relevance model (FCRM).
*ese models use a nonparametric Gaussian kernel to
perform a continuous estimation of the feature generation
probability. Compared with the discrete model, these models
significantly improve the labeling accuracy. Although the
annotation process of the abovementioned production an-
notation model is relatively simple, the gap between the
underlying features of the image and the high-level se-
mantics and the nonindependence among the semantics can
lead to inaccurate joint probabilities [8].

A discriminative model defines image annotation as a
traditional supervised classification problem. *is approach
performs image annotation mainly by determining the
correlations between visual features and predefined labels
[9]. *e authors of [10] used the K-nearest neighbor (KNN)
method to select the nearest K images by calculating the
distance between graphs and then labeling the unlabeled
image using a label propagation algorithm. Li et al. [11] used
a K-means algorithm to construct a classifier by combining a
semantic vocabulary with annotated words using semantic
constraints and used the classifier for subsequent image
annotation. Qiu et al. [12] used a support vector machine
(SVM) to semantically denote some areas and then label
unlabeled areas based on the relationships among the areas.
Regardless of whether a method is based on one-to-one
classification or one-to-many classification, it is subject to
the constraints of the number of classifiers and the training
effect of the classifier, especially in the case of unbalanced
training samples. If the classifier training effect is poor, the
overall labeling accuracy rate will be affected. As the size of
the label set increases, the required classifier size also in-
creases, which increases the complexity of the labeling
model; thus, somemethods may not be applicable in big data
environments [13].

*e nearest neighbor model has become popular as the
requirements of data training have expanded.*e authors of
[14] introduced the transmission mechanism of nearest
neighbor labeling. In this approach, image annotation is
treated as a retrieval problem.*e nearest neighbor depends
on the averages of several distances calculated from visual
features, also known as the joint equal contribution (JEC).
For a given image, a label is passed through a neighbor.
Visual characteristics such as color and texture are used for

comparison and testing, and feature selection regularization
is performed based on label similarity. However, this ap-
proach does not increase the sparsity or improve the ac-
curacy of labels in all cases. *e TagProp model [15] is a new
type of nearest neighbor model. It creates combined weights
based on the existence or nonexistence of neighbor labels
and achieves good results.*e traditional methods described
above have advanced the field of image annotation, but they
require manual feature selection, which can result in in-
formation loss, poor annotation accuracy, and a low recall
rate [16].

In recent years, as deep learning has received increasing
attention, some scholars have begun to apply deep learning
to computer vision tasks. In 2012, Hinton et al. used a
multilayer convolutional neural network to classify images
using the widely used large-scale ImageNet database [17] for
image recognition and achieved exceptional recognition
results [18]. Since then, a large number of studies have
developed improved network structures and increased CNN
performance. For example, Google’s GoogLeNet network
[19] won the championship in the 2014 large-scale image
recognition competition. *e Visual Computing Group of
Microsoft Research Asia developed a computer vision sys-
tem based on a deep convolutional neural network that—for
the first time—surpassed humans in its ability to identify and
classify objects in the ImageNet 1000 challenge [20]. Al-
though deep learning models have performed well on image
recognition and classification tasks, most studies have fo-
cused on the network itself or on improvements in single-
label learning. Specifically, the task of image annotation for
multilabel learning has been given little attention, particu-
larly for unbalanced datasets. Currently, the approaches to
solve the issue of dataset imbalance primarily focus on the
composition of the datasets themselves. Briefly, a balance is
achieved in the entire dataset by reducing the number of the
types of images that are overrepresented in the dataset
(downsampling) or increasing the number of the types of
images that are underrepresented (upsampling). Despite
their easy operation, these approaches require the image
quantities in the dataset to reach a certain level and therefore
do not possess wide applicability. Images types that rarely
occur in daily life are difficult to even obtain, let alone to
obtain in large numbers, and simple translation trans-
formation sometimes fails to satisfy the requirement.

By combining deep learning and multilabel image an-
notation and targeting the problems of insufficient training
and the poor annotation effects of underrepresented images
due to data imbalance, in this study, we design a dual-
channel convolutional neural network (DCCNN) and
propose a new multilabel image annotation method. To
increase the annotation accuracy, particularly that of low-
frequency words, the proposed model is designed with two
input channels and one output channel constructed by two
six-layer convolutional neural networks that use different
parameters. One of the two input channels is trained on the
entire dataset, while the other is specially trained on the low-
frequency portions of the dataset. *ese two channels are
independent; the low-frequency datasets undergo training
two times, thus increasing the training weights of low-
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frequency words in the integral dataset. During testing, the
outputs from both input channels are combined to form a
joint decision, thus achieving an optimal annotation effect.

*e main contributions of this study are summarized as
follows:

(1) *e combination of deep learning and multilabel
image annotation solves the issues of the complex
annotation process, poor annotation efficiency, the
deficiencies in determining characteristics, and the
“semantic gap” that affect traditional annotation
methods.

(2) We design a DCCNN model that fuses two different
convolutional neural networks. Based on an un-
derstanding of the convolutional neural networks
themselves as well as the experimental results, the
parameters are adjusted, and a fusion ratio is set
between the two subnetworks that result in a satis-
factory performance.*e designed model is aimed at
solving the poor annotation effect problem that
occurs on underrepresented image types in datasets
due to insufficient training. Compared with other
methods to address such problems, the method
proposed in this study is both convenient and fast,
and its application is not restricted by datasets.

(3) Based on an understanding of the general process of
multilabel image annotation, this study proposes a
multilabel image annotation algorithm that employs
the DCCNN. *is algorithm contains training and
annotation phases, and the inputs and outputs differ
according to the different phases. During the training
phase, the two branch models are trained in-
dependently.*en, in the testing phase, these branch
models are fused so that they exert joint contribu-
tions to decision-making with regard to the final
annotation results.

2. Methods

2.1. Convolutional Neural Network. *e first convolutional
neural network (CNN) was proposed by Hubel and Wiesel
[21] in the 1960s through studies of neurons in monkey
cortexes related to local sensitivity and direction selection.
CNNs use weighted sharing, downsampling, and local
connection techniques that greatly reduce the number of
required parameters and the complexity of the neural net-
work. CNNs have been compared to traditional methods of
image feature extraction such as the Histogram of Oriented
Gradient (HOG) and Scale-Invariant Feature Transform
(SIFT) methods; however, CNNs can typically extract more
abstract and comprehensive features. In addition, CNNs
avoid the need for complex image preprocessing because
they can use the original images directly as input.

CNNs are mainly composed of a convolutional layer, a
pooled layer, and a fully connected layer. *e convolutional
layer is a key part of the CNN.*e function of this layer is to
extract features from input images or feature maps. Each
convolutional layer can have multiple convolution kernels,

which are used to obtain multiple feature maps. *e con-
volution layer is calculated as follows [22]:
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A pooling layer is generally sandwiched between two
convolutional layers. *e main function of this layer is to
reduce the dimensions of the feature map and maintain the
scale invariance of the features to some extent. *ere are two
main pooling methods: mean pooling and max pooling. A
pooling effect diagram is shown in Figure 1.

*e pooling process is similar to the convolution process
in that it involves a sliding window similar to a filter, but the
calculation is simpler. Mean pooling uses the average value
in an image area as the pooled value of the area. *is ap-
proach preserves the background of the image well. Max
pooling takes the maximum value of the image area as the
pooled value of the area and preserves the texture of the
image well. *e function of the fully connected layer is to
integrate themultiple imagemaps obtained after the image is
passed through multiple convolution layers and pooling
layers to obtain the high-layer semantic features of the image
for subsequent image classification.

2.2. Dual-Channel Convolutional Neural Network (DCCNN).
In the image annotation problem, one image often corre-
sponds to a plurality of annotated words, and different
annotated words correspond to different scenes. Some
scenes correspond to many images, that is, the corre-
sponding frequency of the annotated words is large, such as
sun, white clouds, mountains, and rivers. Additionally, some
scenes correspond to few images, and their corresponding
word frequency is small, such as crocodile and lizard.
Unbalanced input data can result in the insufficient training
of low-frequency annotated words, resulting in a poor
recognition rate. To increase the recognition accuracy and
the overall recognition efficiency for low-frequency anno-
tated words, this paper designs a DCCNN model (Figure 2).

In Figure 2, the DCCNN model consists of the con-
volutional neural networks CNN0 and CNN1. Each of these
networks possesses three convolution layers and three fully
connected layers.

CNN0 is trained on all training sets and the parameters
of each layer are as follows:

Layer 1 consists of 20 10×10 convolution kernels that
perform convolution operations on the input images.
*e step length is initially set to 4. *en, 3× 3 max
pooling windows with a step length of 2 are used for
downsampling.
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Layer 2 consists of 40 5× 5 convolution kernels that
perform convolution operations on the feature maps.
*e step length is initially set to 2. *en, 3× 3 max

pooling windows with a step length of 2 are used for
downsampling.
Layer 3 consists of 60 3× 3 convolution kernels that
perform convolution operations on the input feature
maps. *e step length is set to 1. *e remaining three
layers are fully connected layers. A dropout layer is
applied for full connection to avoid overfitting.*e keep
pro (proportion) parameter is set to 0.5 (i.e., 50% of the
neurons at each of the fully connected layers participate
in the operation). *e number of output nodes is 20.
Considering that the ReLU activation function possesses
powerful expression ability and is free from the van-
ishing gradient problem, enabling the convergence rate
of the model to be maintained stably, we used the ReLU
function in this study for all activations. *e learning
rate was adjusted to 0.001 after the experiment.

CNN1 is trained on the low-frequency training sets, and
the parameters for each layer are as follows:

Layer 1 consists of 20 12×12 convolution kernels that
perform convolution operations on the input images.
*e step length is initially set to 2. *en, 5× 5 max
pooling windows with a step length of 4 are used for
downsampling.
Layer 2 consists of 40 5× 5 convolution kernels that
perform convolution operations on the input feature
maps. *e step length is initially set to 1. *en, 4× 4
max pooling windows with a step length of 2 are used
for downsampling.
Layer 3 consists of 60 4× 4 convolution kernels that
perform convolution operations on the input feature
maps. *e step length is set to 1. *en, 4× 4 max
pooling windows with a step length of 2 are used for
downsampling.
*e final three layers are all fully connected layers
whose parameters are the same as those of CNN0.

*e model increases the training weight of the low-
frequency samples using special training channels. *e
training samples are first processed separately to achieve
sample equalization. *en, during the labeling process, the
final labeling result is jointly determined by the two chan-
nels. Because the low-frequency channel is trained only with
low-frequency samples, the parameters of this channel are
more suitable for identifying low-frequency samples, which
reduces the labeling impact of training with insufficient
numbers of low-frequency samples.

2.3. Multilabel Image Annotation. In this paper, the labeling
algorithm is divided into two phases: the training phase and
the labeling phase, as shown in Figure 3.

*e algorithm corresponding to the training phase is as
follows.

Step 1. Launch the algorithm corresponding to the
training phase. Sum the number of samples corre-
sponding to each tagged word and determine the low-
frequency annotation word set.

Conv1–20
10 ∗ 10

Conv2–40
5 ∗ 5

Conv3–60
6 ∗ 6

Pool1 3 ∗ 3

Pool2 3 ∗ 3

Fc1–1000
dropout

Fc2–1000
dropout

Fc3–20

Conv1–20
12 ∗ 12

Conv2–40
5 ∗ 5

Conv3–60
5 ∗ 5

Pool1 5 ∗ 5

Pool2 4 ∗ 4

Fc1–1000
dropout

Fc2–1000
dropout

Fc3–20

Pool3 4 ∗ 4

Fuse according to
the ratio 2 :1

Automatic annotation

Figure 2: Structure of a two-channel convolutional neural net-
work. Conv� convolutional layer; Pool� pooling layer; Fc� fully
connected layer. *e x in conv-x denotes the number of convo-
lution kernels in the layer; the size of the convolution kernel or
pooling window in the layer is y× y; the z in Fc-z denotes the
number of neurons in the fully connected layer; and dropout shows
the addition of a dropout layer to the original layer.

3 2 3 4

2 5 2 1

5 7 4 3

3 6 5 2

3

Figure 1: Pooling effect diagram. *e left side of the diagram is a
4× 4 feature map that consists of 2× 2 pooling windows with a step
length of 2 for downsampling the feature map.*e right side shows
the results after mean pooling, namely, the average value of the
selected area is used as the pooled result. For max pooling, the
pooled result would be the maximum value of the selected area.
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Step 2. *rough the program, all the low-frequency
samples in the training sample are extracted to form a
low-frequency training set.
Step 3. Construct a CNN model with two channels:
CNN0 and CNN1. CNN0 corresponds to the channel
with a small convolutional kernel and a large step, and
CNN1 corresponds to the channel with a large con-
volutional kernel and a small step. *e first layer of the
CNN1 channel is fully connected to the second layer of
the fully connected layer for feature fusion.
Step 4. Input all the training sets into the CNN0 channel
and input only the low-frequency training samples into
the CNN1 channel. Conduct model training until the
model becomes stable.

*e labeling phase algorithm is as follows.

Step 1. Input the test image into both channels (CNN0
and CNN1) of the trained two-channel CNN for feature
extraction
Step 2. Fuse the output vectors of the two channels in a
2 :1 manner (the specific ratio is experimentally
determined)
Step 3. Combine the decision results of the two
channels to perform image annotation

2.4. Experimental Data. To validate the proposed dual-
channel CNN (DCCNN) algorithm, we performed ex-
periments using the following freely available datasets:
Caltech-256 [23], Pascal VOC 2007 [24], and Pascal VOC
2012 [25]. *e Caltech-256 dataset contains 256 cate-
gories, each with at least 80 images and 30,608 overall
images. *e Pascal VOC 2007 dataset contains 20 cate-
gories and 9,963 images, with approximately 450 images
per category. Based on the Pascal VOC 2007 dataset,
Pascal VOC 2012 includes more images in each category,
extending the dataset to 22,531 images over 20 categories,
with each category containing approximately 1,000 im-
ages. Figure 4 shows some example images from the three
datasets.

2.5. Experimental Design. In this paper, we conducted
simulation experiments based on the framework of the deep

learning algorithm TensorFlow. Most of the images in-
vestigated in the multilabel image annotation task correspond
to more than one label; thus, the evaluation criteria for single-
label image classification are not fully applicable to multilabel
image tasks. In this paper, we use mean average precision
(MAP) as a new metric for multilabel images. *eMAP score
is obtained by calculating the average precision (AP). For a
given task or category, the corresponding precision-recall
curve can be calculated.*en, a set of thresholds is established
[0, 0.1, 0.2, . . ., 1]. If the recall rate is greater than each
threshold, the corresponding maximum precision value is
obtained. AP is the average of the 11 precision scores, and its
formula is as follows:

AP �
1
11

􏽘
r∈ 0,0.1,...,1{ }

Pinterp(r), (2)

where Pinterp(r) is the maximum precision value corre-
sponding to each threshold:

Pinterp(r) � max􏽥r%:􏽥r%≥r p(􏽥r), (3)

and p(􏽥r) is the accuracy rate corresponding to each 􏽥r.
Finally, the MAP is calculated by

MAP �
􏽐

Q
q�1AP(q)

Q
, (4)

where Q is the number of categories.
We adopted MAP as a metric because it encompasses

the accuracy, recall rate, and single-point value limita-
tions of the F1 value and reflects the overall global
performance.

*erefore, to verify the effectiveness of the proposed
dual-channel CNN algorithm, we combine the character-
istics of the three datasets (the Pascal VOC dataset image
categories are small, and each category contains more im-
ages; the Caltech-256 dataset image categories are large, and
each category contains fewer images) and compare the re-
sults with those reported in the literature in terms of labeling
accuracy, automatic labeling effect, iteration number, and
MAP score.
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3. Results and Discussion

3.1. Labeling Accuracy Comparison

3.1.1. Comparison on the Pascal VOC 2012 Datasets. *e
Pascal VOC 2012 datasets feature fewer categories and more
images per category than does the Caltech-256 dataset.
*erefore, we conducted an experimental comparison of the
accuracy of the proposed DCCNN model with various
methods from the literature [26–28] and the common CNN
based on each category of the Pascal VOC 2012 dataset. *e
results are shown in Table 1.

Table 1 shows that the DCCNNmethod proposed in this
paper yields a significantly higher labeling accuracy for each
category than do the other four methods. Compared with the
three methods from the literature and the CNN, the pro-
posed method increased the MAP values on the Pascal VOC
2007 dataset by 42.7%, 13.1%, 16.7%, and 4.4%, and theMAP
values on the Pascal VOC 2012 dataset increased by 48.4%,
17.1%, 18.8%, and 4.6%, respectively.

3.1.2. Comparisons on the Mixed Datasets from Caltech-256
and Pascal VOC 2012. We combined the Caltech-256 and
Pascal VOC 2012 datasets to form a larger dataset containing
50,000+ images and 276 categories and then compared the
average labeling accuracy of the various models, as shown in
Figure 5.

Additionally, to verify the influence of the number of
image categories on the labeling accuracy of the algorithm
proposed in this paper, we increased the number of image
categories to evaluate the stability of the accuracy of the
algorithm on the large dataset composed of Caltech-256 and
Pascal VOC 2012 images. *e results are shown in Figure 6.

*e results in Figures 5 and 6 show that when the
number of images reaches approximately 50,000, the
DCCNN algorithm proposed in this paper achieves a higher
labeling accuracy (93%) than do the other algorithms.
Moreover, the results in Figure 6 show that the accuracy of
the DCCNN method does not fluctuate as the number of
image categories increases, further demonstrating that the
DCCNN method can effectively avoid the information
limitations associated with manual feature selection.

3.2. Comprehensive Comparison with a CNN Method

3.2.1. Comparison of the Pascal VOC 2012 Datasets. To
verify the improvement of the proposed method over the
CNN algorithm, we first performed an experimental com-
parison of the accuracy of the two methods based on the
same number of iterations using the Pascal VOC 2012
dataset. Table 2 shows the experimental results when both
models were trained 100 times.

Table 2 shows that the DCCNN proposed in this paper
achieves good results within 100 training steps.*e ordinary

(a) (b) (c)

Figure 4: Example images from the Caltech-256 (a), Pascal VOC 2007 (b), and Pascal VOC 2012 (c) datasets.
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CNN achieves nearly the same effect only after being trained
approximately 2,500 times. *is finding indicates that the
DCCNN proposed in this study is more accurate and effi-
cient than the traditional CNN. *e time and number of
iterations required to reach the same accuracy percentage
are shown in Table 3.

3.2.2. Comparison of the Mixed Caltech-256 and Pascal VOC
2012 Datasets. For the large dataset consisting of Caltech-

256 and Pascal VOC 2012 images, the MAP values of the
CNN and the DCCNN are compared based on the number
of training iterations required, as shown in Figure 7.

Figure 7 shows that the MAP value of the CNN is ap-
proximately 82% initially but finally stabilizes at 91.9%. In
contrast, the MAP value of the DCCNN eventually reaches
93.8%, 1.9% higher than that of the CNN.

In addition, we report the AP values of the two models
for some vocabulary words after achieving stable training
(Table 4 and Figure 8).

As shown in Table 4 and Figure 8, the annotation results
of the CNN and DCCNN are similar because the effect of
each model is nearly saturated after sufficient training.

Table 1: Comparison of the accuracy of labeling for each category in the Pascal VOC 2007 and Pascal VOC 2012 datasets based on different
algorithms.

Image category
Labeling accuracy

Zuo et al. [26] Zhang et al. [27] Islam et al. [28] CNN DCCNN
2007 2012 2007 2012 2007 2012 2007 2012 2007 2012

Plane 0.802 0.777 0.988 0.973 0.947 0.924 0.992 0.983 1.0 0.999
Bike 0.501 0.425 0.812 0.748 0.498 0.451 0.905 0.877 0.996 0.973
Bird 0.561 0.454 0.873 0.808 0.962 0.946 1.0 0.977 1.0 0.984
Boat 0.619 0.533 0.899 0.853 0.671 0.652 0.935 0.920 0.990 0.972
Bottle 0.28 0.24 0.691 0.608 0.791 0.758 0.895 0.879 0.924 0.919
Bus 0.784 0.722 0.931 0.899 0.966 0.951 0.976 0.971 0.986 0.980
Car 0.584 0.506 0.897 0.868 0.905 0.891 0.953 0.949 0.989 0.987
Cat 0.607 0.542 0.941 0.893 0.941 0.923 0.962 0.955 0.984 0.970
Chair 0.509 0.453 0.613 0.554 0.422 0.39 0.826 0.794 0.907 0.893
Cow 0.309 0.26 0.848 0.778 0.866 0.857 1.0 0.999 1.0 1.0
Dining table 0.398 0.366 0.829 0.751 0.749 0.704 0.843 0.825 0.899 0.885
Dog 0.507 0.426 0.885 0.83 0.895 0.886 0.918 0.905 0.992 0.971
Horse 0.441 0.389 0.916 0.875 0.912 0.894 0.929 0.927 0.980 0.978
Motorbike 0.57 0.507 0.825 0.792 0.798 0.761 0.851 0.849 0.931 0.931
Person 0.769 0.703 0.899 0.847 0.831 0.794 0.899 0.897 0.962 0.957
Potted plant 0.305 0.234 0.636 0.578 0.681 0.658 0.833 0.829 0.884 0.881
Sheep 0.406 0.362 0.824 0.792 0.895 0.862 0.960 0.960 0.996 0.993
Sofa 0.385 0.314 0.449 0.395 0.389 0.339 0.725 0.719 0.819 0.816
Train 0.699 0.616 0.935 0.906 0.864 0.818 1.0 0.989 1.0 1.0
TV monitor 0.523 0.43 0.793 0.774 0.785 0.729 0.819 0.816 0.857 0.856
MAP value 0.528 0.463 0.824 0.776 0.788 0.759 0.911 0.901 0.955 0.947
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and the labeling accuracy of the algorithm proposed in this study.
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However, as shown in Table 3, the training rate of the CNN is
much slower than that of the DCCNN. In addition, Figure 8
shows that the AP values of the DCCNN for some words are
higher than those of the CNN, indicating a better annotation
effect.

3.3. Comparisons of Low-Frequency Word Efficiency. To
better verify the efficacy of the method proposed in this study,
we compared the annotation effects of different methods on
low-frequency words. As shown in Table 1, because the
methods of [26–28] require manual feature selection, the
labeling accuracy is very low for certain categories. According
to [29], under the standard practice for low-frequency vo-
cabulary, the highest and lowest frequency words are elim-
inated, and the frequencies of the remaining words are
averaged. A labeled word corresponding to a below-average
value is a low-frequency word.*e results in Table 5 show that
categories such as bike, bottle, chair, dining table, potted
plant, sofa, and TV monitor are low-frequency words when
labeling is based on manual feature selection.

3.3.1. Comparison of Labeling Effects. In this section, we
compare the DCCNN method with the method proposed in
[27] and with CNN-based automatic labeling (Table 5).

*e labeling results in Table 5 indicate that the DCCNN
method provides more complete image descriptions and
more comprehensive annotations than do the other two
methods. Additionally, its recognition rate for low-

Table 2: Comparison of the labeling accuracy when two models
were trained 100 times on the Pascal VOC 2012 dataset.

Image category CNN DCCNN
Plane 0.983 0.999
Bike 0.877 0.973
Bird 0.918 0.984
Boat 0.920 0.972
Bottle 0.722 0.892
Bus 0.920 0.980
Car 0.819 0.939
Cat 0.916 0.970
Chair 0.668 0.804
Cow 0.999 1.0
Dining table 0.570 0.757
Dog 0.894 0.971
Horse 0.927 0.978
Motorbike 0.849 0.931
Person 0.871 0.957
Potted plant 0.729 0.881
Sheep 0.960 0.993
Sofa 0.618 0.827
Train 1.0 0.999
TV monitor 0.746 0.866
MAP value 0.845 0.934

Table 3: Comparison of time and number of iterations required to
reach a MAP value of 93% using the CNN and DCCNN.

Methods CNN DCCNN
Time (s) 277.411 41.446
Number of iterations 2500 100

M
A

P 
(%

)
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80
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4 620
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DCCNN

Figure 7: Comparison of the MAP values of the CNN and
DCCNN.

Table 4: Comparisons of the AP values of the convolution neural
network (CNN) and the dual-channel convolution neural network
(DCCNN) to part of the vocabulary.

Vocabulary CNN DCCNN Difference in AP
Plane 0.997 0.998 0.001
Bird 0.977 0.972 0.005
Boat 0.975 0.990 0.015
Bus 0.984 0.979 0.005
Dog 0.970 0.971 0.001
Horse 0.980 0.979 0.001
Train 1.0 0.999 0.001
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Figure 8: Comparisons of the AP values: CNN� convolution
neural network; DCCNN� dual-channel convolution neural
network.
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Table 5: Comparison of the labeling results of different algorithms.

Sample image
Automatic labeling results

Islam et al. [28] CNN DCCNN

People People, sofa People, sofa, chair

Sofa Sofa, potted plant Sofa, potted plant, chair, TV monitor

Chair, sofa Chair, sofa Chair, sofa, dining table

People, car People, car People, car, TV monitor

Chair, dining table Potted plant, chair, dining table Potted plant, chair, dining table, sofa

Dining table, chair Dining table, chair, potted plant Dining table, chair, potted plant, sofa

Motorbike People, motorbike People, motorbike, chair

People, bus People, bus, car People, bus, car, bike
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frequency words such as chair, sofa, TVmonitor, and dining
table is higher.

3.3.2. Comparison of Annotation Accuracy. For low-fre-
quency words, as shown in Figure 9, the labeling accuracies
when using the CNN and the DCCNN method proposed in
this paper are significantly higher, and the DCCNN method
yields the highest accuracy. *is result indicates that com-
pared with traditional methods (the methods in [26–28]), the
extracted image features are more abstract, more compre-
hensive, and more suitable for the high-level semantics as-
sociated with the human understanding of images. *erefore,
its labeling accuracy is significantly higher. *e DCCNN
model proposed in this paper is an integrated model of two
different CNNs. One CNN has a small convolutional kernel
and a large step, and the other has a large convolutional kernel
and a small step. During training, to increase the training
weights of low-frequency vocabulary words, images corre-
sponding to the low-frequency vocabulary are input into the
CNN with a large convolutional kernel and a small step. In
contrast, the other CNN is trained on all the training images.
*is approach results in the DCCNN having a higher ac-
curacy than the classical CNN method alone.

Moreover, we also evaluated the annotation accuracy
of each method based on some low-frequency words in the
large dataset composed of Caltech-256 and Pascal VOC
2012 images after the two models became relatively stable.
*e experimental pairs are shown in Table 6 and
Figure 10.

Figure 10 is a visual diagram of the information in
Table 6. Most of the average accuracy improvements are
similar. *e annotation accuracies of “bike,” “dining table,”
“potted plant,” “sofa,” and “TV monitor” increased by 2.9%,
4.8%, 1.3%, 10.7%, and 3.3%, respectively, when using the
DCCNN rather than the CNN. *us, the DCCNN designed
in this paper improves the proportions of low-frequency
annotated words in the model, further validating the ef-
fectiveness of the model.

4. Conclusions

In real life, with the continuous development of technol-
ogy, access to information has grown explosively, and the
amounts of image data have increased dramatically. De-
termining how to efficiently and rapidly solve large-scale
image processing problems has become a popular and
challenging research topic. Automatic image annotation is
the key to text-based image retrieval. While the traditional
methods made significant progress in the field of image
annotation, their reliance on manual feature selection
caused some information to be missed, resulting in poor
annotation accuracy and low recall rates. Although deep
learning models have been successfully applied for image
recognition and classification, most studies have focused
on the specific network used or on improving single-label
learning. Notably, the application and improvement of
multilabel image annotation in deep learning have been
given little attention.

*erefore, based on the characteristics of multilabel
learning and considering the uneven distribution of labeled
words, we propose a DCCNN to improve the training
weights of low-frequency words and the overall labeling
efficiency. We validated the model with classic, commonly
used multilabel image datasets: the Caltech-256, Pascal VOC
2007, and Pascal VOC 2012 datasets. In this study, we
compared the DCCNN with existing methods from the
literature and a traditional CNN. *e methods based on
CNNs are more effective for image annotation than are the
traditional methods based on the manual feature selection.
We also conducted a comprehensive comparison between
the DCCNN and CNN. *e results verify that the DCCNN
improves both the accuracy of low-frequency vocabulary
labeling and the overall labeling efficiency.

*e next steps in this research are threefold: (1)
training samples will be grouped according to the word
frequency, and a multichannel CNN model will be
established to further reduce the influence of word fre-
quency on the model; (2) the labeling results will be further

Table 5: Continued.

Sample image
Automatic labeling results

Islam et al. [28] CNN DCCNN

Chair, TV monitor Sofa, chair, TV monitor Sofa, chair, TV monitor, dining table

Chair, people Dog, chair, people, sofa Dog, chair, people, sofa, potted plant
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improved by considering the symbiotic relationships
among words and the distances between mapped words;
and (3) tests will be performed using larger datasets. Fi-
nally, based on the results, we will make improvements
that further enhance the stability of the solution.*e use of
larger image datasets has certain benefits for network
training and avoids overfitting.
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