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Abstract: The (thio)urea and benzothiazole (BT) derivatives have been shown to have a broad spec-
trum of biological activities. These groups, when bonded, result in the 2-(thio)ureabenzothizoles (TBT
and UBT), which could favor the physicochemical and biological properties. UBTs and TBTs are com-
pounds of great importance in medicinal chemistry. For instance, Frentizole is a UBT derivative used
for the treatment of rheumatoid arthritis and systemic lupus erythematosus. The UBTs Bentaluron
and Bethabenthiazuron are commercial fungicides used as wood preservatives and herbicides in
winter corn crops. On these bases, we prepared this bibliography review, which covers chemical
aspects of UBTs and TBTs as potential therapeutic agents as well as their studies on the mechanisms
of a variety of pharmacological activities. This work covers synthetic methodologies from 1935 to
nowadays, highlighting the most recent approaches to afford UBTs and TBTs with a variety of sub-
stituents as illustrated in 42 schemes and 13 figures and concluded with 187 references. In addition,
this interesting review is designed on chemical reactions of 2-aminobenzothiazoles (2ABTs) with
(thio)phosgenes, iso(thio)cyanates, 1,1′-(thio)carbonyldiimidazoles [(T)CDI]s, (thio)carbamoyl chlo-
rides, and carbon disulfide. This topic will provide information of utility for medicinal chemists
dedicated to the design and synthesis of this class of compounds to be tested with respect to their
biological activities and be proposed as new pharmacophores.

Keywords: 2-aminobenzothiazoles; (thio)ureabenzothiazoles; (thio)phosgene; iso(thio)cyanates;
(thio)carbonyldiimidazoles; carbamoyl chlorides; carbon disulfide

1. Introduction

Studies on urea derivatives as biological modulators of intracellular targets have
showed the importance of the urea group that, when incorporated in small molecules,
display a broad range of biological activities highlighting the importance of this group
in drug development and medicinal chemistry. Many drugs containing the urea group
such as Cabozatenib, Sorafenib, and Regorafenib used as anticancer drugs have been devel-
oped [1,2]. The urea NH moiety is regarded as a hydrogen bond donor, while its oxygen
atom, an excellent acceptor, gives the capability for interacting with a variety of protein
targets in several ways to this group. Moreover, the urea moiety favors aqueous solubility
due to the strong intermolecular hydrogen bonding formation with different solvents.
These interactions play an important role in biological structures and functions, regarding
protein and nucleic acid folding, molecular recognition, allostery, signal transduction, and
enzymatic catalysis [3].

In general, (un)symmetrical (thio)ureas have been shown to have a broad spectrum
of biological and pharmacological activities. These compounds are very interesting due
to their use as anti-HIV, antiviral, antimalarial, cytotoxic, anti-inflammatory, antifungal,
antimicrobial, antidiabetic, anti-tuberculosis, anti-HCV, and CNS drugs [4–27]. Among
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them, several aryl thiourea derivatives have been used in medicine, industry, and agricul-
ture [28–32]. Moreover, thiourea moiety has been incorporated in many tyrosine kinase
inhibitors due to its ability in the formation of hydrogen bonds in the ATP binding cavity
of enzymes [33]. For instance, the thiourea derivative YH345A has shown strong protein
farnesyl transferase inhibition activity [4]. On the other hand, some heterocyclic thioureas
have shown powerful DNA topoisomerase inhibitory activity [10], technological applica-
tions such as fluorescence properties [34], corrosion determination of some metals [35],
catalysts in chemical reactions [36–39], and for the extraction of toxic metals [40].

From the drugs used in today’s medicine, many of them possess a heterocyclic nucleus
as benzothiazole (BT). Nowadays, BT is a very important phamacophore in medicinal
chemistry due to their diversity of pharmacological properties. Developments in biological
evaluation of this class of heterocyclic molecules produced changes and promoted the
design of new molecules based on their mechanisms of action. BT, one of the family of
benzazoles, is an aromatic heterobicyclic compound with a benzene nucleus fused with a
thiazole ring. The BT nucleus has been found in marine or terrestrial natural compounds
with diverse biological activities. Since 1950, medicinal chemists have been interested in
the synthesis of BT derivative compounds, since the pharmacological profile of Riluzole
(6-trifluoromethoxy-2-aminobenzothiazole) was found to be a clinically anticonvulsant
drug [41,42]. Since then, BT has been an important scaffold with a wide array of interesting
biological activities and therapeutic functions. For instance, BT derivatives have been
used in the treatment of various diseases such as neurodegenerative disorders, local brain
ischemia, central muscle relaxants, and cancer. In the 2000s, few reviews describing the
synthetic strategies and biological activities of the BT nucleus were found reported in
the literature [43–47]. In the past decade, thirty reviews were found about synthetic
methodologies and medicinal activities associated with the BT core as a highly important
scaffold for drug development, which has increased rapidly. These reviews were focused
on research highlighting anticancer and antimicrobial activities, as well as anticonvulsant,
anti-inflammatory, antifungal, antioxidant, antitubercular, antimalarial, antileishmanial,
anti-Alzheimer, antitubercular, antidiabetic, and miscellaneous activities [48–73]. Among
them, some BT derivatives presented to be useful for the treatment of various diseases
including neurodegenerative disorders, local brain ischemia, Huntington’s disease, and
cancer. A mini-review about BT derivatives, such as antimicrobial and antiviral [74] and
four as anticancer agents, were found [75–78]. It is worth mentioning that at least ten
reviews about this topic were found in the literature from last year until now [79–89].
On the other hand, a review from 2015 to 2020 about the pharmacological activities of
BT-related patents was recently reported [90]. Moreover, in 2020, BT derivatives were found
to act as multifunctional effectiveness such as antioxidant, sunscreen (filter), antifungal, and
anti-proliferative agents [91]. In 2021, we published a literature review on research progress
about the condensation of o-amino-thiophenoles with carboxylic acids, acid chlorides,
amides, nitriles, esters, thioesters, and ortho-esters, including carbon dioxide (CO2) as
starting materials to access substituted BTs [92].

Nowadays, researchers continuously work on the design and synthesis of BT molecules
to obtain more effective derivatives that can be used as drugs [93–104]. For instance, scien-
tists are fighting to find drugs against viruses such as influenza and coronavirus. In this
sense, two article reviews about the synthesis and structure–activity relationship, as well as
various methods to evaluate the antiviral activity against specific viruses of BT derivatives,
recently appeared in the literature [105,106].

Since UBTs synthesized by Kauffmann in 1935 were found to be local anesthet-
ics, potent hypoglycemics, and antibacterial agents, these kinds of compounds have
had the interest of medicinal chemists [107–110]. For instance, Frentizole [6-methoxy-
phenylureabenzothiazole], Figure 1, a non-toxic UBT drug (IC50 = 200 µM), was approved
by the FDA for the treatment of rheumatoid arthritis and systemic lupus erythematosus
and has been tested for the immunosuppressive and super-immunosuppressive dose levels
on the resistance of the mice to viral infections, Figure 1 [111,112]. It was also found that
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the mean survival time of specific pathogen-free male mice pre-treated with Frentizole or
Azathioprine at 100, 50 or 25 mg/kg and infected with herpes simplex and influenza virus
was reduced. On the other hand, it is well known that the combination of UBT and TBT
derivatives leads to inhibitors of DNA topoisomerase or HIV reverse transcriptase (e.g., III,
Figure 1) [113–115]. In addition, the UBTs Bentaluron and Bethabenthiazuron (Tribunil or
Ormet) are commercial fungicides used, respectively, as wood preservative and herbicide
in winter corn crops [116,117].
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Figure 1. UBT and TBT derivatives with biological activities. 
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Due to the current relevance of BT derivatives, we focused our attention on
(thio)ureabenzothiazole derivatives to prepare a literature review from 1935 to now about
the methods of the synthesis of this kind of compound to be analyzed with respect to their
biological activity studies. Despite a large number of urease inhibitors being reported
and marketed, there is still need of more potent inhibitors with fewer side effects and
more efficacy.

In general, the official nomenclature of (thio)ureas is on the base of numbering the
N1, C2=O(S) and N3 of the urea group. Some authors consider this group to be N, C=O,
N’, so in this case, the BT group in (T)BTs is considered to be N-benzothiazol-2-yl or
N1-benzothiazol-2-yl group. The alkyl substituents on N′ or N3 are represented as N′-alkyl
or N3-alyl. In this work, we consider whether (thio)ureabenzothiazoles can be shortened to
(T)UBT. Any substitution on the BT ring and (thio)urea groups was placed on the left of the
final name, respectively. For instance, in 6-methyl-methylUBT, the first methyl group is on
the 6th position of the BT ring, and the second methyl is on the N3 atom on the urea group.
Any di- or tri-substitution on the (thio)urea group can be differentiated by using N or N1
and N′ or N3-substitutions.

In general, in this review, 2-aminobenzothiazoles 2ABTs or substituted-2ABTs are
starting materials used for the synthesis of TBT or UBT. The introduction of the car-
bamide group into 2ABTs to obtain UBTs or TBTs were phosgene, isocyanates or isoth-
iocyanates, 1,1′-carbonyldiimidazole (CDI) or 1,1′-thiocarbonyldiimidazole (TCDI), car-
bamoyl chlorides, and carbon disulfide, as well as some new methodologies, which are
commented on. We hope this review will provide information about UBTs and TBTs and
their biological activities.

2. Results of the Literature Review

In 1935, for the first time, Kaufmann synthesized several substituted UBTs 2–3, bis-
6-chloro UBT 4, substituted phenyl-UBTs 5a–e, and substituted phenyl-TBTs 5f–h from
the reaction of the corresponding substituted 2ABTs with urea, cyanic acid, phosgene,
benzene-isocyanate, and –thiocyanate in chloroform as solvent, Scheme 1 [107].
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assay in mice and for antiviral activity against Coxsackie A21 (Coe) virus infection in mice. 
The most potent immunosuppressant was substituted ureanaphtothiazoles 9a. One of 
them was 250 times more active as azathioprine in the sheep erythrocyte test in mice. R2 
must be an aryl group to be active. For R1 = H, the best R2 aryl groups were the halogen 
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The same Kauffmann′s methods were used to prepare phenyl-UBTs 6, substituted
TBTs 7 and bis-substituted UBTs 8 in order to examine their antibacterial, acaricidal, and
insecticidal activities, toxicity in mice, and relationship between chemical structures and
biological actions, Scheme 2 [108].
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Scheme 2. UBTs and TBTs from the Kaufmann method.

Later, the respective 2ABT or 2-N-alkyl-ABT were treated with an alky- or aryl-
iso(thio)cyanate or carbamoyl chloride in an aprotic solvent to yield around 81% of the urea
compounds 9, Figure 2 [110]. Refluxing toluene for 4 h was used in the case of substituted-
aryl-UBTs and refluxing tetrahydrofuran (THF) for 6 h in the case of substituted-aryl-UBTs.
All compounds were tested for immunosuppression in the sheep erythrocyte assay in mice
and for antiviral activity against Coxsackie A21 (Coe) virus infection in mice. The most
potent immunosuppressant was substituted ureanaphtothiazoles 9a. One of them was
250 times more active as azathioprine in the sheep erythrocyte test in mice. R2 must be
an aryl group to be active. For R1 = H, the best R2 aryl groups were the halogen substi-
tuted pClPh, mClPh, and oFPh. In the immunosuppressive structure–activity relationship
(SAR), the best activity was observed for R groups in the 4th position on the BT ring, for
example, 4Cl is even active when R2 is cyclohexyl. When R1 = Me, the potency decreases
to the 50 mg/kg range. In antiviral SAR, the antiviral activity showed to be dependent
on the nature of R2: if, for example, in R2 = 1-naphthyl, adamantyl, and aryl groups, the
compounds are quite active.
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In 1973, 4,6-disubstituted-β-bromo-propyl-UBTs 10a–g and 4,6-disubstituted-ethenoyl
UBTs 11a–g were prepared from the reaction of 4,6-disubstituted-2ABTs with β-bromo-
propionyl-isocyanate to be cyclized to produce l-(4,6-disubstituted-benzothiazol-2-yl) di-
hydrouracils 12, Scheme 3 [118]. A mixture of ether/THF was used for 10a,f,g or THF for
10b–e. The reaction mixture refluxed for 2 h. All compounds were shown to have antibacte-
rial, antifungal, and antiprotozoal in vitro effects. The minimal inhibition concentration of
6-thiocyanate-β-bromo-propionyl-UBT 10f was 50 µg/mL for all tested organisms, which
represent a high efficiency.
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Scheme 3. 4,6-disubstituted-β-bromo-propionyl-UBTs 10 and 4,6-disubstituted-ethenoyl-UBTs 11 to
produce dihydrouracils 12.

For instance, Frentizole, 6-methoxy-phenylUBT depicted in Figure 1, was synthetized,
and crystals were obtained from ethanol/water to be studied with respect to its structure
in the solid state [119].

The reported phenyl-UBT 13 was obtained from the reaction of 2ABT with an excess
of phenyl-isocyanate in boiling benzene and recrystallized from EtOH, EtOH-H2O, or
1,4-dioxane, Scheme 4 [120]. This compound was tested for cytokinin-like activity. The
results showed compound 13 inhibited chlorophyll synthesis, perhaps by interfering with
the chlorophyll biosynthetic pathway, but not by acting as cytokinin-like. This inhibition
was not overcome by the addition of zeatin riboside (ZR).
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In 2014, it was reported the first Pd catalyzed C–N coupling of BT-2-ol with phenyl
urea via a two-step process involving in situ C–OH bond activation using phosphonium salt
as an efficient catalyst system to give out rapid coupling for the synthesis of phenyl-UBT
13 in excellent yield (90%), Scheme 4 [121].

A series of 6-substitutedUBTs 14 inhibitors of p56lck were prepared to elucidate their
SAR, selectivity, and cell activity in the T-cell proliferation assay, Scheme 5 [122]. The urea
derivatives 14 were prepared from the corresponding 6-substituted 2ABT when treated with
an alkyl- or aryl-isocyanate in dichloromethane and pyridine to form UBTs 14. Alternatively,
the 6-substituted-2ABTs treated with phenyl chloroformate in aqueous THF in the presence
of potassium bicarbonate in the form of a phenyl carbamate, which is treated with an
amine in THF form the ureas 14. Compound 14r was found to be a potent and selective
Lck inhibitor with good cellular activity (IC50 = 0.004 µM) against T-cell proliferation.
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Scheme 5. 6-substituted-UBTs from alkyl-, aryl-isocianates, or phenyl chloroformate.

A series of 6-(2,6-dichlorobenzoamidyl)-alkyl-UBTs 15 was prepared from the reac-
tion of N-6-(2,6-dichlorobenzoamidyl)-2ABT with the corresponding alkyl-isocyanate in
pyridine as a dissolvent at 60 ◦C for 16 h, Scheme 6 [123]. The cytotoxicity text results of
all compounds against tumorigenic cell lines were shown. The UBT derivatives 15a–e had
the same potency as the amide or urethane derivatives. Selective cytotoxicity against a
tumorigenic cell line, WI-38 VA-13 subline 2RA (VA-13), was observed, but not against the
normal parental cell line, WI-38. EC50 (ng/mL): 15a = 32, 15b = 30, 15c = 28, 15d = 290, and
15e = 150.
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A series of 6-(2,6-dichlorobenzoamidyl)-alkyl-UBTs 15 was prepared from the reac-
tion of N-6-(2,6-dichlorobenzoamidyl)-2ABT with the corresponding alkyl-isocyanate in 
pyridine as a dissolvent at 60 °C for 16 h, Scheme 6 [123]. The cytotoxicity text results of 
all compounds against tumorigenic cell lines were shown. The UBT derivatives 15a–e had 
the same potency as the amide or urethane derivatives. Selective cytotoxicity against a 
tumorigenic cell line, WI-38 VA-13 subline 2RA (VA-13), was observed, but not against 
the normal parental cell line, WI-38. EC50 (ng/mL): 15a = 32, 15b = 30, 15c = 28, 15d = 290, 
and 15e = 150. 
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Several substituted-hepta-O-acetyl-β-D-lactosyl-TBTs 16 were prepared in 64–90% by
the condensation of hepta-O-acetyl-β-D-lactosyl-isothiocyanate with substituted-2ABTs,
Scheme 7 [124]. The structures of these new lactosyl-TBTs have been established on the
basis of IR, NMR, and mass spectral studies.
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Scheme 7. Synthesis of substituted hepta-O-Acetyl-β-D-lactosyl-TBTs.

A series of 45 different 6-substituted-aryl-UBTs 17, 19, and 20 and 6-substituted-aryl-
TBTs 18 were synthesized from the reaction of the corresponding 6-substituted-2ABT with
CDI or TCDI in stirring CH3CN at room temperature, then reacted with amines in DMF
on heating 100 ◦C, Figure 3 [125]. Using an ELISA-based screening assay, the Frentizole
SAR was identified as a novel UBT inhibitor of the interaction of amyloid beta peptide
(Aβ) and Aβ-binding alcohol dehydrogenase (ABAD) [Aβ-ABAD], recently implicated
in the pathogenesis of Alzheimer’s disease (AD), with a 30-fold improvement in potency.
In summary, all synthetized compounds were identified as micro molar inhibitors of the
Aβ-ABAD interaction. The compounds 19h and 19l showed the most potent inhibition
with IC50 values of 6.46 and 6.56 µM, respectively.
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Scheme 8. Phenyl-TBT 21 from rearrangement of 3-phenylamino-5-phenylimino-1,2,4-dithiazole. 

A series of aryl-UBTs 22 has been synthesized in 40–60% yield from the reaction of 
the substituted 2ABT with the corresponding aryl-isocyanate in presence of N,N′-dime-
thylformamide (DMF), triethylamine (TEA), and dimethylaminopyridine (DMAP) stir-
ring for 8h at room temperature, Scheme 9 [128]. The resultant compounds were evaluated 
for their antiproliferative profiles in human SK-Hep-1 (liver), MDA-MB-231 (breast), and 
NUGC-3 (gastric) cell lines. Compounds 22e, 22g, and 22h had the potential to moderate 
inhibitory activities. More of these compounds have been investigated for their ability to 
inhibit Raf-1 activity. However, they exhibited moderate to poor inhibition. 
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Scheme 9. 6-substituted and 5,6-disubstituted Aryl-UBTs from 2ABTs and arylisocyanates. 

The 1,1-bistrifluoromethyl-1-alkyl-UBTs 23a–c was prepared by addition of 2ABT to 
the corresponding bis-fluoroalkyl-isocyanates, Figure 4 [129]. These UBTs were evaluated 
for their in vitro antiproliferative activities against the human cancer cell lines. The most 
sensitive cell lines relative to the tested compounds were: 23c SNB-75 (CNS cancer, log 

Figure 3. Use of CDI or TCDI to afford substituted-aryl-UBTs 17,19,20 and -aryl-TBTs 18.
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The phenyl-TBT 21 has been isolated from thermal transformation of 3-phenylamino-
5-phenylimino-1,2,4-dithiazole via intramolecular rearrangement through intermediate A,
Scheme 8 [126]. Analogous thermal or acidic catalyzed rearrangements have been de-
scribed [127].
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The 1,1-bistrifluoromethyl-1-alkyl-UBTs 23a–c was prepared by addition of 2ABT to 
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A series of aryl-UBTs 22 has been synthesized in 40–60% yield from the reaction
of the substituted 2ABT with the corresponding aryl-isocyanate in presence of N,N′-
dimethylformamide (DMF), triethylamine (TEA), and dimethylaminopyridine (DMAP)
stirring for 8h at room temperature, Scheme 9 [128]. The resultant compounds were evalu-
ated for their antiproliferative profiles in human SK-Hep-1 (liver), MDA-MB-231 (breast),
and NUGC-3 (gastric) cell lines. Compounds 22e, 22g, and 22h had the potential to moder-
ate inhibitory activities. More of these compounds have been investigated for their ability
to inhibit Raf-1 activity. However, they exhibited moderate to poor inhibition.
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Scheme 9. 6-substituted and 5,6-disubstituted Aryl-UBTs from 2ABTs and arylisocyanates.

The 1,1-bistrifluoromethyl-1-alkyl-UBTs 23a–c was prepared by addition of 2ABT to
the corresponding bis-fluoroalkyl-isocyanates, Figure 4 [129]. These UBTs were evaluated
for their in vitro antiproliferative activities against the human cancer cell lines. The most
sensitive cell lines relative to the tested compounds were: 23c SNB-75 (CNS cancer, log
GI50 = 5.84) and 24b UO-31 (renal cancer, log GI50 = 5.66), and SR (leukemia, log GI50 = 5.44)
human cancer cells.

Molecules 2022, 27, x FOR PEER REVIEW 9 of 40 
 

 

GI50 = 5.84) and 24b UO-31 (renal cancer, log GI50 = 5.66), and SR (leukemia, log GI50 = 5.44) 
human cancer cells. 

S

N
NH

O

N
H

23

CF3

CF3

R R = H, Me, Et
%   96, 98,  94

a    b    c
N=C=O

CF3

CF3

R
S

N
NH2 +

 
Figure 4. N-bis(trifluoromethyl)alkyl-UBTs 23a–c from 2ABT and fluoroalkyl isocyanates. 

A series of 6-trifluoromethoxy-TBTs 24a–f from 6-trifluoromethoxy-2ABT (Riluzole), 
a neuroprotective drug in many animal models of brain disease have been synthesized, 
Figure 5 [130]. The biological activity of synthetized TBTs was preliminarily tested by 
means of an in vitro protocol of ischemia/reperfusion injury. The results demonstrated 
that 24a–d significantly attenuated neuronal injury. Selected for the testing of their anti-
oxidant properties, compounds 24a–d were shown to be endowed with a direct reactive 
oxygen species (ROS) scavenging activity. Compounds 24a and 24b were also evaluated 
for their activity on voltage-dependent Na+ and K+ currents in neurons from rat piriform 
cortex. At 50 μM, compound 24b inhibited the transient Na+ current to a much smaller 
extent than Riluzole, whereas 24d was almost completely ineffective. 

N

S
NH N

H

S
F3CO R

R = Et, nPr, iPr   nBu  Ph,  pFPh
a     b    c       d    e        f

24

R-N=C=S
N

S
NH2

F3CO
+

 
Figure 5. 6-trifluoromethoxy-TBTs 24a-f derived from Riluzole. 

Some 4/6-substituted-phenyl-TBTs 25 were synthesized by the reaction of substi-
tuted-2ABT with the corresponding substituted phenyl-isothiocyanate in absolute etha-
nol, Scheme 10 [131]. Compounds 25 were condensed with malonic acid in acetyl chloride 
to obtain 1-(4/6-substituted-BT-2-yl)-3-phenyl-2-thiobarbituric acid derivatives 26. All the 
synthesized compounds were characterized by elemental analysis, infrared (IR), hydro-
gen nuclear magnetic resonance 1H NMR, and Mass spectral studies. Compounds 25 and 
26 were screened for their entomological and antibacterial activities. All the synthesized 
compounds were screened for antibacterial activity at a concentration of 200 μg/mL and 
100 μg/mL in DMF using streptomycin and ceftazidime as standard against Gram positive 
and negative bacteria. Among the synthesized compounds, 26a, 26f, and 26g compounds 
were found to possess broad-spectrum activities. However, the activities were much less 
than those of standard antibacterial agents used. These compounds also showed potent 
antiulcer, anti-inflammatory, and antitumor activities as well as antifeedant activity and 
acaricidal activity against Spodoptera litura and Tetranychus urticae, respectively. From the 
results, these compounds would be better used in drug development to combat bacterial 
infections and would be better used as antifeedant and acaricidal activities in the future 
as well. 

N

S
NH2

26, 52-62%

R
Ph-NCS

EtOH N

S
NR

S
N

Ph

O

O
N

S
NH N

H

S

25, 58-70%

R
Ph

MeCOCl

CO2H

CO2H

 

          a       b        c       d       e         f         g        h         i
R = 6Cl, 6NO2, 6Br, 6Me, 4Me, 6OEt, 6OMe, 6F, 6CO2H, 

Figure 4. N-bis(trifluoromethyl)alkyl-UBTs 23a–c from 2ABT and fluoroalkyl isocyanates.

A series of 6-trifluoromethoxy-TBTs 24a–f from 6-trifluoromethoxy-2ABT (Riluzole),
a neuroprotective drug in many animal models of brain disease have been synthesized,
Figure 5 [130]. The biological activity of synthetized TBTs was preliminarily tested by
means of an in vitro protocol of ischemia/reperfusion injury. The results demonstrated that
24a–d significantly attenuated neuronal injury. Selected for the testing of their antioxidant
properties, compounds 24a–d were shown to be endowed with a direct reactive oxygen
species (ROS) scavenging activity. Compounds 24a and 24b were also evaluated for their
activity on voltage-dependent Na+ and K+ currents in neurons from rat piriform cortex. At
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50 µM, compound 24b inhibited the transient Na+ current to a much smaller extent than
Riluzole, whereas 24d was almost completely ineffective.
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Figure 5. 6-trifluoromethoxy-TBTs 24a–f derived from Riluzole.

Some 4/6-substituted-phenyl-TBTs 25 were synthesized by the reaction of substituted-
2ABT with the corresponding substituted phenyl-isothiocyanate in absolute ethanol,
Scheme 10 [131]. Compounds 25 were condensed with malonic acid in acetyl chloride to
obtain 1-(4/6-substituted-BT-2-yl)-3-phenyl-2-thiobarbituric acid derivatives 26. All the
synthesized compounds were characterized by elemental analysis, infrared (IR), hydrogen
nuclear magnetic resonance 1H NMR, and Mass spectral studies. Compounds 25 and 26
were screened for their entomological and antibacterial activities. All the synthesized
compounds were screened for antibacterial activity at a concentration of 200 µg/mL and
100 µg/mL in DMF using streptomycin and ceftazidime as standard against Gram positive
and negative bacteria. Among the synthesized compounds, 26a, 26f, and 26g compounds
were found to possess broad-spectrum activities. However, the activities were much less
than those of standard antibacterial agents used. These compounds also showed potent
antiulcer, anti-inflammatory, and antitumor activities as well as antifeedant activity and
acaricidal activity against Spodoptera litura and Tetranychus urticae, respectively. From the
results, these compounds would be better used in drug development to combat bacterial
infections and would be better used as antifeedant and acaricidal activities in the future
as well.
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Scheme 10. Synthesis of 4/6-substituted-phenylTBTs 25 to afford the thiobarbituric acid derivatives 26.

Firooznia et al., synthesized three 4,7-disubstituted-piperidine UBTs 27a–c from the re-
action of the 4,7-disubstituted-2ABT with para nitro phenyl chloroformate, followed by the
displacement of p-nitro-phenol with an appropriately substituted amine, Scheme 11 [132].
The synthesized compounds were evaluated for their selectivity against the A2A and A1
receptors. Antagonists of the A2B receptor were used as potential therapeutic agents in mod-
els of diabetes, asthma, chronic obstructive pulmonary disease (COPD), and pulmonary
fibrosis. Compound 27c displayed excellent A2B potency, as well as good A2A and A1 selec-
tivity, IC50 (A2B cAMP) = 20 nm, Ki (A1 binding) = 690 nm, and Ki (A2A binding) = 530 nm.
A SAR study revealed that compounds with urea derivatives, enhance A2B potency.

The 6-substituted-benzyl UBTs 28a–g were synthetized from the reaction of 6-substituted-
2ABT with the in situ generated substituted benzyl-isocyanates obtained from the benzy-
lamine and triphosgene, Scheme 12 [133]. To improve yields, n-butyl-lithium was used
to activate 2ABT (24–70%). In the case of 28g (R = CN), the 6-tetrazole p-methoxybenzyl-
UBT 29g was obtained in 91% using sodium azide NaN3 in microwave radiation. All
compounds were evaluated for their inhibition of glycogen synthease kinase-3 (GSK-3)
activity. Several compounds were identified to reduce in vitro GSK-3β activity beneath
50% at a concentration of 10 µM. The SAR of the library justified the synthesis of the UBT
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29g (IC50 = 140 nM), which displayed more than twofold enhanced activity compared with
the reference compound 1-(4-methoxybenzyl)-3-(5-nitrothiazol-2-yl)urea (AR-A014418:
IC50 = 330 nM).
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Scheme 12. The 6-substituted benzyl-UBTs 28a–g from 6-substituted-2ABT and the in situ generated 
benzyl-isocyanates. 

A series of sixteen differentially substituted-(phenyl)-methyl-phosphonate-TBTs 
30a–p were synthetized from substituted 2ABTs and O,O′-di-alkyl-isothiocyanate-(phe-
nyl)methyl-phosphonates in heating dry CH3CN at 90 °C in 30 min under microwave ir-
radiation with a power input of 120 W, Scheme 13 [134]. The products were obtained in 
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benzyl-isocyanates.

A series of sixteen differentially substituted-(phenyl)-methyl-phosphonate-TBTs 30a–p
were synthetized from substituted 2ABTs and O,O′-di-alkyl-isothiocyanate-(phenyl)methyl-
phosphonates in heating dry CH3CN at 90 ◦C in 30 min under microwave irradiation with
a power input of 120 W, Scheme 13 [134]. The products were obtained in good to excellent
yields (40–81%), shorter reaction times, milder reaction conditions, and simple purification
procedures. The compounds possessed broad-spectrum insecticidal and antiviral activities
against Tobacco Mosaic Virus (TMV) in vivo. Two compounds, 30a (R1 = 6F, R = nPr) and 31l
(R1 = OMe; R = nBu), had remarkably high in vitro insecticidal activities against Plutella xy-
lostella compared with the control insecticide Avermectin. Furthermore, all were associated
with moderate to good anti-TMV activities.
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Caputo et al. synthesized two sets of 6-substituted Aryl-UBTs 31a–e and 32a–e by
reacting substituted 2ABTs with aryl-isocyanates in dry dichloromethane at room tempera-
ture (31a–e, 60–85% and 32a–e, 81–93%) and evaluated in an in vitro primary anticancer
assay against a panel of 60 human tumor cell lines, Scheme 14 [135]. Compounds 32a and
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32c showed good anticancer activities, more marked for compound 32c. All compounds in
a preliminary in vitro assay as inhibitors of the ubiquitin-activating enzyme (E1) lacked
significant activity. The UBT scaffold 32c showed considerable growth inhibitory activities
against different human tumor cell lines such as leukemia (log GI50 value−5.93), non-small
cell lung (log GI50 value −6.0), colon cancer (log GI50 value −5.89), CNS cancer (log GI50
value−5.73), melanoma (log GI50 value−5.89), ovarian cancer (log GI50 value−5.74), renal
cancer (log GI50 value −5.90), prostate cancer (log GI50 value −5.72), and breast cancer (log
GI50 value −6.0) as compared with the reference drug 5-fluorouracil NSC 19893.
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Scheme 14. The 6-substituted Aryl-UBTs 31a–e and 32a–e from 6-substituted 2ABTs with
aryl-isocyanates.

The appropriate 4/6-arylsubstituted-2ABT and the respective aryl-isothiocyanate was
reacted in a mixture of DMAP (5 mol %) in DMF to furnish 6/4-arylsubstituted-TBT deriva-
tives 33a–l in 83–91% yield, Figure 6 [115]. All compounds were evaluated for cytotoxic
activity against two human monocytic cell lines (U 937, THP-1) and a mouse melanoma cell
line (B16-F10). Based on their IC50 values, almost all compounds had significant antipro-
liferative activity on U 937 and B16-F10 cells, with 33b, 33e, 33f, 33k, 33c, and 33h being
the most actives. Compound 33e demonstrated to have the best antiproliferative activity
against the U-937 cell line. The IC50 values of compound 33e were higher (16.23± 0.81 µM),
(47.73 ± 2.39 µM), and (34.58 ± 1.73 µM) as compared to standard compound etoposide
IC50 values (17.94 ± 0.89 µM), (18.69 ± 0.94 µM), and (2.16 ± 0.11 µM)) against U-937,
B16-F10 and THP-1 cell lines, respectively.
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Figure 6. The 4/6-arylsubstituted-TBTs from 4/6-substituted 2ABT and aryl isothiocyanates.

Azam and coworkers synthetized aryl-UBT derivatives 34a–s from the reaction of
2ABT in acetonitrile as dissolvent with the dropwise addition of the appropriate aryl-
isocyanate stirred at room temperature until the completion of the reaction (1–4 h),
Scheme 15 [136]. All compounds were tested as anti-Parkinsonian agents with an im-
proved pharmacological profile in haloperidol-induced catalepsy and oxidative stress in
mice. All compounds were active in alleviating haloperidol-induced catalepsyin mice.
Furfuryl 34i and 2-methoxy 34c emerged as potent agents. With exception of 2-chloro,
5-trifluoromethyl-substituted analog 34q, and halogen substituted derivatives 34n–p exhib-
ited moderate antiparkinsonian activity. Molecular docking studies of these compounds
with adenosine A2A receptor exhibited very good binding interactions and warrants further
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studies to confirm their binding with human A2A receptor for the design and development
of better therapy for Parkinson′s disease PD.
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Scheme 15. Synthesis of aryl-UBTs from 2ABT and aryl-isocyanates.

The 6-methoxy-m-methoxyUBTs 35a, 6-methoxy-m-methoxyTBTs 35b, and their hy-
drolyzed compounds 36a,b were synthesized via amide coupling starting from the reaction
of 6-methoxy-2ABT with m-methoxy-benzo-isocyanate or m-methoxy-benzo-isothiocyanate
in pyridine at 100 ◦C for 20 h, respectively, Scheme 16 [137]. The ether cleavage of
the methoxy groups was carried out with boron tribromide (BBr3) in methylene chlo-
ride (CH2Cl2) at −278 ◦C to room temperature to yield compounds 36a and 36b. The
three-unit bridge resulted in the inactive urea 36a against human 17β-hydroxysteroid
dehydrogenase 1 (17β-HSD1), but the more lipophilic thiourea 36b showed a moderate
inhibitory activity (70b: 62% inhibition at 1 µM).
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Patents from 2007 to 2012 reported the reaction of 6-bromo-5-iodo-2ABT or 7-bromo,
5-iodo-2ABT with ethyl-isocyanate in 1,4-dioxane at 80◦C for 12 h under N2 to afford
the corresponding 1-(5.6- or 1-(5,7-dihalogen)ethyl-UBTs, Figure 7 [138–142]. In addition,
one hundred and thirty-eight 1-(4-fluoro-5-bromo-7-substituted-ethylUBTs were obtained
from the reaction of the corresponding dihalogenide-2ABT with methyl(chloro)thioformate,
phenyl-chloroformate, or p-nitrophenyl chloroformate in the presence of a base as pyridine
or TEA in a solvent as dichloromethane, chloroform, carbon tetrachloride or mixtures,
Figure 7. The resultant 1-(5,6- or 1-(5,7-dihalogenide-BT-2-yl)-3-ethylurea in DMF/H2O
was treated with pyridine-3-boronic acid and potassium phosphate (K3PO4) to generate
the corresponding 6-fluoro-5-substituted-ethylUBT 37, 5,7-disubstituted-ethylUBTs com-
pounds 38–41, and 4-fluoro-5,7-disubstituted-ethylUBT as 42 in approximately 65% yield.

Ethyl-UBTs 37–42 were tested against Gram-positive and Gram-negative pathogens.
The minimum inhibitory concentration (MIC90) values for 37 were found to be:
S. aureus = 0.06 µg/mL, S. pneumoniae = 0.015 µg/mL, S. epidermidis = 0.03 µg/mL, and
E. faecalis = 0.25 µg/mL.

Compound 38 exhibited important inhibitory activity against S. aureus GyrB (IC50
0.014 µg/mL) and strong antibacterial activity against VR E. faecalis, VR E. faecium, FQR
S. pneumoniae, S. aureus, and M. catarrhalis with a MIC value of less than 25 µg/mL. The solu-
bility and antimicrobial profiles of 39 were improved at physiological pH from 6.25 µg/mL
to 50 µg/mL by bonding a carboxylic acid on pyridine group (39), while maintaining
antibacterial activity against target pathogens (S. aureus GyrB IC50 0.001 µg/mL, E. faecalis
MIC 0.12 µg/mL). In addition, benzothiazole ethyl ureas 40 and 41 were synthesized by
changing the carboxylate in compound 38 by a cyclic amine [78,79]. Both compounds in-
hibited the turnover of ATP by both the DNA gyrase and topoisomerase IV enzymes, with
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mean IC50s ranging from 0.0033 µg/mL to 0.046 µg/mL. These compounds were also tested
against six major Gram-positive pathogens, exhibiting potent inhibition with MIC90 values
from 0.015 µg/mL for S. pneumoniae to 0.25 µg/mL for S. aureus, compared with the MIC90
values of 2 µg/mL and 4 µg/mL, respectively, for linezolid and 16 µg/mL and 16 µg/mL,
respectively, for levofloxacin. The tested compounds were also potent against S. aureus
drug-resistant strains, including VRE, MRSA, VRSA, linezolid-non-susceptible S. aureus,
daptomycin-non-susceptible, methicillin-resistant S. epidermidis, penicillin resistant S. pneu-
moniae, and FQ-S. pneumoniae strains. Moreover, no cross-resistance was observed caused by
the mechanisms responsible for conferring resistance to these antibiotics. Both compounds
also showed a promising pharmacokinetic profile in rats and mice [78].
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derived from the corresponding 2ABT and ethyl-isocyanate.

Two additional patents described the synthesis of 4-fluoro-5,7-disubstitutedbenzothiazole
ureas as compound 42 [75]. All compounds were tested for their DNA supercoiling assays
for GyrB inhibition and a DNA relaxation assay for ParE inhibition. Under both assay condi-
tions, few compounds showed activity in the sub-micromolar range (IC50 values 30–550 nM)
and were found to be active in antibacterial assays against Gram-positive pathogens.

The same procedure was used to synthetize a series of 6-substituted-ethylUBTs 43,
44 and 6-substituted-R1ethylUBTs 45 as effective inhibitors against wild-type (wt) and
T315I mutant Bcr-Abl Kinases, Scheme 17 [143]. Through a structure-based drug design,
Nocodazole was modified, varying the C2 and C6 groups. It was found that the introduction
of polar groups at the terminal ethyl group enhanced physicochemical properties and
potency in cellular inhibition. Several compounds inhibited the kinase activity of both
wild-type Bcr-Abl and the T315I mutant with IC50 values (43a, IC50(wt) = 0.06 nM and
IC50(T315I) = 0.11 nM) and exhibited good antiproliferative effects on Ba/F3 cell lines
transformed with either wild-type or T315I mutant Bcr-Abl.
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Scheme 17. The 6- and 5-substituted ethyl UBTs and ethyl-substituted-UBTs.

By using ethyl isocyanate in 1,4-dioxane at 80 ◦C overnight, the 5-OBn and 7-bromo-2ABT
was transformed to the 5,7-disubstituted-ethylUBT 46 in 75% yield, subsequent pyridine-
2-yl group was coupled to the C-7 to afford compound 47 in 70% yield, Scheme 18 [144].
Compound 47 was Bn-deprotected (97%), converted to the triflate (68%), and a Miyaura
borylation reaction yielded 88% of the key borinic acid intermediate 48 for further derivati-
zation through a Suzuki cross-coupling of the corresponding 5-bromo pyrimidine with 49,
followed by saponification to yield 5,7-disubstituted-ethylUBTs 49a–d, 50a–h, and 51a–d,
Scheme 18. The synthetized compounds were tested as bacterial DNA gyrase and topoi-
somerase IV inhibitors. Antibacterial properties were demonstrated by activity against
DNA gyrase ATPase and potent activity against Staphylococcus aureus, Enterococcus faecalis,
Streptococcus pyogenes, and Haemophilus influenzae. Compounds 50a and 50b had IC50 values
for S. aureus topoisomerase IV (0.012 and 0.008 µg/mL, respectively) comparable to their
S. aureus DNA gyrase ATPase IC50 values. These compounds also showed specificity for
bacterial topoisomerases, with no inhibition of human topoisomerase II. The compounds
49a–h bearing a α-substituent to the carboxylic acid group, resulting in excellent solubility
and favorable pharmacokinetic properties.

Compounds 50a and 50b in Scheme 18 were evaluated for their biochemical, an-
tibacterial, and pharmacokinetic properties [145]. Both compounds inhibited the ATPase
activity of GyrB and ParE with IC50 of < 0.1 µg/mL. Prevention of DNA supercoiling by
DNA gyrase was observed. These compounds inhibited the growth of a range of bacte-
rial organisms, including staphylococci, streptococci, enterococci, Clostridium difficile, and
selected Gram-negative respiratory pathogens. MIC90s against clinical isolates ranged
from 0.015 µg/mL for Streptococcus pneumoniae to 0.25 µg/mL for Staphylococcus aureus. No
cross-resistance with common drug-resistance phenotypes was observed. In addition, no
synergistic or antagonistic interactions between compound 50a or 50b and other antibiotics,
as the topoisomerase inhibitors novobiocin and levofloxacin, were detected in checkerboard
experiments. The frequencies of spontaneous resistance for S. aureus were < 2.3 × 10−10

with compound 50a and < 5.8 × 10−11 with compound 50b at concentrations to 8 folds the
MICs. These values indicate a multi-targeting mechanism of action. The pharmacokinetic
properties of both compounds were profiled in rats. Following intravenous administration,
compound 50b showed an approximately 3-fold improvement over compound 50a in terms
of both the clearance and the area under the concentration–time curve. The measured oral
bioavailability of compound 50b was 47.7%.

Palmer et al. used the same procedure to obtain a series of 5-substituted alcohol-
containing ethyl UBTs 52a–s, 53a–g, and 54a–k, which were identified to have superior
antibacterial activity and drug-like properties, Figure 8 [146]. The 5-substituted alcohol-
containing ethyl-UBTs 52a–s were prepared to improve the pharmacokinetic profile. The
SAR study of these series revealed that these compounds had potent antibacterial activ-
ity against a primary panel of pathogenic bacteria compared to the carboxylic acid 50c,
Scheme 18. Compounds 53a–c displayed potent antibacterial activity against S. aureus 29213
(MIC 0.03–0.06 µg/mL), S. pyogenes (MIC 0.06–0.12 µg/mL), and H. influenza 49247a (MIC
0.25–1 µg/mL). Compounds 52a–c also displayed significant inhibitory activity against
purified S. aureus T173 GyrB (IC50 0.25 µg/mL all cases) and S. pyogenes ParE (IC50 to
0.5–1 µg/mL). Compounds 52a, d–m were investigated for the scope and limitations of the
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alcohol-containing substituents. In general, compounds showed potency in the nanomolar
range against DNA gyrase ATPase in a malachite green assay. The introduction of bulky
groups at the tertiary, pseudo benzylic position of the pyrimidine ring resulted in a re-
markable loss of activity, particularly against the ParE mutant strain of S. pyogenes (52d
diethyl, IC50 8 µg/mL; 52f cyclohexyl ring system, IC50 > 16 µg/mL). However, increasing
on-target ATPase inhibition was observed when a heteroatom was introduced into the
alicyclic 6-membered ring (52g–j), IC50s S. aureus GryB 0.25–8; S. pyogenes ParE 1–8 µg/mL),
suggesting a conformational role, possibly a flattening of the ring. Reduced antibacte-
rial activity against S. aureus 29213 (MIC > 16 µg/mL), S. pyogenes 51339 (MIC 8 µg/mL;
IC50 > 16 µg/mL), and H. influenza 49247a (MIC 16 µg/mL) was observed when the ring
was contracted to an azetidine (52k) and leaving the free NH group more exposed. How-
ever, strong potency (MIC 0.06–0.5 µg/mL) across the entire tested bacterial stains (with
IC50s values of 0.5 and 2 µg/mL against S. aureus GryB and S. pyogenes ParE, respectively)
was observed in the case of physically constrained oxetane analogue 53m.
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The secondary alcohols 52n–q, s and the diol-containing molecule 52r were explored
to enhance the solubility. The extension of R1 to a longer chain alkyl and small cycloalkyl
groups 52n, 52o, 52q exhibited no effect on the potency of the series toward the enzyme.
However, the large t-butyl moiety 52p showed a substantial drop in activity against
Haemophilus influenza. Moreover, a remarkable drop in activity against S. aureus in the
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presence of serum was observed. The morpholine group in 52s and diol in 52r, designed to
enhance hydrophilicity, was well tolerated. Further, the extension of the diol-containing
series resulted in compounds 53b–f. In this series, the introduction of small groups did not
hamper antibacterial activity significantly. However, diol 53d showed a relative intolerance
of the large rings. Compounds 54a–f enhanced hydrophilicity and reduced protein binding
resulted in potent Gram-positive antibacterial activity. Further, introduction of alcohol-
containing moieties at the C5 position of the BT core and modifications at the C7 position
yielded compounds 54a–k. These compounds with enhanced hydrophilicity and reduced
protein binding resulted in potent Gram-positive antibacterial activity. Compounds 54f–h
containing 5-membered rings substituted with ether or alcohol containing moieties, en-
hanced the unbound fraction from 9% to 19%. However, this enhancement was partially
compensated for by a moderate increase in MIC. The substitution of azetidine moieties in
compounds 54i–k enhanced this property further.
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In a typical reaction, ortho-, meta-, or para-tolyl-isocyanates were treated with 2ABT in
the presence of 1,4-dioxane at room temperature to synthetize three tolyl-UBTs 55a–c to
evaluate their inhibitory effects on α-chymotrypsin enzyme, Figure 9 [147]. It was found
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the para-substituted N-(1,3-benzothiazol-2-yl)-N′-(4-methylphenyl) urea 55c derivative sub-
stantially inhibited α-chymotrypsin activity (IC50 = 20.6 ± 0.06 µM). Due to the presences
of the bulky 1,3-benzothiazol-2-yl group at one nitrogen of the urea bridge, the activity is
enhanced by the reduction of the steric hindrance in the order ortho > metha > para.
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to yield a series of 6-(2,3-disubstituted pyridine-5-yl)-ethyl-substituted-UBTs 58a–l in 33–
51%. The antiproliferative activities of the synthesized compounds in vitro were evaluated 
against HCT116, MCF-7 U87MG, and A549 cell lines. The compounds with potent anti-
proliferative activity were tested for their acute oral toxicity and inhibitory activity against 
PI3Ks and mTORC1. The results indicate that the compounds with R1 = 2-dialkylami-
noethyl moiety 58b, 58f, 58k, and 58l retain the antiproliferative activity and inhibitory 

Figure 9. Tolyl UBTs 56 from the respective tolyl-isocyanate.

The 6-bromo-2ABT was reacted successively with CDI and substituted ethylamine to
yield 6-bromo ethyl-UBTs 56 in 74–90%, Scheme 19 [148]. Intermediates 56 were reacted
successively with bis(pinacolato)diboron and intermediate 57, catalyzed by PdCl2(dppf), to
yield a series of 6-(2,3-disubstituted pyridine-5-yl)-ethyl-substituted-UBTs 58a–l in 33–51%.
The antiproliferative activities of the synthesized compounds in vitro were evaluated
against HCT116, MCF-7 U87MG, and A549 cell lines. The compounds with potent antiprolif-
erative activity were tested for their acute oral toxicity and inhibitory activity against PI3Ks
and mTORC1. The results indicate that the compounds with R1 = 2-dialkylaminoethyl moi-
ety 58b, 58f, 58k, and 58l retain the antiproliferative activity and inhibitory activity against
PI3K and mTOR. In addition, their acute oral toxicity reduced dramatically. Moreover,
compound 58f can effectively inhibit tumor growth in a mouse S180 homograft model.
These findings suggest that derivatives 58f, 58k, and 58l can serve as potent PI3K inhibitors
and anticancer agents with low toxicity.
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Figure 10. The 6-(2-Ome, 3-substituted Pyridine 2-morpholinethylUBTs for comparative activities. 

The 6-sulfonamide-2ABT was reacted with one equivalent of carbon disulfide and 
one or two equivalents of dimethyl sulfate in the presence of one equivalent or two equiv-
alents of sodium hydroxide to afford compounds 60 in 54% and 62 in 67%, Scheme 20. 
Furthermore, compound 60 was reacted with ethylenediamine or piperazine in dioxane 
at room temperature to give the bis-TBTs 61a or 61b, in 21 and 20.7%, respectively. Under 
the same reaction conditions, compound 62 produced the bis-Methyl-iso-TBTs 63a or 63b 
in 14 and 17%, respectively [149]. All compounds were investigated as inhibitors of the 
four isoforms of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1), the cytosolic CA 
I and II, and the tumor-associated isozymes CA IX and XII. Docking studies showed fa-
vorable interactions between the scaffolds of these new inhibitors and the active sites of 
the investigated CA isoforms. Compounds 61a,b and 63a,b acted as highly potent inhibi-
tors of the tumor-associated hCA IX and hCA XII with KIs in the nanomolar range (2.1–
2.6 and 4.3–4.8 nM), compared to the standard drugs AAZ (25 and 5.8 nM) and EZA (34 
and 22 nM). The cytosolic isozyme hCA II was also inhibited with KIs ranging from 3.5 to 
4.7 nM, compared with the standard drugs (12 and 8 nM). On the other hand, from mo-
lecular docking studies, compounds 61a,b and 63a,b were found as potent inhibitors 
against the slow cytosolic isoform hCA I with KIs in the range of 12.0–37.4 nM, compared 
to the standard drugs (250 and 25 nM). 

Scheme 19. The 6-bromo ethyl-substituted-UBTs 56 from 6-bromo-2ABT and CDI then substituted
ethylamine to be N-aryl-sulfonated.

Using the same procedure, compounds 59m–q were synthetized in a 40–45% yield
to compare the activities with different substituents at the 3-position of pyridine ring,
Figure 10. In the case of pyridine ring 59m, the activity dramatically dropped.
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The 6-sulfonamide-2ABT was reacted with one equivalent of carbon disulfide and
one or two equivalents of dimethyl sulfate in the presence of one equivalent or two equiv-
alents of sodium hydroxide to afford compounds 60 in 54% and 62 in 67%, Scheme 20.
Furthermore, compound 60 was reacted with ethylenediamine or piperazine in dioxane
at room temperature to give the bis-TBTs 61a or 61b, in 21 and 20.7%, respectively. Under
the same reaction conditions, compound 62 produced the bis-Methyl-iso-TBTs 63a or 63b
in 14 and 17%, respectively [149]. All compounds were investigated as inhibitors of the
four isoforms of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1), the cytosolic
CA I and II, and the tumor-associated isozymes CA IX and XII. Docking studies showed
favorable interactions between the scaffolds of these new inhibitors and the active sites
of the investigated CA isoforms. Compounds 61a,b and 63a,b acted as highly potent in-
hibitors of the tumor-associated hCA IX and hCA XII with KIs in the nanomolar range
(2.1–2.6 and 4.3–4.8 nM), compared to the standard drugs AAZ (25 and 5.8 nM) and EZA
(34 and 22 nM). The cytosolic isozyme hCA II was also inhibited with KIs ranging from
3.5 to 4.7 nM, compared with the standard drugs (12 and 8 nM). On the other hand, from
molecular docking studies, compounds 61a,b and 63a,b were found as potent inhibitors
against the slow cytosolic isoform hCA I with KIs in the range of 12.0–37.4 nM, compared
to the standard drugs (250 and 25 nM).
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Scheme 20. Synthesis of 6-sulfonamide-BisTBTs 61a,b and 6-sulfonamide-bis-MeisoTBTs 63a,b
6-sulfonamide-2ABT and CS2/NaOH then dimethyl-sulfate.

A series of seventeen different picoline-amide based UBT derivatives 64a, 64b, 65, and
66a–n, were synthesized as shown in Scheme 21 [150]. The treatment of 2ABT with the
appropriate aliphatic isocyanate in dioxane afforded compounds 64a and 64b in approxi-
mately 87% yield, while the thiourea derivative 65 was obtained in only a 10% yield from
the reaction of 2ABT with ethyl-iso-thiocyanate in pyridine. On the other hand, the target
compounds 66a–n were prepared via a two-step one-pot reaction. The 2ABT was first
converted into its isocyanate intermediate by the treatment of CDI in DMF and followed by
the reaction with suitable aliphatic amine. All compounds were tested for their inhibitory
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activities against the wild-type ABL at 10 µM and showed strong enzymatic inhibition,
93.3–100%. Their IC50 values were found to be 18.2–285 nM. Compounds 64a, 65, 66a, 66f,
66g, 66i, 66l, and 66n were tested over the mutant type ABLT315I and displayed promising
potency with IC50 values of 39.9–511 nM.
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A series of substituted p-benzene-sulfonamide-TBTs 70a–c were synthesized from 
substituted 2ABTs and p-isothiocyanate-benzene-sulfonamide as starting materials, 
Scheme 24 [153]. The structures of the compounds were established from elemental anal-
yses, IR, 1H-NMR, 13C-NMR, and mass spectral data analysis. All compounds were eval-
uated for their in vitro anticancer activity against various cancer cell lines. Compound 70a 
exhibited good activity higher than or comparable to the reference drugs, 2′7′dichloroflu-
orescein (DCF) and Doxorubicin, except the breast cancer line. As a trial to suggest the 
mechanism of action of the active compounds, the molecular docking on the active site of 
the mitogen kinase enzyme (MK-2) was performed, and the results showed compound 

Scheme 21. Three ways to synthesize picolinamide based UBTs 64a, 64b, ethyl TBT 65, and UBTs 66a–n.

The 3,3,3-trifluoroethyl-isocyanate was used for the synthesis of a series of substituted
tri-fluoroethyl-UBTs 67a–d in 70–95% yield, Scheme 22 [151]. These compounds were tested
at a single high dose (10−5 M). The moderate anticancer activity against some types of
cancer on the individual human cell lines for leukemia, non-small cell lung cancer and renal
cancer were shown. All compounds showed anticancer activity on individual cell lines.
Activity was notable on individual cell lines against leukemia, non-small cell lung cancer,
and renal cancer. The COMPARE algorithm analysis revealed that possible mechanisms of
action of these ureas include alkylating agent 67c, DNA antimetabolites 67b–d, RNA/DNA
antimetabolites 67d, topoisomerase II inhibitor 67b, and antimitotic agent 67d.
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isocyanate.

In 2016, a three-component reaction of o-amino-thiophenol disulfide, copper cyanide,
and aryl cyanates were used for the synthesis of N,N-dimethyl-UBT 68 and phenyl-UBTs 69,
Scheme 23 [152]. This transformation is based on an oxidative copper-mediated S-cyanation
as a key step, then a cyclization sequence enabling a rapid and efficient synthesis of 2ABT,
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which reacts with the corresponding electrophile to produce thiourea 68 in 37% or urea 69
in 55%.
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A series of substituted p-benzene-sulfonamide-TBTs 70a–c were synthesized from 
substituted 2ABTs and p-isothiocyanate-benzene-sulfonamide as starting materials, 
Scheme 24 [153]. The structures of the compounds were established from elemental anal-
yses, IR, 1H-NMR, 13C-NMR, and mass spectral data analysis. All compounds were eval-
uated for their in vitro anticancer activity against various cancer cell lines. Compound 70a 
exhibited good activity higher than or comparable to the reference drugs, 2′7′dichloroflu-
orescein (DCF) and Doxorubicin, except the breast cancer line. As a trial to suggest the 
mechanism of action of the active compounds, the molecular docking on the active site of 
the mitogen kinase enzyme (MK-2) was performed, and the results showed compound 

Scheme 23. UBTs 68 and 69 from o-amino-thiophenol disulfide, copper cyanide, and aryl cyanates.

A series of substituted p-benzene-sulfonamide-TBTs 70a–c were synthesized from substi-
tuted 2ABTs and p-isothiocyanate-benzene-sulfonamide as starting materials, Scheme 24 [153].
The structures of the compounds were established from elemental analyses, IR, 1H-NMR,
13C-NMR, and mass spectral data analysis. All compounds were evaluated for their in vitro
anticancer activity against various cancer cell lines. Compound 70a exhibited good activ-
ity higher than or comparable to the reference drugs, 2′7′dichlorofluorescein (DCF) and
Doxorubicin, except the breast cancer line. As a trial to suggest the mechanism of action
of the active compounds, the molecular docking on the active site of the mitogen kinase
enzyme (MK-2) was performed, and the results showed compound 70a may represent a
good candidate for further biological investigations as anticancer agents.

Molecules 2022, 27, x FOR PEER REVIEW 21 of 40 
 

 

70a may represent a good candidate for further biological investigations as anticancer 
agents. 

N

S
NH2R

NCS

+
N

S
N
H

N
H

S
SO2NH2

SO2NH2

DMF, TEA
a. R = 5,6Me2 (84%)
b. R = 6EtO     (78%)
c. R = 6NO2     (65%)

R
Reflux, 24 h

70
 

Scheme 24. Substituted benzene-sulfonamide-TBTs 70a–c from substituted 2ABTs and 4-isothiocy-
anatobenzenesulfonamide. 

A series of 6-substituted-alkyl(aryl)-UBTs and 6-substituted-alkyl(aryl)-TBTs 71a–v 
were synthesized from 6-substituted-2ABTs and alkyl/cycloalkyl/aryl-isocyanates or 
isothiocyanates in refluxing toluene, Scheme 25 [154]. The reaction rates and yields de-
pended on substituents introduced on the BT ring and the isocyanates and isothiocya-
nates. The reaction rate was greater with an electron-donating group on the BT ring such 
as ethyl C2H5 or methyl CH3. The rate was very low with an electron-withdrawing group, 
such as nitrogen dioxide NO2. Isocyanates were more reactive than isothiocyanates due 
to the greater electronegativity of the oxygen atom compared to that of the sulfur atom. 
Compounds were tested as myorelaxants and inhibitors of insulin secretion. Compounds 
71u and 71v showed high myorelaxant activity. The 6-substituted-alkyl-UBTs 71f, 71g, 
and 71t–v containing strong electron-withdrawing groups as NO2, CN at the 6-position, 
and an alkyl group linked to the urea or the thiourea function were found to be the most 
potent compounds. Some compounds were tested on rat pancreatic islets provoked a 
marked inhibition of insulin secretion, among which 71a exhibited a clear tissue selectivity 
for pancreatic β-cells. 

N

S
NH N

H

X
R R1

N

S
NH2

R
R1NCX+ Toluene

71a-v, (25-90%)  

71        a           b      c              d              e         f          g                h                       i              j         k
R         Br       Br    Br            Br           Br     NO2    NO2           NO2                   H            H      Me
X         O        O      O              O            O       O         O               O                      O            O        S
R1   4CNPh   iPr    tBu    2Cl-4CF3Ph    Bn     iPr       tBu     2Cl-4CF3Ph     2Cl-4CF3Ph    iPr     cHex

71    l     m          n          o         p       q              r              s         t        u          v
R    Me  Me        Et        Et       Et      Et            Et            Et      CN    CN      NO2 
X    O     S          S          O       O      O             O             S        O       O         O
R1  iPr   Bn   3NO2Ph    iPr     tBu     Bn   2Cl-4CF3Ph    Bn    Pent    tBu      Pent  

Scheme 25. UBTs and TBTs 71a–v from 6-substituted 2ABTs and alkyl/cycloalkyl/aryl isocyanates 
or isothiocyanates. 

A series of UBTs 72a–m tethered with a pyridyl-amide moiety by ether linkage at the 
6-position of BT was synthesized as potent anticancer sorafenib analogs, Scheme 26 [155]. 
The synthesis was achieved by treating the 6-substituted 2ABT with the corresponding 
aryl isocyanate in either anhydrous DMF or acetonitrile under argon atmosphere for com-
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substituted 2ABT was converted into the isocyanate by treatment with CDI in DMF, fol-
lowed by the reaction with the proper aromatic amine. Twelve of these derivatives were 

Scheme 24. Substituted benzene-sulfonamide-TBTs 70a–c from substituted 2ABTs and
4-isothiocyanatobenzenesulfonamide.

A series of 6-substituted-alkyl(aryl)-UBTs and 6-substituted-alkyl(aryl)-TBTs 71a–v
were synthesized from 6-substituted-2ABTs and alkyl/cycloalkyl/aryl-isocyanates or isoth-
iocyanates in refluxing toluene, Scheme 25 [154]. The reaction rates and yields depended
on substituents introduced on the BT ring and the isocyanates and isothiocyanates. The
reaction rate was greater with an electron-donating group on the BT ring such as ethyl
C2H5 or methyl CH3. The rate was very low with an electron-withdrawing group, such
as nitrogen dioxide NO2. Isocyanates were more reactive than isothiocyanates due to the
greater electronegativity of the oxygen atom compared to that of the sulfur atom. Com-
pounds were tested as myorelaxants and inhibitors of insulin secretion. Compounds 71u
and 71v showed high myorelaxant activity. The 6-substituted-alkyl-UBTs 71f, 71g, and
71t–v containing strong electron-withdrawing groups as NO2, CN at the 6-position, and an
alkyl group linked to the urea or the thiourea function were found to be the most potent
compounds. Some compounds were tested on rat pancreatic islets provoked a marked
inhibition of insulin secretion, among which 71a exhibited a clear tissue selectivity for
pancreatic β-cells.

A series of UBTs 72a–m tethered with a pyridyl-amide moiety by ether linkage at the
6-position of BT was synthesized as potent anticancer sorafenib analogs, Scheme 26 [155].
The synthesis was achieved by treating the 6-substituted 2ABT with the corresponding aryl
isocyanate in either anhydrous DMF or acetonitrile under argon atmosphere for compounds
72a–j. Compounds 72k–m were prepared via a two-step one-pot reaction. The 6-substituted
2ABT was converted into the isocyanate by treatment with CDI in DMF, followed by the
reaction with the proper aromatic amine. Twelve of these derivatives were analyzed
for its antiproliferative activity over a panel of 60 human cancer cell lines at a single-
dose concentration of 10 µM. Compounds 72a–d were more potent than the sorafenib
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used in the treatment of renal cell carcinoma, and their GI50 values were determined.
Compound 72b showed good inhibitory activities against ACHN (renal cancer cells lines)
and A-498 (human kidney carcinoma cell line) with GI50 values of 0.542µM and 1.02µM,
respectively. This compound also showed efficacy against UO-31 and RXF 393 cell lines.
Compounds 72a and 72d exhibited excellent antiproliferative activities with low IG50
values of 1.85 and 2.10µM against RCC and ACHN cell lines, respectively. The SAR study
revealed that sorafenib analogues possess anti proliferative activity due to the presence
of both urea spacer and phenyl di-substitution. Compound 72b demonstrated the highest
CLogP value was the most lipophilic and potent derivative in the low µM range.
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Scheme 26. UBTs 72a–m with a pyridyl-amide moiety by ether linkage at the 6-position of BT.

To the in situ generated 2-isocyanateBT from substituted 2ABT and CDI in DMF at
room temperature, the appropriate aniline was added, and the reaction mixture was heated
at 100 ◦C for 3 h to generate the corresponding UBTs 73a and 73b, Scheme 27 [156]. The
in vitro anticancer evaluation of 73b showed substantial broad-spectrum antiproliferative
activity against 60 human cancer cell lines. It showed GI50 values of 51.4 and 19 nM against
leukemia K-562 and colon carcinoma KM12 cell lines, respectively. The kinase screening of
compound 73b revealed its nanomolar-level inhibitory activity of certain oncogenic kinases
implicated in both tumorigenesis and angiogenesis. Compound 73b displays IC50 values of
0.82, 3.81, and 53 nM toward Tie2, TrkA, and ABL-1(wild-type and T315I mutant) kinases,
respectively. Moreover, 73b is orally bioavailable with a favorable in vivo pharmacokinetic
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profile. Compound 73b may serve as a promising candidate for the further development of
potent anticancer chemotherapeutics.
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Molecular modeling study was performed to evaluate the recognition of a TBT 74, 
and its Cu(II), Co(II), and Ni(II) metal complexes were synthesized, Scheme 28 [157]. They 
were characterized by micro analysis, IR, 1H-NMR, EPR, UV-Visible spectral analyses, 
molar conductance, and thermal analysis studies. These studies revealed that the metal 

Scheme 27. UBTs 73a and 73b from an in situ generated 2-isocyanateBT and anilines.

Molecular modeling study was performed to evaluate the recognition of a TBT 74, and
its Cu(II), Co(II), and Ni(II) metal complexes were synthesized, Scheme 28 [157]. They were
characterized by micro analysis, IR, 1H-NMR, EPR, UV-Visible spectral analyses, molar
conductance, and thermal analysis studies. These studies revealed that the metal complexes
have distorted octahedral geometry. The recognition of target compounds at the 3MNG
binding pocket was evaluated by molecular modeling. The copper complex selectively
binds to the crucial amino acid residues in the active site of 3MNG. The in vitro antioxidant
activity of the ligand and its metal complexes was assayed by radical scavenging activity
(DPPH, H2O2 and NO) and ferric-reducing antioxidant power (FRAP) methods. The
ligand showed moderate antioxidant activity, whereas the metal complexes exhibited
better antioxidant activity than that of the ligand, with the copper complex being the most
potent antioxidant.
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Scheme 28. TBT 74 from ammonium thiocyanate in acid media.

Selected 6-subtituted-2ABTs were activated with one equivalent of CDI to obtain their
corresponding intermediates B in excellent yields (90–95%), which were treated with a
substituted aromatic amine to produce two series of 6-substituted-aryl-UBTs 75a–zt in
moderate-to-excellent yields (36–99%) along with novel insights into the structure and
activity relationships for the inhibition of amyloid-beta binding alcohol dehydrogenase
(ABAD), Scheme 29 [158]. Compounds 75zg and 75zi showed potent ABAD inhibition,
whereas compound 75zi exhibited comparable cytotoxicity with the Frentizole standard;
however, this was a one-fold higher cytotoxicity than the parent Riluzole standard. The
calculated and experimental physical–chemical properties of the most potent compounds
showed promising features for blood–brain barrier penetration, BBB.

On the other hand, compounds 75a–zb in Scheme 29 were evaluated for their inhibitory
activity on CK1 and their potential to cross the BBB was predicted using the central nervous
system–multiparameter optimization (CNS-MPO) model and eventually parallel artificial
membrane permeability assay (PAMPA) [159]. Several compounds were found to be
sub-micromolar CK1 inhibitors, identified using compound 75q as being the best hit
(IC50 = 0.16 mM/1.92 mM for CK1δ resp. CK1ε). However, compounds 75e and 75s were
shown to be low micromolar inhibitors of both CK1 and ABAD, and hence they present a
potential novel class of dual-acting anti-AD therapeutics. The results of PAMPA for 75e
and 75s suggest that the compounds should be able to penetrate into the brain.
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A series of 6-substituted aryl-(thio)urea-BTs and GBTs 76a–o was synthetized, 
Scheme 30 [160]. The synthesis started with the activation of the corresponding 6-substi-
tuted 2ABT using CDI in refluxing DMF or TCDI in refluxing acetonitrile (MeCN), Scheme 

Scheme 29. Synthesis of 6-substituted aryl-UBTs 75a–zb and Frentizole based aryl-UBTs 75zc–zt.

A series of 6-substituted aryl-(thio)urea-BTs and GBTs 76a–o was synthetized,
Scheme 30 [160]. The synthesis started with the activation of the corresponding 6-substituted
2ABT using CDI in refluxing DMF or TCDI in refluxing acetonitrile (MeCN), Scheme 30. In
the next step, the reactive imidazolyl intermediate C was treated with the corresponding
aniline in DMF at 60 ◦C to obtain the 6-substituted thio(urea) products 76. Guanidine
analogues were prepared by treating the corresponding thiourea with mercury oxide in
methanolic ammonia solution. Compound 76l was identified as the most promising hit
compound with good inhibitory activity (IC50 = 3.06 ± 0.40 µM) and an acceptable cytotox-
icity profile comparable to the Frentizole. The acceptable physical–chemical properties of
the guanidine compound 76l suggest its capability to permeate through the BBB, making
compound 76l a novel lead structure for further development and biological assessment.
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the 6-nitro substituted UBT, along with norfloxacin 78b and gatifloxacin 78l, showed 
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The 5-substituted-TBTs 77a–d were prepared in excellent yields (60–68%) by the
reaction of 5-substituted 2ABTs with carbon disulfide (CS2) and dimethyl sulfate followed
by ammonolysis of the intermediate D, Scheme 31 [161]. The cytotoxic activity was screened
for antitumor activity against human breast cancer cells (MCF-7), human cervix epithelial
carcinoma (HeLa), a human colon cancer cell line (HT-29), a human leukemia cell line
(K-562), and a mouse neuroblastoma cell line (Neuro-2a) using cisplatin as a reference
by MTT assay. The results provide experimental evidence that the compounds induce
apoptosis in cancer cell lines. According to flow cytometry results, the treatment of HT-29
cells with 77d produced a large population of apoptotic cell (79.45%), which was 1.2-fold
higher than that produced by cisplatin (65.28%) at the same concentration.

Fluoroquinolone-TBT derivatives 78a–n were synthetized from a mixture of 6-substituted
2ABT, fluoroquinolone, and CS2 in basic medium (NaHCO3/DMF) and refluxed for 10 h,
Scheme 32 [162]. All compounds were tested against bacterial strains. Some compounds
exhibited excellent antibacterial activity against Staphylococcus auerus, Escherichia coli, Bacil-
lus subtilis, and Pseudomonas aeruginosa bacterial strains. Among all compounds, the 6-nitro
substituted UBT, along with norfloxacin 78b and gatifloxacin 78l, showed MIC50 µg/mL
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when tested against S. auerus. Moreover, compounds 78d, 78f, and 78l showed supe-
rior MIC (15, 10, and 15 µg/mL, respectively) against B. subtilis. The results reveal that
the compounds have significant antibacterial potential and are suitable candidates for
further exploration.
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substituted phenyl-1H-benz[d]imidazole-1-carbothioamides 81a–h, Scheme 34 [164]. All 
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their antimalarial activity against P. falciparum. Antimicrobial activity screening results 
showed compounds 81b against P. aeruginosa, 81c against S. aureus and E. coli, 81d against 
E. coli and P. aeruginosa, and 81g against E. coli emerged as prospective antibacterial leads 
with excellent activity (MIC 12.5–62.5 μg/mL). Only one fungal strain, C. albicans, was sus-
ceptible towards synthesized compounds. On the other hand, compounds 81c and 81h 
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standard drugs chloroquine (IC50 0.020 μg/mL) and quinine (IC50 0.268 μg/mL). 

Scheme 32. The 6-substituted-luoroquinolone-TBT derivatives 78a–n from 6-substituted-2ABTs,
fluoroquinolones and CS2 in basic medium.

Fifteen differentially substituted-TBTs 79a–o were synthetized from the reaction of
commercially available 2ABT and the corresponding alkyl- or aryl-isothiocyanate in ace-
tonitrile, Scheme 33 [163]. Substituted-TBTs 79a–g were cyclized to 1,3-thiazolidin-4-ones
80a–g. Molecular structure of compounds 79d, 79m, 79o, and 80c was determined by
X-ray crystallography. All compounds were evaluated on their cytotoxicity against human
leukemia/lymphoma- and solid tumor-derived cell lines and of their antiviral activity
against HIV-1 and representatives of ssRNA and dsDNA viruses. Compound 80e showed
activity against the HIV-1 wild type and against variants carrying clinically relevant muta-
tions. A colorimetric enzyme immunoassay clarified its mode of action as a non-nucleoside
inhibitor of the reverse transcriptase.
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A mixture of 6-methoxy-2ABT, BMZ derivatives, CS2, basic medium (NaHCO3) and
DMF was refluxed for 10 h. to afford a series of N-(6-methoxybenzo[d]thia-zol-2-yl)-2-
substituted phenyl-1H-benz[d]imidazole-1-carbothioamides 81a–h, Scheme 34 [164]. All
compounds were characterized and screened for their in vitro antimicrobial activity against
selected bacterial and fungal strains. These compounds were also evaluated for their an-
timalarial activity against P. falciparum. Antimicrobial activity screening results showed
compounds 81b against P. aeruginosa, 81c against S. aureus and E. coli, 81d against E. coli
and P. aeruginosa, and 81g against E. coli emerged as prospective antibacterial leads with ex-
cellent activity (MIC 12.5–62.5 µg/mL). Only one fungal strain, C. albicans, was susceptible
towards synthesized compounds. On the other hand, compounds 81c and 81h exhibited
antimalarial activity with IC50 values of 0.18 and 0.11 µg/mL as compared to standard
drugs chloroquine (IC50 0.020 µg/mL) and quinine (IC50 0.268 µg/mL).

Molecules 2022, 27, x FOR PEER REVIEW 26 of 40 
 

 

N

S
NH

MeO
+

S

81a-h

N

S
NH2

MeO

N

H
N

Ar

N
N

Ar
CS2/NaHCO3

DMF, reflux, 10h

 

               a             b                   c                        d                 e         f               g                 h
Ar = mNH2Ph,  oClPh,  3,4,5(OMe)3Ph,  3,4(OMe)2Ph,  pClPh,  oFPh,  pNH2Ph,  3,4(NO2)2Ph 
Scheme 34. Synthesis of BMZ-TBTs 81 from 6OMe-2ABT, 2-aryl-BMZs, and CS2 in basic media. 

Compound AHS-211 was modified to prove the role of the urea linker to preserve 
the bioactive conformation and led to the development of 6-ydroxy-arylUBTs 84a–c as 
promising selective Dyrk1A inhibitors, Scheme 35 [165]. The compounds 84a–c were syn-
thetized through the reaction of the 6-methoxy-2ABT with phenyl-isocyanates in DMF at 
room temperature to generate the 6-methoxy-arylUBTs 82a–c, Scheme 35, or alternatively 
through the reaction of 6-methoxy-2ABT with phenyl-chloroformate in the presence of 
pyridine as a base and dioxane as solvent to give the carbamate as intermediate, which 
was further in situ reacted with amine derivatives in refluxing dioxane to give the 6-meth-
oxy-ethylsubstitutedUBTs 83a and 83b, Scheme 35. UBT 83b was hydrolyzed with aque-
ous KOH solution in THF at room temperature for 14 h, then the carboxylic acid of 82c 
was reacted with the corresponding amine and HBTU at room temperature overnight to 
generate 6-methoxy-arylUBTs 85a,b. Compounds 82a and 85a,b were ether dealkylated 
in the presence of Phosphorous tribromide (PBr3) in CH2Cl2 as a dissolvent at room tem-
perature for 20 h to generate compounds 84a–c. Although the extension with the 4-benzyl 
amide in compound 84b enhanced the potency toward Dyrk1A (IC50 = 0.063 μM) by more 
than 2-fold compared with 84a and AHS-211, it did not show any improvement in selec-
tivity over Dyrk1B. On the other hand, compound 83c was almost similar to AHS-211 in 
potency against Dyrk1A, yet it showed more than a 15-fold selectivity for Dyrk1A over 
Dyrk1B. Importantly, both 84b and 84c displayed superior selectivity for Dyrk1A over 
Dyrk2 when compared with AHS-211. Additionally, 84c displayed good selectivity for 
Dyrk1A over Clk1, one of the most common off targets of many reported Dyrk1A inhibi-
tors, with a selectivity factor > 7 (IC50 of 84c against Clk1 = 730 nM, [ATP] = 15 μM). The 
design concept of attaching a urea linker to the BT core, followed by a scaffold expansion, 
led to a new class of potent and selective Dyrk1A inhibitors. The best compound, 84c, did 
not inhibit the homologous Dyrk2 isoform and even showed a remarkable 15-fold selec-
tivity over the most closely related isoform Dyrk1B. In addition, the activity toward the 
atypical kinase haspin that was strongly inhibited by most of the previously reported 
Dyrk1A inhibitors was abolished with 84c. Together with the favorable balance of lipo-
philic/hydrophilic functions, further testing of 84c as a potential agent for the treatment 
of Dyrk1A-related neuropathological disorders could be envisaged. 

Scheme 34. Synthesis of BMZ-TBTs 81 from 6OMe-2ABT, 2-aryl-BMZs, and CS2 in basic media.

Compound AHS-211 was modified to prove the role of the urea linker to preserve
the bioactive conformation and led to the development of 6-ydroxy-arylUBTs 84a–c as
promising selective Dyrk1A inhibitors, Scheme 35 [165]. The compounds 84a–c were syn-
thetized through the reaction of the 6-methoxy-2ABT with phenyl-isocyanates in DMF at
room temperature to generate the 6-methoxy-arylUBTs 82a–c, Scheme 35, or alternatively
through the reaction of 6-methoxy-2ABT with phenyl-chloroformate in the presence of
pyridine as a base and dioxane as solvent to give the carbamate as intermediate, which was
further in situ reacted with amine derivatives in refluxing dioxane to give the 6-methoxy-
ethylsubstitutedUBTs 83a and 83b, Scheme 35. UBT 83b was hydrolyzed with aqueous
KOH solution in THF at room temperature for 14 h, then the carboxylic acid of 82c was
reacted with the corresponding amine and HBTU at room temperature overnight to gener-
ate 6-methoxy-arylUBTs 85a,b. Compounds 82a and 85a,b were ether dealkylated in the
presence of Phosphorous tribromide (PBr3) in CH2Cl2 as a dissolvent at room temperature
for 20 h to generate compounds 84a–c. Although the extension with the 4-benzyl amide
in compound 84b enhanced the potency toward Dyrk1A (IC50 = 0.063 µM) by more than
2-fold compared with 84a and AHS-211, it did not show any improvement in selectivity
over Dyrk1B. On the other hand, compound 83c was almost similar to AHS-211 in potency
against Dyrk1A, yet it showed more than a 15-fold selectivity for Dyrk1A over Dyrk1B.
Importantly, both 84b and 84c displayed superior selectivity for Dyrk1A over Dyrk2 when
compared with AHS-211. Additionally, 84c displayed good selectivity for Dyrk1A over
Clk1, one of the most common off targets of many reported Dyrk1A inhibitors, with a
selectivity factor > 7 (IC50 of 84c against Clk1 = 730 nM, [ATP] = 15 µM). The design concept
of attaching a urea linker to the BT core, followed by a scaffold expansion, led to a new
class of potent and selective Dyrk1A inhibitors. The best compound, 84c, did not inhibit
the homologous Dyrk2 isoform and even showed a remarkable 15-fold selectivity over the
most closely related isoform Dyrk1B. In addition, the activity toward the atypical kinase
haspin that was strongly inhibited by most of the previously reported Dyrk1A inhibitors
was abolished with 84c. Together with the favorable balance of lipophilic/hydrophilic
functions, further testing of 84c as a potential agent for the treatment of Dyrk1A-related
neuropathological disorders could be envisaged.
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This intermediate was subsequently reacted with the respective substituted aniline to give 
a final 6-substituted-aryl UBTs 87a–l. To obtain compounds 87f, 87g, and 88i, the N-Boc 
protective group was cleaved under acidic conditions. Compound 90a was prepared from 
the 2(N-Me-amino)-BT with the corresponding 3-chloro, 4-methoxy-phenylisocyanate in 
THF at room temperature. All compounds were evaluated for in vitro 17β-HSD10 inhibi-
tory ability. Compounds 87d and 88c showed the most promising 17β-HSD10 inhibitory 
activity in enzymatic assays, although the orthogonal screens indicated that 88c could be 
inhibiting 17β-HSD10 in an unfavorable manner. Key structure–activity relationships 
were established and validated with a urea linker, and a 4-phenolic moiety with a 3-halo-
gen substitution confirmed to be essential for compound 17β-HSD10 inhibitory ability. 

Scheme 35. The 6-substituted-substitutedUBTs 83 from 6-methoxy-2ABT and phenylisocyanates and
their modified compounds 83–85.

From the 6-aminoethyl-UBT obtained from the reaction of 6-nitro-2ABT with ethyl
isocyanate in refluxing toluene 24 h in the presence of TEA, followed by reduction of the
nitro group to amine, Scheme 36 [166]. A series of ethyl-urea derivatives of 6-amino-2ABT,
named 86a–I, were synthetized and evaluated for E. coli DNA gyrase inhibition using an
in vitro DNA gyrase supercoiling assay. The most potent DNA gyrase inhibitors were
6-substituted UBTs 86c–e, 86g, and 86h with IC50 values in the low micromolar range.
The most promising inhibitors identified were evaluated against selected Gram-positive
and Gram-negative bacterial strains. Compound 86d showed a MIC of 50µ M against an
E. coli efflux pump-defectives train, which suggests that the efflux decreases the on-target
concentrations of these compounds.
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Scheme 36. Synthesis of 6-amino-ethylUBT to be transformed to 6-substituted ethyl-UBTs 86c–e, 86g.

Three series of 6-substituted-aryl UBTs 87a–l, 88a–g, and 89a–d were designed and
synthetized, Figure 11 [167]. The synthesis proceeded according to the two-step reaction
process; 6-methoxy-2ABT reacted with CDI to give the mono-substituted intermediate. This
intermediate was subsequently reacted with the respective substituted aniline to give a final
6-substituted-aryl UBTs 87a–l. To obtain compounds 87f, 87g, and 88i, the N-Boc protective
group was cleaved under acidic conditions. Compound 90a was prepared from the 2(N-Me-
amino)-BT with the corresponding 3-chloro, 4-methoxy-phenylisocyanate in THF at room
temperature. All compounds were evaluated for in vitro 17β-HSD10 inhibitory ability.
Compounds 87d and 88c showed the most promising 17β-HSD10 inhibitory activity in
enzymatic assays, although the orthogonal screens indicated that 88c could be inhibiting
17β-HSD10 in an unfavorable manner. Key structure–activity relationships were established
and validated with a urea linker, and a 4-phenolic moiety with a 3-halogen substitution
confirmed to be essential for compound 17β-HSD10 inhibitory ability. Furthermore, a bulky
6-substitution (e.g., t-butyl) on BT appeared to be the most promising, potentially occupying
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the chemical space more effectively within the binding site. Positively, the most promising
compounds were also shown to have an inhibitory effect at a cellular level with limited
cytotoxicity, and all hit compounds displayed a more favorable kinetic mechanism of action
(reversible mixed inhibition) to other previously published work. These findings provided
significant structural activity insight into the 17β-HSD10 inhibitor compound design and
were the most promising observations to date. With further hit optimizing and neuronal
cellular evaluation to determine if these compounds are protective against Aβ-mediated
cytotoxicity, this could potentially lead to a novel class of therapeutics for AD.
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Figure 11. The 6-substituted-arylUBTs 87a–l, 88a–g, and 89a–d from CDI and the corresponding
substituted aniline.

The 2,3-cyclization reaction of unsymmetrical 6-substituted-TBTs F with 2-bromoacetophenone
in the presence of TEA afforded N-(6-substitued-1,3-benzothiazol-2-yl)-4-phenyl-1,3-thiazol-
2(3H)-imine compounds 90a–d, Scheme 37 [168]. Also, 2-Me-carbamodithioate-BTs E were
reacted with methyl anthranilate to give the in situ thiourea intermediate G, which was cy-
clized to afford 3-(benzo[d]thiazol-2-yl)-2-thioxo-2,3-dihydroquinazolin-4(1H)-one deriva-
tives 90a–d. Compounds 90a–d were evaluated for anti-tumor activity against MCF-7,
MDA-MD-231, HT-29, HeLa, Neuro-90a, K-562, and L-929 cell lines, and the results from
the MTT-assay revealed the best cytotoxicity for 90b compound (IC50 = 5.94 ± 1.98 µM).
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The 2-dithiomethylcarboimidateBT 92, derived from 2ABT, was reacted with l-glycine,
l-alanine, l-phenyl-glycine, l-phenyl-alanine, l-valine, and l-leucine to afford a series the
isolable sodium salts of the SMe-iso-thiourea carboxylates 93a–f, whose hydrolysis of the
SMe group and methylation of the isolable UBT-carboxylates with methyl iodide in stirring
DMF as solvent affords the UBTs methyl esters 94a–f, Scheme 38 [169]. The structures
of synthesized compounds were established by 1H and 13C NMR, and the structures
of methyl esters SMe-iso-thiourea-BTs 93a–f were derived from (l)-glycine, (l)-alanine,
(l)-phenyl-glycine, and (l)-leucine by X-ray diffraction analysis.
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tones 95f and 95g were low, whereas the acrylamide 95j displayed insignificant inhibition. 

Scheme 38. Substituted-UBTs 94a–f derived from α-amino-acids from di-thiomethyl-carboimidate-
BT 92.

A library of ten 6-substituted-p-methoxybenzylUBTs 95a–j was designed and syn-
thetized, Scheme 39 [170]. Molecular modeling studies with the proposed covalent in-
hibitors were performed using the Maestro Schrödinger Drug Discovery Suite. The biologi-
cal activities of the compounds were also tested.
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Scheme 39. The 6-substituted-p-methoxybenzylUBTs 95a–j from 6-substituted-2ABTs and the N-(4-
methoxybenzyl) carbamoyl-imidazole.

The in situ generated ammonium hydrochloride salt of p-methoxy-benzyl-amine
was reacted with CDI for 7 min to yield the intermediate N-(4-methoxybenzyl) carbamoyl-
imidazole H in a quantitative yield, which was coupled with the corresponding 6-substituted
2ABT to form 6-substituted-p-methoxybenzylUBTs 95a–j and to improve the literature
yields of 95a and 95h, which were increased from 70 and 26% to 99% and quantitative
yield, respectively.

Compounds 95a–c, 95b,c, 95f,g, and 95j, were evaluated for GSK-3β inhibitory activity
using a luminescent assay. The potent GSK-3β inhibitor AR-A014418 (IC50 = 0.072 ± 0.043)
was used as reference standard.

The inhibitory ability of its BT-equivalent, 95a (28g, Scheme 12), is known in the literature.
The HMK inhibitor 95c was more potent than the corresponding acetyl-derivative, 95b,

confirming the structure–activity influence of the halomethyl-ketone moiety to increase
inhibitory activity. Furthermore, the biological activities of the vinyl and ethyl ketones 95f
and 95g were low, whereas the acrylamide 95j displayed insignificant inhibition.
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A set of 60 substituted-aryl-UBTs 96a–zzc and the 6Cl-(3Cl,4OHphenyl)-TBT 97 was
prepared from the corresponding substituted-2ABT when treated with CDI or TCDI, fol-
lowed by the addition of the corresponding substituted aniline, Figure 12 [171]. The
compounds were evaluated for their inhibitory ability and mechanism of action against
the human 17β-HSD10. The most potent inhibitors contained 3-chloro and 4-hydroxy
substitution on the phenyl ring moiety. Among these, compounds 96zx, 96zzc exhibited
IC50 values of 1–2 µM and showed an uncompetitive mechanism of action with respect to
aceto-acetyl-CoA. These uncompetitive UBTs inhibitors of 17β-HSD10 were considered
promising compounds as potential drugs for neurodegenerative diseases.
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Figure 12. Substituted UBTs 96a–zzc and TBT 97 from substituted 2ABTs, CDI, or TCDI and
aniline derivatives.

Several Frentizole derivatives 98a–k were selected by molecular docking as poten-
tial nicotinate mononucleotide adenylyl-transferase (NadD) inhibitors for antimicrobial
activity evaluation, Figure 13 [172]. Compounds 98f and 98h–k showed antimicrobial
activity against Gram-positive bacteria-Staphylococcus Aureus, Methicillin-resistant Staphy-
lococcus aureus (except for 98f and 98j), Staphylococcus epidermidis (except for 98j), and
Vancomycin-resistant Enterococcus (only 98k). However, even the best obtained MICs and
MBCs were substantially higher than values corresponding to standard benzalkonium
bromide (BAC14). Therefore, none of the tested derivatives can be considered to be a novel
promising antimicrobial agent.

Chiral UBT 99a and chiral (T)UBTs 99b,c were synthesized from the reaction of
2ABT with sodium hydride NaH in DMF, followed by addition of the respective chiral-
(1-isocyanatoethyl)benzene, and stirred for 12 h at room temperature, Scheme 40 [173].
All compounds were in vitro evaluated for their antimicrobial activity against B. cereus,
S. aureus, E. coli, and P. aeruginosa. The results indicated all compounds were only ac-
tive in Gram-positive bacteria. The UBT 99a and TBTs 99b and 99c with either R- or
S-configurations or had no antibacterial properties.
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As depicted in Scheme 41, forty nine combined substituted-aryl-UBTs 100a–p that
were synthetized from substituted-2ABTs and substituted-phenyl-isocyanates in ketone
by an easy and cheap synthetic route, Scheme 41 [174]. Synthetized compounds were
studied on their antibacterial activity against Gram-positive and Gram-negative strains.
Compounds 100f and 100j showed the highest antimicrobial activity against Staphylococcus
aureus; they were more active than triclocarban (TCC), with MIC values of 8 µg/mL versus
16 µg/mL of TCC. Moreover, compound 100c was much more active than TCC against
Enterococcus faecalis, a Gram-positive bacterium that is strongly responsible for nosocomial
infections. Finally, compound 100p, even though less active than the others, exerted an
interesting bactericidal action.
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Scheme 41. Substituted aryl-UBTs 100xY from aryl-isocyanates in ketone.

An iodine-catalyzed reaction of 6-substituted-2ABTs and isocyanides for the synthesis
of 6-substituted-substituted UBTs 101a–i (48–60%) via a metal-free isocyanide insertion
reaction was reported, Scheme 42 [175]. Introducing a simple method for the synthesis of
desired UBT skeletons and the use of more acceptable iodine molecules instead of expensive
transition metal catalysts are the most important advantages of this strategy.

It is important to mention that several substituted-substituted TBTs had been used
since 1968 as intermediates to synthetize 2-guanidinebenzothiazoles (GBTs), for exam-
ple, substituted-substituted-TBTs 102 were obtained as isolable intermediates from the
reaction of substituted-2ABTs with alkyl- or aryl-thiocyanates followed by the amination-
desulfurization reaction with PbO, HgCl2, HgO, CuSO4.5H2O, CH3I to afford GBTs 103,
Scheme 43 [176–184].



Molecules 2022, 27, 6104 31 of 39Molecules 2022, 27, x FOR PEER REVIEW 32 of 40 
 

 

N

S
NH2

N

S
NH N

H

O
R1

+ R1NC
I2 (20 mol%)

DMSO, 80°C, 12 h.

R R

101 (48-60%)  

R =    H,      H,       H,             H,         NO2,   OMe,   OMe,   OMe,       OMe
R1 = tBu    nBu    cHex    2,6-Me2Ph    tBu      tBu       nBu        Ph     2,6-Me2Ph

a        b         c               d            e          f            g         h                i

 
Scheme 42. The 6-substituted-substituted UBTs 101a–i from iodine catalyzed reaction of 6-substi-
tuted 2ABTs with isocyanides. 

It is important to mention that several substituted-substituted TBTs had been used 
since 1968 as intermediates to synthetize 2-guanidinebenzothiazoles (GBTs), for example, 
substituted-substituted-TBTs 102 were obtained as isolable intermediates from the reac-
tion of substituted-2ABTs with alkyl- or aryl-thiocyanates followed by the amination-
desulfurization reaction with PbO, HgCl2, HgO, CuSO4.5H2O, CH3I to afford GBTs 103, 
Scheme 43 [176–184]. 

S=C=NR1

S

N
NH2 C6H6, Δ S

N
NH

R1HN
S

R2NH2, PbO
EtOH, Δ S

N
NH

R1HN
NHR2

102 103 (25_95%)

R R R

R2 = H, Me, Et, nBu, Bn

R = H, 4Me, 5Me, 6Me, 4Cl, 5Cl, 6Cl, 6Br, 4MeO, 6MeO, 4EtO, 6EtO

R1 = Bn, pMePh, pClPh, pBrPh

 
Scheme 43. Amination-desulfurization of substituted-ary TBTs 102 to afford GBTs 103. 

Also, interesting 6-substituted-sugar TBTs 104a–c were obtained in 56–77% yields 
from the reaction of the respective 6-substituted-2ABT and the corresponding per-O-acet-
ylated isothiocyanate lactose derivative in dry pyridine, which were transformed to the 
respective GBT derivative, Figure 14 [185]. 

104

O

OMeAcO
AcO

AcO

NH S
N

NH

R

S

       a       b        c
R = H, 6OMe, 6Me
%   56     58       52

 
Figure 14. Substituted-sugar-TBTs 104 used as intermediates in the synthesis of substituted-sugar-
GBTs. 

3. Conclusions 
From the literature review, benzothiazole, was found to be a bioactive and structur-

ally simple benzofuzed heterocyclic compound that plays an important role in medicinal 
chemistry. It was observed that, depending on the functional group present on the BT 
molecule, the group plays an important role in the physicochemical properties. On the 
quest to discover better medicinal agents, researchers should understand the relative con-
tributions of each functional group on the BT ring. It can become a part of the development 
and discovery of new drugs with potential biological activity. During the last decade, ef-
forts have been taken to synthesize medicinally important BT derivatives, and, among 

Scheme 42. The 6-substituted-substituted UBTs 101a–i from iodine catalyzed reaction of 6-substituted
2ABTs with isocyanides.

Molecules 2022, 27, x FOR PEER REVIEW 32 of 40 
 

 

N

S
NH2

N

S
NH N

H

O
R1

+ R1NC
I2 (20 mol%)

DMSO, 80°C, 12 h.

R R

101 (48-60%)  

R =    H,      H,       H,             H,         NO2,   OMe,   OMe,   OMe,       OMe
R1 = tBu    nBu    cHex    2,6-Me2Ph    tBu      tBu       nBu        Ph     2,6-Me2Ph

a        b         c               d            e          f            g         h                i

 
Scheme 42. The 6-substituted-substituted UBTs 101a–i from iodine catalyzed reaction of 6-substi-
tuted 2ABTs with isocyanides. 

It is important to mention that several substituted-substituted TBTs had been used 
since 1968 as intermediates to synthetize 2-guanidinebenzothiazoles (GBTs), for example, 
substituted-substituted-TBTs 102 were obtained as isolable intermediates from the reac-
tion of substituted-2ABTs with alkyl- or aryl-thiocyanates followed by the amination-
desulfurization reaction with PbO, HgCl2, HgO, CuSO4.5H2O, CH3I to afford GBTs 103, 
Scheme 43 [176–184]. 

S=C=NR1

S

N
NH2 C6H6, Δ S

N
NH

R1HN
S

R2NH2, PbO
EtOH, Δ S

N
NH

R1HN
NHR2

102 103 (25_95%)

R R R

R2 = H, Me, Et, nBu, Bn

R = H, 4Me, 5Me, 6Me, 4Cl, 5Cl, 6Cl, 6Br, 4MeO, 6MeO, 4EtO, 6EtO

R1 = Bn, pMePh, pClPh, pBrPh

 
Scheme 43. Amination-desulfurization of substituted-ary TBTs 102 to afford GBTs 103. 

Also, interesting 6-substituted-sugar TBTs 104a–c were obtained in 56–77% yields 
from the reaction of the respective 6-substituted-2ABT and the corresponding per-O-acet-
ylated isothiocyanate lactose derivative in dry pyridine, which were transformed to the 
respective GBT derivative, Figure 14 [185]. 

104

O

OMeAcO
AcO

AcO

NH S
N

NH

R

S

       a       b        c
R = H, 6OMe, 6Me
%   56     58       52

 
Figure 14. Substituted-sugar-TBTs 104 used as intermediates in the synthesis of substituted-sugar-
GBTs. 

3. Conclusions 
From the literature review, benzothiazole, was found to be a bioactive and structur-

ally simple benzofuzed heterocyclic compound that plays an important role in medicinal 
chemistry. It was observed that, depending on the functional group present on the BT 
molecule, the group plays an important role in the physicochemical properties. On the 
quest to discover better medicinal agents, researchers should understand the relative con-
tributions of each functional group on the BT ring. It can become a part of the development 
and discovery of new drugs with potential biological activity. During the last decade, ef-
forts have been taken to synthesize medicinally important BT derivatives, and, among 

Scheme 43. Amination-desulfurization of substituted-ary TBTs 102 to afford GBTs 103.

Also, interesting 6-substituted-sugar TBTs 104a–c were obtained in 56–77% yields from
the reaction of the respective 6-substituted-2ABT and the corresponding per-O-acetylated
isothiocyanate lactose derivative in dry pyridine, which were transformed to the respective
GBT derivative, Figure 14 [185].
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3. Conclusions

From the literature review, benzothiazole, was found to be a bioactive and structurally
simple benzofuzed heterocyclic compound that plays an important role in medicinal chem-
istry. It was observed that, depending on the functional group present on the BT molecule,
the group plays an important role in the physicochemical properties. On the quest to dis-
cover better medicinal agents, researchers should understand the relative contributions of
each functional group on the BT ring. It can become a part of the development and discov-
ery of new drugs with potential biological activity. During the last decade, efforts have been
taken to synthesize medicinally important BT derivatives, and, among them, researchers
have discovered many (T)UBT derivatives showing promising biological activities.

In the present review, efforts were taken to summarize the different methodologies
used for the synthesis of (T)UBT derivatives along with their biological activity. In gen-
eral, 2ABTs were reacted with (alkyl-)aryl-iso(thio)cyanates, 1′-(thio)carbonyldiimidazole
(T)CDI, carbamoyl chlorides, and carbon disulfide for the synthesis of (T)UBTs. It is hoped
that this review will benefit budding researchers in the field of benzothiazole urea-based
drug designing.
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This topic is interesting, because it will provide information of utility for medicinal
chemists dedicated to the design and synthesis of this class of compounds to be tested with
respect to their biological activities and be proposed as new pharmacophores.

Author Contributions: Conceptualization, M.C.R.-H. and A.C.; investigation, E.V.G.-B.; resources,
J.E.M.-W.; writing—original draft preparation, I.I.P.-M. and A.C.; writing—review and editing,
I.I.P.-M., A.C. and J.E.M.-W.; funding acquisition, J.E.M.-W. and E.V.G.-B. All authors have read and
agreed to the published version of the Review. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by Secretaría de Investigación y Posgrado del Instituto Politécnico
Nacional (SIP-IPN), Grant no. 20220682; CONACYT CB, Grant no 319355-2022 and SIP-IPN Multidis-
ciplinary garant no. 2140.

Acknowledgments: A.C. thanks Secretaría de Investigación y Posgrado del Instituto Politécnico
Nacional (SIP-IPN) Grant no. 20220682.; M.C.R.-H. thanks CONACYT CB Grant no 319355-2022 and
M.C.R.-H.; J.E.M.-W.and A.C. thanks SIP-IPN Multidisciplinary garant no. 2140 for financial support.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Jagtap, A.D.; Kondekar, N.B.; Sadani, A.A.; Chern, J.W. Ureas: Applications in Drug Design. Curr. Med. Chem. 2017, 24, 622–651.

[CrossRef] [PubMed]
2. Brullo, C.; Rapetti, F.; Bruno, O. Pyrazolyl-Ureas as Interesting Scaffold in Medicinal Chemistry. Molecules 2020, 25, 3457.

[CrossRef]
3. Mokeev, M.V.; Sostanin, S.A.; Zuev, V.V. Hydrogen Bonding in dicyclohexylmethane-or diphenylmethane based urea compounds

and their polimer counterparts investigated by NMR spectroscopy: Interplay of electronic and geometrical factors. Chem. Phys.
Lett. 2020, 739, 137047. [CrossRef]

4. Lee, J.; La, S.; Ahn, B.R.; Jeong, T.C.; Kim, D.H. Metabolism of 1-{3-[3-(4-cyanobenzyl)-3H-imidazol-4-yl]-propyl}-3-(6-
methoxypyridin-3-yl)-1-(2-trifluoromethylbenzyl)-thiourea (YH3945), a novel anticancer drug, in rats using the14C-labeled
compound. Rapid Commun. Mass Spectrom. 2004, 18, 1901–1910. [CrossRef]

5. Venkatachalam, T.K.; Mao, C.; Uckun, F.M. Effect of stereochemistry on the anti-HIV activity of chiral thiourea compounds.
Bioorg. Med. Chem. 2004, 12, 4275–4284. [CrossRef]

6. Sahlberg, C.; Antonov, D.; Wallberg, H.; Noreen, R. Urea and thiourea derivatives as non-nucleoside reverse transcriptase
inhibitors. WO2003020705A1, 13 March 2003.

7. Tsogoeva, S.B.; Hateley, M.J.; Yalalov, D.A.; Meindl, K.; Weckbecker, C.; Huth Macher, K. Thiourea-based non-nucleoside inhibitors
of HIV reverse transcriptase as bifunctional organocatalysts in the asymmetric Strecker synthesis. Bioorg. Med. Chem. 2005, 13,
5680–5685. [CrossRef]

8. Rodriguez-Fernandez, E.; Manzano, J.L.; Benito, J.J.; Hermosa, R.; Monte, E.; Criado, J.J. Thiourea, triazole and thiadiazine
compounds and their metal complexes as antifungal agents. J. Inorg. Biochem. 2005, 99, 1558–1572. [CrossRef]

9. Venkatachalam, T.K.; Sudbeck, E.; Uckun, F.M. Structural influence on the solid state intermolecular hydrogen bonding of
substituted thioureas. J. Mol. Struct. 2005, 751, 41–54. [CrossRef]

10. Esteves-Souza, A.; Pissinate, K.; Nascimento, M.G.; Grynberg, N.F.; Echevarria, A. Synthesis, cytotoxicity, and DNA-topoisomerase
inhibitory activity of new asymmetric ureas and thioureas. Bioorg. Med. Chem. 2006, 14, 492–499. [CrossRef]

11. Han, T.; Cho, J.H.; Oh, C.H. Synthesis and biological evaluation of 1β-methylcarbapenems having cyclic thiourea moieties and
their related compounds. Eur. J. Med. Chem. 2006, 41, 825–832. [CrossRef]

12. Zhong, Z.; Xing, R.; Liu, S.; Wang, L.; Cai, S.; Li, P. Synthesis and bioactivity of pyrazole acyl thiourea derivatives. Carbohydr. Res.
2008, 343, 566–570. [CrossRef] [PubMed]

13. Dixit, P.P.; Patil, V.J.; Nair, P.S.; Jain, S.; Sinha, N.; Arora, S.K. Synthesis of 1-[3-(4-benzotriazol-1/2-yl-3-fluoro-phenyl)-2-oxo-
oxazolidin-5-ylmethyl]-3-substituted-thiourea derivatives as antituberculosis agents. Eur. J. Med. Chem. 2006, 41, 423–428.
[CrossRef]

14. Liav, A.; Angala, S.K.; Brennan, P.J.; Jackson, M. N-α-AldopentofuranosylN′-[p-(isoamyloxy)phenyl]-thiourea derivatives:
Potential anti-TB therapeutic agents. Bioorg. Med. Chem. Lett. 2008, 18, 2649–2651. [CrossRef] [PubMed]

15. Saeed, A.; Saeed, N.; Hummera, R.; Sadaf, R.; Hameed, A. Synthesis, characterization and antibacterial activity of some
1-aroyl-3-aryl thioureas. Chemistry 2009, 18, 152–158.

16. Sunduru, N.; Srivastava, K.; Rajakumar, S.; Puri, S.K.; Saxena, J.K.; Chauhan, P.M.S. Synthesis of novel thiourea, thiazolidinedione,
and thioparabanic acid derivatives of 4-aminoquinoline as potent antimalarials. Bioorg. Med. Chem. Lett. 2009, 19, 2570–2573.
[CrossRef]

http://doi.org/10.2174/0929867323666161129124915
http://www.ncbi.nlm.nih.gov/pubmed/27897114
http://doi.org/10.3390/molecules25153457
http://doi.org/10.1016/j.cplett.2019.137047
http://doi.org/10.1002/rcm.1555
http://doi.org/10.1016/j.bmc.2004.04.050
http://doi.org/10.1016/j.bmc.2005.05.014
http://doi.org/10.1016/j.jinorgbio.2005.05.004
http://doi.org/10.1016/j.molstruc.2005.04.014
http://doi.org/10.1016/j.bmc.2005.08.031
http://doi.org/10.1016/j.ejmech.2006.02.006
http://doi.org/10.1016/j.carres.2007.11.024
http://www.ncbi.nlm.nih.gov/pubmed/18083151
http://doi.org/10.1016/j.ejmech.2005.12.005
http://doi.org/10.1016/j.bmcl.2008.03.033
http://www.ncbi.nlm.nih.gov/pubmed/18362068
http://doi.org/10.1016/j.bmcl.2009.03.026


Molecules 2022, 27, 6104 33 of 39

17. Ekoue-Kovi, K.; Yearick, K.; Iwaniuk, D.P.; Natarajan, J.K.; Alumasa, J.; de Dios, A.C.; Roepe, P.D.; Wolf, C. Synthesis and
antimalarial activity of new 4-amino-7-chloroquinolyl amides, sulfonamides, ureas and thioureas. Bioorg. Med. Chem. 2009, 17,
270–283. [CrossRef]

18. Zhao, F.; Xiao, J.H.; Wang, Y.; Li, S. Synthesis of thiourea derivatives as CCR4 antagonists. Chin. Chem. Lett. 2009, 20, 296–299.
[CrossRef]

19. Manjula, S.N.; Noolvi, N.M.; Parihar, K.V.; Manohara Reddy, S.A.; Ramani, V.; Gadad, A.K.; Singh, G.; Gopalan Kutty, N.;
Mallikarjuna Rao, C. Synthesis and antitumor activity of optically active thiourea and their 2-aminobenzo thiazole derivatives:
A novel class of anticancer agents. Eur. J. Med. Chem. 2009, 44, 2923–2929. [CrossRef]

20. Zhang, H.; Zhang, Y.; Wu, G.; Zhou, J.; Huang, W.; Hu, X. Synthesis and biological evaluation of sulfonylurea and thiourea
derivatives substituted with benzenesulfonamide groups as potential hypoglycemic agents. Bioorg. Med. Chem. Lett. 2009, 19,
1740–1744. [CrossRef]

21. Kang, I.; Wang, L.; Lee, C.; Lee, Y.; Chao, Y.; Hsu, T. Design, synthesis, and anti-HCV activity of thiourea compounds. Bioorg. Med.
Chem. Lett. 2009, 19, 1950–1955. [CrossRef]

22. Saeed, S.; Rashid, N.; Jones, P.G.; Ali, M.; Hussain, R. Synthesis, characterization and biological evaluation of some thiourea
derivatives bearing benzothiazole moiety as potential antimicrobial and anticancer agents. Eur. J. Med. Chem. 2010, 45, 1323–1331.
[CrossRef] [PubMed]

23. Karipcin, F.; Atis, M.; Sariboga, B.; Celik, H.; Tas, M. Structural, spectral, optical and antimicrobial properties of synthesized
1-benzoyl-3-furan2-ylmethyl-thiourea. J. Mol. Struct. 2013, 1048, 69–77. [CrossRef]

24. Vega-Perez, J.M.; Perinan, I.; Argandona, M.; Vega-Holm, M.; Palo-Nieto, C.; Burgos-Morón, E.; López-Lázaro, M.; Vargas, C.;
Nieto, J.J.; Iglesias-Guerra, F. Isoprenylthiourea and urea derivatives as new farnesyl diphos phate analogues: Synthesis and
in vitro antimicrobial and cytotoxic activities. Eur. J. Med. Chem. 2012, 58, 591–612. [CrossRef] [PubMed]

25. Chen, M.-H.; Chen, Z.; Song, B.-A.; Bhadury, P.S.; Yang, S.; Cai, X.-J.; Hu, D.-Y.; Xue, W.; Zeng, S. Synthesis and Antiviral Activities
of Chiral Thiourea Derivatives Containing an α-Aminophosphonate Moiety. J. Agric. Food Chem. 2009, 57, 1383–1388. [CrossRef]

26. Azimian, F.; Hamzeh-Mivehroud, M.; Mojarrad, J.S.; Hemmati, S.; Dastmalchi, S. Synthesis and biological evaluation of diaryl
urea derivatives designed as potential anticarcinoma agents using de novo structure-based lead optimization approach. Eur. J.
Med. Chem. 2020, 201, 112461. [CrossRef]
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