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Abstract: Changes in the frequency and intensity of heat waves have shown substantial negative
impacts on public health. At the same time, climate change towards increasing air temperatures
throughout Europe will foster such extreme events, leading to the population being more exposed to
them and societies becoming more vulnerable. Based on two climate change scenarios (Representative
Concentration Pathway 4.5 and 8.5) we analysed the frequency and intensity of heat waves for three
capital cities in Europe representing a North–South transect (London, Luxembourg, Rome). We used
indices proposed by the Expert Team on Sector-Specific Climate Indices of the World Meteorological
Organization to analyze the number of heat waves, the number of days that contribute to heat
waves, the length of the longest heat waves, as well as the mean temperature during heat waves.
The threshold for the definition of heat waves is calculated based on a reference period of 30 years for
each of the three cities, allowing for a direct comparison of the projected changes between the cities.
Changes in the projected air temperature between a reference period (1971–2000) and three future
periods (2001–2030 near future, 2031–2060 middle future, and 2061–2090 far future) are statistically
significant for all three cities and both emission scenarios. Considerable similarities could be identified
for the different heat wave indices. This directly affects the risk of the exposed population and might
also negatively influence food security and water supply.
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1. Introduction

The Intergovernmental Panel on Climate Change (IPCC) concludes in its Fifth Assessment Report
(AR5) that the mean global near-surface air temperature showed a warming of 0.85 ◦C for the period
from 1880 to 2012 and a warming of the climate system is unequivocal [1]. In the Special Report on
Extremes (IPCC SREX), the IPCC highlights three possible changes in extreme events due to elevated
air temperature: (a) increases in the mean temperature, (b) increases in the variability and (c) changes
in the symmetry of the probability distribution [2].

June 2019 was the hottest month since 1880 worldwide with air temperatures of 3 ◦C above the
average for Europe and 1 ◦C globally [3]. Even though it is difficult to attribute such a heat wave
to climate change, those extreme events are projected to become more frequent as greenhouse gas
concentrations are increasing [4,5]. Even small changes in the annual mean air temperature can result
in large changes on the severity of such extreme events [6]. Changes in the frequency and intensity of
heat waves (HWs) will have profound impacts on the natural environment and the human society [4].
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The 2018 report in the Lancet entitled “Countdown on health and climate change: shaping the health
of nations for centuries to come”, gives a very clear overview of the environmental changes already
observed and their projected health impacts [7]. In 2017, compared to 2000, 157 million more people
were exposed to heat waves worldwide. For the same year, 153 billion hours of labour were lost due to
HWs, resulting in US $ 326 billion in economic losses [7]. Extremely high air temperatures that last for
longer periods can lead to heat stroke, heart failure and inhibition to sustain physical activities [8–11].
High correlations between HW and mortality due to heart diseases could be observed especially for
risk groups like minors, elderly people or persons with already existing illnesses [12,13].

In order to define adequate adaption and mitigation measures to reduce both the health risk and
the negative economic impacts of HW, knowledge of the future frequency and intensity of such events
is crucial. A multi model ensemble of transient regional climate change projections was retrieved from
the public data archive of the Coordinated Regional Climate Downscaling Experiment (CORDEX).
The same set of ensemble members (n = 13) for two different climate change scenarios (Representative
Concentration Pathway 4.5 and 8.5) were used to analyse past and future HW characteristics. A time
series was created, covering the period from January 1971 to December 2091, consisting of daily
minimum and maximum air temperatures.

Climate projections based on nested regional climate model approaches show increases in the
frequency, intensity and duration of extreme temperature events [2,14]. One of the major problems when
analysing HWs and their impacts on society, is the definition of HWs. To date, there is no universally
accepted definition of HWs. In general, an HW is a prolonged period of consecutive days with extremely
high air temperatures for a specific region [14], taking into account that average conditions in one region,
e.g., the Mediterranean, would be regarded as extreme conditions in another region, like Northern
Europe. In order to make such comparisons possible across different countries, the use of individual
threshold values is recommended to define HWs derived from site-specific data sets.

The World Meteorological Organization (WMO) Commission for Climatology (CCI) Expert Team
on Sector-specific Climate Indices (ET-SCI) developed an internationally coordinated set of core climate
indices in order to detect changes in climate extremes [13,14]. The general purpose of these indices is
to extract useful information from a large data set of atmospheric variables. These indices are based on
daily values of minimum and maximum air temperatures as well as daily precipitation totals. They
have been widely used to detect and attribute climate change signals in historical data sets [15–17],
climate change projections [18–20], and of HW investigations [21–23]. These indices—relevant for
HW—are used to analyse the projected changes in the heat stress level for three capital cities along a
latitudinal transect across Europe.

2. Materials and Methods

2.1. Climate Change Projections

For the calculation of the climate change indices, long, simulation-based time series of
meteorological data are necessary. We used time series derived from a multi-model ensemble
of climate change projections from the Coordinated Regional Climate Downscaling Experiment
(CORDEX) project of the World Climate Research Programme (WCRP). The regional climate model
(RCM) data are based on simulations from the EURO-CORDEX initiative. This is the European branch
of the CORDEX project. Data is made available on the data nodes of the Earth System Grid Federation
(ESGF) model data dissemination system [15].

One of the EURO-CORDEX goals is the provisioning of regional climate change information [16]
through a dynamical downscaling of the Global Climate Models (GCM) of the Coupled Model
Intercomparison Project (CMIP5) [17] for Representative Concentration Pathways (RCPs) RCP2.6,
RCP4.5, and RCP8.5 [18], based on a coordinated multi-model, multi-physics experiment and providing
transient model simulations from 1950 to 2100. Among the multiple CORDEX publications a basic
analysis of climate change in the EURO-CORDEX ensemble is already available [16] as well as an
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overview evaluation of the ensemble with respect to observations [19]. Additionally, the added value
of the higher EUR-11 (about 12 km) EURO-CORDEX resolution versus the standard EUR-44 (about
48 km) has been already analysed [20].

For this study, time series of daily maximum and minimum air temperature for London (51◦30’ N
0◦5’ E), Luxembourg (49◦36’ N 6◦7’ E), and Rome (41◦54’ N 12◦30’ E) were extracted from a locally
stored partial copy of the EURO-CORDEX data repository. Taking into account data availability at the
time of retrieval in November 2018, 13 matching ensemble members (Table 1), i.e. the same RCM with
the same configuration, run by the same modelling group, were available overall from January 1971 to
December 2090, for RCP4.5 and RCP8.5 at a high spatial resolution of about 12 km. All EURO-CORDEX
RCMs utilized are driven by r1i1p1 GCM ensemble members. We refrained from including the RCP2.6
scenario ensemble members in our study, because for that scenario only four ensemble members
were available in the archive. As it is only possible to compare different scenarios when the same
ensemble members were used for the analysis, and including RCP2.6 would have reduced the size of
the ensemble substantially.

The time series were extracted using a bilinear resampling algorithm (using the Climate Data
Operators v1.8.1 software, https://code.mpimet.mpg.de/projects/cdo) from the EUR-11 RCM model
grid; i.e., data from the four closest points to the city centre locations, representing an area of about
252 km2, were considered and averaged to daily spatial means with a linear distance weighing. Because
of the low altitude of the cities no height correction was applied to account for altitudinal differences
between the city centres and the actual RCM grid point altitudes. Also, because for this study relative
differences between the future climate projections and the historical time spans are considered, a bias
adjustment was not applied [21]. Unfortunately, not all the models use the same calendar. In model
M13 leap years were not taken into account and in model M5 the first day (01.01.1971) was missing.
Gaps due to leap years were filled via linear interpolation and the missing values for 1. January in M5
were replaced by the values of 2. January. No other gaps or missing values were detected in the time
series of the air temperature data.

Table 1. Regional climate change projection datasets used in the study. The table contain the model
abbreviations used in the text, the driving Global Climate Model (GCM), the Regional Climate Model
(RCM) used for the dynamical downscaling as well as the institutions that are responsible for the model
runs; temporal resolution: daily data; time span: 1971–2091.

Model
NumNber

Official CMIP5
GCM Name

Modelling
Centre/Group CMIP5

“Institute ID”

Official
EURO-CORDEX

RCM Name

Modelling Centre/Group
EURO-CORDEX

“Institute ID”

M01 CNRM-CM5 CNRM-CERFACS ALADIN53 CNRM
M02 CNRM-CM5 CNRM-CERFACS ALARO-0 RMIB-UGent
M05 MPI-ESM-LR MPI-M REMO2009 MPI-CSC
M06 MPI-ESM-LR MPI-M RCA4 SMHI
M07 NorESM1-M NCC HIRHAM5 DMI
M09 HadGEM2-ES CNRM MOHC RCA4 SMHI
M10 IPSL-CM5A-MR IPSL WRF331F IPSL-INERIS
M11 CNRM-CM5 CNRM-CERFACS CCLM4-8-17 CLMcom
M12 EC-EARTH ICHEC RACMO22E KNMI
M13 IPSL-CM5A-MR IPSL RCA4 SMHI
M14 MPI-ESM-LR MPI-M CCLM4-8-17 CLMcom

2.2. Definition of Indices

The open source R software package ClimPACT2 (https://github.com/ARCCSS-extremes/climpact2)
was used to calculate indices related to heat waves on a yearly basis, namely the warm spell duration
indicator, number of HW, number of days that contribute to an HW, duration of the longest HW, as well
as the average temperature across all HWs within a year (Table 2).

https://code.mpimet.mpg.de/projects/cdo
https://github.com/ARCCSS-extremes/climpact2
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Table 2. Definition of extreme temperature indices according to ClimPact2.

Abbreviation Definition Unit

HW-D Length of longest HW days
HW-F Number of days that contribute to heat waves days
HW-M Mean temperature of all heat wave in a year ◦C
HW-N Number of heat waves per year number

WSDI Number of days contributing to events where on > 6 consecutive
days the maximum air temperature is in > 90th percentile days

The definition of heat waves is based on three different threshold criteria: (a) the 90th percentile of
the minimum daily temperature, (b) the 90th percentile of the maximum daily temperature, and (c) the
Excess Heat Factor, all of which were derived from the 30-year reference period 1971–2000. If any of
these thresholds were exceeded for at least three days, this period was considered an HW. A more
detailed definition is given by [14].

After the identification of the HWs, those were analysed in more detail, based on the 4 indices
HW-D, HW-F, HW-M and HW-N described in Table 2. In addition, the warm spell duration indicator
(WSDI) was calculated, defined by a span of at least six days where the 90th percentile of the maximum
temperature threshold taken from the reference period was exceeded.

2.3. Statistical Methods

The ClimPACT2 tool includes a test to detect outliers in the air temperature data time series.
The criterion for detecting outliers can be defined by the user and is a certain number of standard
deviation. In our study, we used the default value of 4 standard deviations to detect outliers. No
outliers were detected in the input data sets. In addition, simple checks were performed, e.g., for cases
where the maximum air temperature was below the minimum air temperature.

The results of all calculated indices, as well as the original time series, were further analysed
with SigmaPlot Ver.10 from Systat Software, Inc. The time series of the indices were grouped into
four 30-year time spans (1971–2000 reference period, 2001–2030 near future, 2031–2060 middle future,
2061–2090 far future). The three future time spans (near, middle and far future) were then tested for
significant differences (p < 0.001) against the reference time span 1971–2000 with the Kruskal-Wallis
Analysis of Variance (ANOVA) on Ranks.

3. Results

First, we analysed the predicted change in annual air temperatures for the three different cities
based on the multi-model ensemble and two different RCPs. Figure 1 highlights the results of
the multi-model ensemble for mean annual air temperatures for London, Luxembourg, and Rome.
The future climate projections of the nested regional climate model approaches show increases of the
mean annual air temperatures for all three cities and the two different RCPs. London shows a 30-year
mean of 9.3 ◦C for the reference period. An increase of the mean annual air temperature of 1.5 ◦C until
end of this century is predicted for RCP4.5 and 2.5 ◦C for RCP8.5 (Figure 1a), respectively. With 8.1 ◦C,
the reference period in Luxembourg is more than one degree colder than London but the projected
increases for the RCPs are in comparable range at 1.6 ◦C (RCP4.5) and 2.8 ◦C (RCP8.5) (Figure 1b). Rome
shows the highest increase from the reference period 1979–2000 (14.3 ◦C) to 2061–2090, with 1.8 ◦C
(RCP4.5) and 4.5 ◦C (RCP8.5) (Figure 1c). All differences between the reference period and the three
different future time spans for the three cities and two RCPs were statistically significant (p < 0.001).
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Figure 1. Multi-model ensemble of mean annual air temperature values for London (a), 
Luxembourg (b), and Rome (c) based on two different Representative Concentration Pathways 
(RCPs) (4.5 = blue; 8.5 = red). Spread is defined via +/- one standard deviation of the ensemble. 
Please note that the scale of Figure 1c is different from a and b. 

Figure 2 shows the boxplots of mean anomalies of the WSDI per year with reference to the 30-
year period 1971–2000. The number of days contributing to events where the maximum air 
temperature is higher than the 90th percentile of the reference period on more than six consecutive 
days increases. Even though the mean annual air temperatures for London increases less in both 
RCPs than for Luxembourg, the corresponding WSDI exhibits stronger increases.  

Comparing the anomalies between the cities, there are significant differences between 
London/Luxembourg (both RCPs) and Rome/Luxembourg, for the near future (2001–2030). For the 
middle (2031–2060) and far future (2061–2090) statistically significant differences could be observed 
for Rome/Luxembourg and London/Luxembourg for both RCPs. Especially for Rome, the mean of 
the WSDI increased from 51 to 105 days (please note that the box plots show median values and not 
the arithmetic means). 

 
Figure 2. Boxplots of mean anomalies of the “Warm spell duration indicator” (WSDI) per year with 
reference to the 30-year period 1971–2000 for the three cities London (grey), Luxembourg (blue), and 
Rome (red) and two different RCPs. Whiskers = 5/95 percentile. 

The following four indices are based on different definition of heat waves compared to the WSDI 
(description in section 2.2.). For the absolute number of HWs, all thirteen ensemble members show 
positive anomalies compared to their individual reference periods. The boxplots in Figure 3 
illustrates that there are no big differences in the absolute number of HWs between RCP 4.5 and RCP 
8.5. In both scenarios, there is an increase of one HW for London and Luxembourg for the near and 
two for the middle future. For the far future London and Luxembourg will have three more HWs for 
RCP 4.5 and four for RCP8.5.  

Figure 1. Multi-model ensemble of mean annual air temperature values for London (a), Luxembourg (b),
and Rome (c) based on two different Representative Concentration Pathways (RCPs) (4.5 = blue;
8.5 = red). Spread is defined via +/− one standard deviation of the ensemble. Please note that the scale
of Figure 1c is different from a and b.

Figure 2 shows the boxplots of mean anomalies of the WSDI per year with reference to the 30-year
period 1971–2000. The number of days contributing to events where the maximum air temperature is
higher than the 90th percentile of the reference period on more than six consecutive days increases.
Even though the mean annual air temperatures for London increases less in both RCPs than for
Luxembourg, the corresponding WSDI exhibits stronger increases.

Comparing the anomalies between the cities, there are significant differences between
London/Luxembourg (both RCPs) and Rome/Luxembourg, for the near future (2001–2030). For the
middle (2031–2060) and far future (2061–2090) statistically significant differences could be observed for
Rome/Luxembourg and London/Luxembourg for both RCPs. Especially for Rome, the mean of the
WSDI increased from 51 to 105 days (please note that the box plots show median values and not the
arithmetic means).
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Figure 2. Boxplots of mean anomalies of the “Warm spell duration indicator” (WSDI) per year with
reference to the 30-year period 1971–2000 for the three cities London (grey), Luxembourg (blue), and
Rome (red) and two different RCPs. Whiskers = 5/95 percentile.

The following four indices are based on different definition of heat waves compared to the WSDI
(description in Section 2.2). For the absolute number of HWs, all thirteen ensemble members show
positive anomalies compared to their individual reference periods. The boxplots in Figure 3 illustrates
that there are no big differences in the absolute number of HWs between RCP 4.5 and RCP 8.5. In both
scenarios, there is an increase of one HW for London and Luxembourg for the near and two for the
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middle future. For the far future London and Luxembourg will have three more HWs for RCP 4.5 and
four for RCP8.5.
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for RCP8.5. For all other time spans significant differences could be observed between Rome/London
as well as Rome/Luxembourg for both RCPs.

The number of days that contribute to the absolute number of HWs were analysed further
(Figure 4). For both RCPs in the near future, only slight changes could be observed. Already in the
middle future, differences become obvious between London and Luxembourg compared to Rome,
and this effect is even more pronounced for the far future. The mean number of days that contribute to
an HW in Rome amounts to 47 (RCP4.5) and 86 (RCP8.5) in the far future time span.
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(HW-F) with reference to the 30-year period 1971–2000 for the three cities London (grey), Luxembourg
(blue), and Rome (red) and two different RCPs. Whiskers = 5/95 percentile.

The statistical analysis of the differences between the cities showed that for all cases,
the differences between Rome/London as well as Rome/Luxembourg are significant and, those
between London/Luxembourg are not.

A more detailed analysis, strongly related to health impacts, looks at the length of extreme heat
events. Therefore, the anomalies for the length of the longest heat wave per year are shown in Figure 5.
Again, a similar pattern can be observed with a strong increase for the far future only for Rome for
RCP8.5. For London and Luxembourg, in the near future for both RCPs a prolongation of approximately
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3 days is calculated, and for the middle future 5 and 6 days, respectively. Once more, the strongest
increase is observed for Rome with a prolongation of 18 days for RCP4.5 and 41 days for RCP8.5.

The comparison between the cities yields the same significant differences between for
Rome/London and Rome/Luxembourg, while the London/Luxembourg differences are not significant.
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The last index describes the mean air temperature of all detected HWs per year (Figure 6).
In contrast to the others indices, here the results are less homogeneous. Especially for London,
some of the ensemble members project even slight negative anomalies. However, overall a general
increase for both RCPs in the mean air temperature during the heat wave can be observed for all
cities and all future time spans. The differences for near future of the RCP4.5 scenario are not
significant, those for the far future of the same RCPs are. For the middle future, only the differences
between Rome/Luxembourg and Rome/London are significant. For the RCP8.5 in the near future the
differences between Luxembourg/Rome and Luxembourg/London are significant, for the middle future
all differences, and for the far future, Luxembourg/London and London/Rome.
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4. Discussion

Climate warming will directly impact the probability of the occurrence of future extreme events
and, thus, negatively impact different sectors like agriculture, ecosystems and human health [6,22].
Unfortunately, there is no standardized universal definition of HWs, meaning that direct comparisons
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between reported results are sometimes complicated, but the overall definition describes HWs as time
spans of consecutive days with hotter conditions than usual [14]. To contribute to the unification
efforts of the World Meteorological Organisation (WMO), the indices defined by the Expert Team on
Sector-specific Climate Indices (ET-SCI) were used in this study. In general, past heat waves are a well
investigated phenomena, e.g., the Chicago HW from 1995 [23,24] or the Paris HW from 2003 [25–27].
For the assessment of future frequencies and intensities of HWs, climate change projections are useful
tools to derive potential future risks [5,28–31].

In our analysis, we rely on a multi-physics and multi-model ensemble of different regional climate
models forced with two different emission scenarios (RCP4.5 and RCP8.5.). No weighting of the
individual model results was used. To reduce the noise of the results, averages of 30-year time spans
were calculated and it was these results that were finally used for the statistical analysis [29].

The projected changes in air temperature for the three different cities shown in Figure 1 are in
line with results from comparable studies for London [32], Luxembourg [33–36] and Rome [37,38].
For London, an increase in the long-term annual mean air temperature by 1.5 ◦C for the RCP4.5 and
2.5 ◦C for the RCP8.5 is projected. Past research demonstrated that there is a clear link between
increased mortality and increased air temperature and HWs [12] and heat-related diseases like
respiratory and cardiovascular illnesses [39]. In addition, there is a strong relationship between
increased air temperatures and amplified near surface ozone concentrations that reinforce the negative
health effects [40]. According to recent studies in England and Wales the mortality increases by
2.1% for each 1 ◦C increase in air temperature above the 95th percentile of the average yearly
temperature [32,39,41]. With 1.6 ◦C and 2.8 ◦C the projected increase in air temperature is a bit more
pronounced for Luxembourg. The consequences for the regional fauna and flora were analysed in
different climate change impact studies in the past [34–36,42,43]. For Rome the highest anomalies of
up to 4.5 ◦C were projected corresponding to results shown for the Mediterranean region [29].

The duration of the heat wave expressed as WSDI, shown in Figure 2, can be used as a measure
for how long the population is exposed to high levels of heat stress. A continuous increase in the WSDI
could be observed for all cities with the highest anomalies for Rome and RCP8.5, which is consistent
with the trends in the mean annual air temperature shown in Figure 1. Long-term, continuous exposure
to high ambient air temperatures—targeted by this index—during the nights can decrease sleep quality
significantly [44] especially for older people [45]. The WSDI was already applied for the past climate
worldwide based on the HadEX2 data set [46]. In Europe for the time span 1961–2010, positive trends
between 2.3 and 2.9 days per decade [47] could be observed. The impacts of projected changes in air
temperature based on that index were analysed e.g., for China [22], showing a statistically significant
increase of 2.4 days per decade on average since 1961.

The index shown in Figure 3 comprises the absolute number of HWs per year (HW-N) and is
strongly related to the index describing the number of days (Figure 4) that contribute to HWs per year
(HW-F). The absolute number of days that contribute to HWs influences the number and the duration
of the events but HW-F is not equal to HW-D multiplied with HW-N, because HW-D indicates the
duration of the longest event, not the average duration [14].

Based on the “in the meantime updated SRES emission scenarios” an increase in the globally
averaged (land only) number of HWs between 4 and 12 depending on the emission scenario was
simulated [48]. Although there is not much difference in the number of heat waves between the two
scenarios, the number of days’ contribution to heat waves each year with reference to the 30-year period
1971–2000 increases significantly following the projected general increase in air temperature. It is worth
noticing, that the arithmetic mean of the HW-N anomalies for Rome in the RCP8.5 scenario for the far
future is lower (+4.0 HW) than that for London (+4.1 HW) and Luxembourg (+4.2 HW) and additionally,
the increase for the far future is less pronounced here than for the other indices. This could be explained
by the fact that the increased number of days that contribute to HWs prolonged the length of the HWs
substantially, so that few but very long HWs occur in all three cities every year at the end of this century.
This is reconfirmed by the results presented in Figure 5. The HW-D index—describing the length of the
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longest HW per year—shows overall positive anomalies with the most pronounced positive trends for
the far future. For both RCPs for Rome, the highest anomalies were projected for the far future. This
index only describes the most extreme event per year, but is important for the health aspects because
the longer the heat waves last, the more pronounced heat-related illnesses are. For Mumbai (India)
an increase of one day in the duration of an HW was associated with a 4.9% increase in the estimated
association between HWs and mortality [49]. The detected increase in the duration of heat waves in the
future are similar to those presented for Eastern Europe or northern Russia [50].

Results of the analysis of the HW-M index also showed increases in the mean temperature
during the HWs for all cities and RCPs, where Luxembourg showed the strongest increase (Figure 6).
For England and Wales 1.0% of all summer deaths were attributable to air temperature [51], and an
increase of 1 ◦C corresponded to a 3.1% increase in daily mortality. In Mediterranean cities a 2%
increase in mortality is associated with a rise of approximately 10 ◦C [13].

Further research is necessary to analyse the timing of the HWs within a year, because HWs
occurring earlier in the summer may have greater effects on mortality [52,53]. The importance of the
age structure is highlighted by the 2003 HW in France. Beginning of August 2003 air temperatures
were above 35 ◦C, and at some meteorological stations even above 40 ◦C [54]. More than 15,000 excess
deaths were observed [55]. It was shown by [56] that mortality excess was estimated to 20% (age
45–74 years), 70% (age 75–94 year) and 120% (older than 94 years). This was also shown for other
European countries by for different age classes [57].

Beside the effects of HWs on health they also might negatively influence food security and water
supply, leading to higher incidence of water-borne infectious and toxin-related illnesses, such as cholera
or bluetongue emergence [58,59]. Furthermore, HWs are of highly relevance for hydrological processes
but also agriculture and forestry [60–63].

5. Conclusions

To understand projected changes in the frequency and intensity of HWs and their potential
negative impacts on public health a detailed knowledge of the projected changes in air temperature
distribution is fundamental [64]. A consistent increase in the frequency and intensity of HWs for
the three selected cities was detected by the use of common climate change indices, recommended
by the WMO and is in line with comparable results from different working groups [65–67]. Even if
anthropogenic greenhouse gas emissions could be completely stopped, a continuous warming will
take place over the next few decades.

The influence of elevated heat stress on public health has been demonstrated in past studies.
A better understanding of the health risks and health impacts of extreme events, combined with the
knowledge of the expected changes for dedicated cities, is a prerequisite for further steps. Beside
the necessary mitigation efforts, that must be undertaken to limit climate warming to a minimum,
increased resilience and the formulation of appropriate adaptation measures is crucial to reducing
negative health impacts in the future. Additionally, a science-based prioritisation of urban planning
measures, implementation of heat warning systems and other effective public health actions will be
possible based on such analysis.
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