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Abstract: Immune dysregulation, Polyendocrinopathy, Enteropathy, X-linked (IPEX) syndrome is a rare autoimmune 
disease due to mutations in the gene encoding for Forkhead box P3 (FOXP3), a transcription factor fundamental for the 
function of thymus-derived (t) regulatory T (Treg) cells. The dysfunction of Treg cells results in the development of dev-
astating autoimmune manifestations affecting multiple organs, eventually leading to premature death in infants, if not 
promptly treated by hematopoietic stem cell transplantation (HSCT). Novel gene therapy strategies can be developed for 
IPEX syndrome as more definitive cure than allogeneic HSCT. Here we describe the therapeutic approaches, alternative to 
HSCT, currently under development. We described that effector T cells can be converted in regulatory T cells by LV-
mediated FOXP3-gene transfer in differentiated T lymphocytes. Despite FOXP3 mutations mainly affect a highly specific 
T cell subset, manipulation of stem cells could be required for long-term remission of the disease. Therefore, we believe 
that a more comprehensive strategy should aim at correcting FOXP3-mutated stem cells. Potentials and hurdles of both 
strategies will be highlighted here. 

Keywords: Autoimmunity, cell therapy, Forkhead box P3, gene correction, Immune dysregulation Polyendocrinopathy  
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1. INTRODUCTION 
Primary immunodeficiency disorders (PIDs) are a het-

erogeneous group of rare genetic diseases affecting different 
arms of the immune system. PIDs are mostly characterized 
by increased susceptibility to infections, although 20% of 
patients with PIDs also manifest with autoimmune symp-
toms, which can be the predominant feature in some patients 
[1]. Immune dysregulation, Polyendocrinopathy, Enteropa-
thy, X-linked (IPEX) syndrome is the prototype PID with 
prevailing autoimmunity [2]. The disease is caused by muta-
tions in the gene encoding for the transcription factor fork-
head box p3 (FOXP3) [3], which lead to the loss of function 
of thymus-derived CD4+CD25+ regulatory T (tTreg) cells 
[4], a small subset of circulating CD4+ T lymphocytes de-
voted to control immune responses to self and foreign anti-
gens (Ags) [5]. In IPEX patients the absence of a functional 
Treg cell compartment leads to the development of multiple 
autoimmune manifestations, including severe enteropathy, 
Type 1 diabetes (T1D), and eczema [6, 7].  

Notably, in about one third of patients with clinical 
symptoms resembling IPEX syndrome, FOXP3 is not mu- 
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tated. In these patients, referred to as “IPEX-like”, the under-
lying genetic defect is unknown, with the exception of few 
cases with identified causative mutations in IL2RA [8-10],  
STAT5b [11-14] and ITCH [15]. While in IPEX patients 
tTreg cells are present but dysfunctional [16-19], in at least a 
subset of IPEX-like patients the disease is associated with a 
reduction in the relative amount of circulating tTreg cells, 
with consequent imbalance between the regulatory and effec-
tor T (Teff) cell compartments [20].  

Autoimmune symptoms associated with quantitative or 
functional Treg cell defects have also been described in well 
defined PIDs of different genetic origin, such as Di George 
syndrome [21] and Wiscott Aldrich syndrome (WAS) [22, 
23].  

In this review we will give an overview of the current 
knowledge of IPEX pathogenesis, disease manifestation, and 
therapy, and discuss the innovative therapeutic approaches 
that we are currently developing for the treatment of IPEX 
and IPEX-like syndromes, with focus on Treg-based cell 
therapy, whose application could potentially extend to sev-
eral autoimmune diseases of different origin.  

2. IPEX SYNDROME: CLINICAL MANIFESTATIONS 
AND DISEASE PATHOGENESIS 

IPEX is a rare disease, with less than 160 cases described 
worldwide in the last ten years [6]. Patients display life-
threatening multi-organ autoimmunity, which manifests in 
males usually in the first months or years of life. The distinc-
tive features of the disease comprise severe enteropathy with 
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refractory diarrhea, usually associated with villous atrophy, 
T1D, and dermatitis. Additional autoimmune manifestations 
comprise autoimmune endocrinopathies, i.e. thyroiditis, cy-
topenias, including hemolytic anemia, thrombocytopenia, 
and neutropenia, and hepatitis with positive auto-antibodies 
(Abs). Infections are also often reported, although they may 
be the consequence of immunosuppressive (IS) therapy.  

Beside the severely affected patients with early onset and 
complete clinical manifestation, many patients manifest with 
a milder form of the disease, which is often mis-diagnosed or 
diagnosed later in young boys. Specific anti-enterocyte auto-
Abs, such as anti-harmonin and anti-villin auto-Abs are 
highly specific for IPEX syndrome, regardless of disease 
severity [24-26]. Therefore, prompt recognition of atypical 
forms of IPEX could be facilitated in patients manifesting 
with gastro-intestinal symptoms by screening for these auto-
Abs . No clear genotype-phenotype correlation, which would 
help to predict the patient-specific course of the disease, has 
been so far identified [27, 28], although the increasing num-
ber of cases recently described will help in addressing it. 

Regardless of the type and site of the mutation, autoim-
mune manifestations result from partial or total loss of func-
tion by Treg cells, which is considered the primary cause of 
disease. FOXP3-mutated Treg cells display defective in vitro
suppressive function [16, 19, 29] and unstable behaviour in 
inflammatory conditions, with putative conversion from a 
regulatory to an effector (i.e. IL-17-producing) phenotype 
[17].  

Additional defects in the Teff cell and in the B cell com-
partments have also been described. Peripheral T cells from 
IPEX patients have altered cytokine production, with im-
pairment of Th1 related cytokines and relative skew to a Th2 
profile [16, 30, 31], and an increased proportion of IL-17-
producing cells in PBMC [17] and gut infiltrates (Bacchetta, 
unpublished data). While there are evidences that the Teff 
cell involvement is directly dependent on mutant FOXP3 
expression in activated Teff cells [32], B cell defects are 
likely to be an indirect consequence of Treg cell dysfunction 
[33]. Indeed, autoreactive mature naïve B cells accumulate in 
the peripheral blood of IPEX patients, implicating alterations 
of the peripheral B-cell tolerance checkpoint [33]. In addi-
tion, multiple tissue-specific auto-Abs, other than auto-Abs 
to enterocyte Ags [10, 24, 25] are often detected in IPEX 
sera. 

Based on this knowledge, in IPEX syndrome the impair-
ment of Treg cell function is crucial for disease pathogene-
sis, suggesting that therapies aimed at improving and/or re-
storing a functional Treg compartment should be beneficial 
to IPEX patients. 

3. CURRENT THERAPEUTIC APPROACHES 

IPEX syndrome is often fatal early in infancy, therefore a 
prompt diagnosis is essential to start treatment as soon as 
possible, before tissue damage spreads to multiple organs. 
The current treatments available for IPEX patients include 
supportive therapy, IS therapy, and hematopoietic stem cell 
transplantation (HSCT). Allogeneic HSCT is the best treat-
ment so far available, with better success reported for re-

duced-intensity conditioning regimens, based on the experi-
ences so far reported in literature ([34] and reviewed in [6]).  

For patients who do not undergo HSCT, the treatment is 
limited to supportive therapies, including nutritional support 
and replacement therapy for endocrine diseases, and to com-
bination of multiple IS drugs, without permanent control of 
autoimmunity in most of the patients. Notably, the drug ra-
pamycin has been reported to be a successful alternative to 
calcineurin inhibitors, with clinical remission described in 
four IPEX patients with long-term follow-up [27, 35, 36]. 
Despite these latter promising results, HSCT still remains 
the only curative treatment currently available [27], although 
suitable donors for HSCT are not available for all patients 
and the poor clinical conditions of these patients make them 
particularly susceptible to the toxicity of conditioning regi-
mens and post-transplant complications. Therefore, the need 
of effective therapeutic approaches is still unmet for patients 
with IPEX syndrome.

Based on HSCT outcome in the context of IPEX syn-
drome, we learned that partial donor chimerism is sufficient 
for complete disease remission, provided that full engraft-
ment is achieved in the Treg compartment, suggesting that 
few functional Treg cells could be sufficient to control auto-
immunity in IPEX syndrome [34, 37, 38]. Similarly, partial 
bone marrow transplant or adoptive Treg cell transfer in 
scurfy mice, the natural animal model for FOXP3 deficiency, 
is sufficient to control the disease [39], confirming the gen-
erally accepted idea that FOXP3-mutated Treg cells are the 
snipers in IPEX syndrome. In addition, in female healthy 
carriers of FOXP3 mutations only the wild type FOXP3 al-
lele is active in Treg cells, giving rise to a functional Treg 
compartment, with no signs of disease, despite mixed popu-
lation of FOXP3-mutated and -wild-type expressing Teff and 
B cells are circulating in peripheral blood [40].  

Based on the latter observations, we reasoned that resto-
ration of a functional Treg cell pool could be an opportunity 
to control the disease. We therefore designed cell/gene ther-
apy approaches to selectively restore the Treg compartment 
in patients with IPEX syndrome, as described below.  

4. FUTURE THERAPEUTIC PERSPECTIVE: TREG-
BASED IMMUNOTHERAPY AND STEM-CELL 
BASED THERAPIES 

In the recent years the technology for genetic repro-
gramming of mammalian cells have remarkably improved, 
allowing translation of gene therapy-based approaches in 
clinical trials for the cure of several genetic diseases and 
cancer [41]. Gene therapy with genetically modified hema-
topoietic stem cells has proven to be safe and effective when 
applied not only to monogenic PIDs [42-44], but also to 
lysosomal storage diseases [45]. Similarly, gene therapy with 
peripheral T lymphocyte has been applied to Adenosine 
Deaminase deficient Severe Combined Immune Deficiency 
(ADA-SCID) [44] and for the treatment of cancer [46]. 
Therefore, both T-cell- and stem-cell-based gene therapy has 
become reality in the clinical practice. 

Using in vitro and pre-clinical models we are currently 
investigating the feasibility and efficacy of multiple gene-
therapy-based strategies to restore a functional Treg com-
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partment in patients with IPEX syndrome, with the ultimate 
goal of controlling the devastating autoimmunity resulting 
from mutations of the FOXP3 gene. These include i) adop-
tive transfer of autologous Treg cells generated in vitro by 
lentiviral vector- (LV-) mediated ectopic overexpression of 
FOXP3 in conventional CD4+ T cells; ii) infusion of autolo-
gous hematopoietic precursors engineered to express wild-
type FOXP3, or iii) administration of autologous gene-
corrected hematopoietic precursors (Fig. 1). 

4.1. Treg-Based Immunotherapy  

Treg cells are critically involved in the control of im-
mune reactions to self and non-self Ags, including allo-Ags, 
tumor-Ags, and allergens, and they can possibly induce long-
term Ag-specific tolerance, without limiting protective re-
sponses to pathogens. Due to their power as specific modula-
tors of immunity, investigators have proposed their use in 
clinically relevant settings to dampen undesirable immune 
responses, as in the case of tolerance promotion after solid 
organ or bone marrow transplant, in inflammatory diseases, 
and autoimmune diabetes (reviewed in [47]). 

Treg cells, including both CD25+ Treg cells and T regula-
tory type 1 (Tr1) cells, have been applied in several clinical 
trials with the aim of preventing Graft-versus-host disease 
(GvHD) after allogeneic HSCT. The results of the concluded 
trials agree on the feasibility and overall safety of the proce-
dure [48-52], and in some of them also a certain efficacy has 
been showed [49, 50]. Clinical application of Treg cells has 
been extended to inflammatory diseases in a recently com-
pleted trial in which Ag-specific Tr1 cell clones were used to 
treat patients with Crohn’s Disease (CD), resulting in a sig-
nificant reduction in CD Activity Index in responder patients 
[53]. These encouraging results paved the way for a wider 
application of Treg cells in therapeutic settings. Ongoing 
trials comprise i) application of several immunoregulatory 
cell types, including freshly isolated and in vitro expanded 
CD25+ Treg cells, after solid organ transplantation, with the 
aim of inducing tolerance to allo-Ags and avoiding the life-
long IS treatment that kidney transplant recipients usually 
undergo [54]; ii) use of in vitro expanded polyclonal CD25+

Treg cells in patients with recent onset T1D [55]. 
The gene transfer technology has been also applied to the 

Treg field with the aim of generating homogeneous and 
functional Treg cell populations by ectopic overexpression of 
FOXP3 in conventional CD4+ T cells from healthy donors 
[4, 56-58] or by ectopic expression of genes encoding for T 
cell receptors with known specificity in polyclonal Treg cells 
[59-61].  

Based on these promising pre-clinical and clinical results, 
we envisaged the possibility to restore immune regulation in 
IPEX patients by administration of autologous Treg cells 
generated in vitro by LV-mediated overexpression of wild-
type FOXP3 in conventional CD4+ T cells (Fig. 1). We re-
cently demonstrated that IPEX FOXP3-mutated CD4+ T 
cells could be efficiently converted into functional Treg-like 
cells, regardless of the type or site of mutation. Constitutive 
over-expression of FOXP3 generates functional and stable 
FOXP3+ Treg-like cells (CD4FOXP3 T cells). The latter dis-
play potent suppressive activity both in vitro and in vivo, in a 
model of xeno-GvHD, reduced proliferative capacity and 

cytokine production [62]. Furthermore, CD4FOXP3 T cells 
generated from naïve CD4+ T cells have stable expression of 
FOXP3 in steady state and inflammatory conditions, in 
which they maintain stable suppressive function and cyto-
kine production profile [62]. In terms of safety, CD4FOXP3 T
cells appear to be unable to expand when injected in vivo,
even in inflammatory conditions, making them safe for clini-
cal application [62]. We therefore propose that, when a 
HLA-compatible donor is not available or the patient does 
not meet the conditions for transplantation, treatment with 
engineered T cells could be beneficial to control the severity 
of the disease, alone or in combination with IS. 

One of the main open issues of such a treatment is related 
to the lifespan of CD4FOXP3 T cells, which is of difficult 
assessment in pre-clinical studies. The other possible 
drawback is a generalized effect of immunosuppression that 
these potent CD4FOXP3 T cells may cause once in vivo. In 
order to address this, we are currently establishing a protocol 
to generate CD4FOXP3 T cells from Ag-experienced T cells 
with known specificity, which should restrict their 
suppressive effect to the target Ag (Bacchetta, unpublished 
results). This approach could extend the application of the 
CD4FOXP3 T-cell product beyond IPEX syndrome, to treat 
any autoimmune disease with known target auto-Ags. 

4.2. Stem-Cell-Based Gene Therapy

Although our studies provided evidences that CD4FOXP3 T 
cells have the potential to control immune dysregulation in 
IPEX patients, such an approach would not correct the de-
fects affecting the Teff compartment, in which the role of 
FOXP3 is only partially understood [32], and may require 
multiple infusions for permanent control of the disease. A 
more rationale and definitive approach would imply engi-
neering hematopoietic stem cells. Since the constitutive 
overexpression of FOXP3, could be detrimental in hema-
topoietic precursors, which physiologically do not express 
FOXP3, we are exploring different strategies to modulate 
FOXP3 expression in HSC, for example using a T cell spe-
cific promoter (i.e. CD4) with addition of cis-regulatory ele-
ments, such as microRNA (miR) target sequences and CD8+

T cell specific silencer sequence, to prevent transgene expres-
sion in HSC precursor, antigen presenting cells and CD8+ T 
lymphocytes [63]. The capacity of such engineered HSC to 
generate functional Treg cells, without impairment of the 
Teff cell compartment, will be evaluated in vivo in pre-
clinical humanized murine models, using immunodeficient 
mice as transplant recipient.  

Although transplantation of engineered HSC has proven 
to be effective in other PIDs, such as ADA-SCID and WAS 
[42, 44], gene therapy for IPEX syndrome is more challeng-
ing, because of the specific expression of FOXP3 in a limited 
cell subset in physiological conditions. Furthermore, studies 
on the role of FOXP3 during thymic T-cell development and 
T-cell repertoire selection are still incomplete [64], making it 
difficult to predict the outcome of ectopic FOXP3 expression 
in developing thymocytes. 

Therefore, the development of gene transfer- based stem 
cell therapy for IPEX syndrome remains challenging (Fig. 
1). 
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Fig. (1). The scheme summarizes the alternative therapeutic approaches for IPEX syndrome proposed in the present review. Xeno-GvHD: 
xenogeneic Graft versus host disease; mut: mutated; wt: wild type; LV: lentiviral vector; HSC: hematopoietic stem cells; EF1�: elongation 
factor 1-� promoter; �LNGFR: complementary DNA of the truncated low affinity nerve growth factor; mCMV: minimal core promoter de-
rived from the human cytomegalovirus; flFOXP3: complementary DNA of the full length isoform of FOXP3; mirT: micro-RNA target se-
quences; TSpro: tissue-specific promoter; HSCFOXP3: hematopoietic stem cells transduced with lentiviral vector encoding for FOXP3; 
HSCwtFOXP3: hematopoietic stem cells after target insertion of a wtFOXP3-encoding DNA fragment. 

4.3. Genome Editing Based Gene Therapy 

While pre-clinical results using a gene transfer lentiviral 
approach for gene therapy of IPEX are promising, the 
achievement of specific expression in the regulatory T-cell 
lineage is still questionable and the risk of insertional onco-
genesis is a real limitation, suggesting that genome edit-
ing/gene correction may be the best long-term gene therapy 
strategy (Fig. 1). The general gene correction approach 
would be to deliver an engineered nuclease and donor DNA 
gene correction fragment simultaneously to either hema-
topoietic stem, progenitor cells or to T-cell precursors. The 
engineered nucleases would be designed to create a site-
specific DNA double strand break (DSB) in the FOXP3
gene. This DSB would then activate the cellular homologous 
recombination machinery that would utilize the DNA donor 
correction fragment as a template for repair thereby both 
healing the DSB and correcting the gene mutation. There are 
now several different platforms for the design of engineered 
nucleases including homing endonucleases/meganucleases, 
zinc finger nucleases (ZFNs), TAL effector nucleases 
(TALENs) and RNA guided endonucleases (RGENs of the 
CRISPR/Cas9 family) (reviewed in [65]). Each of these plat-
forms have different advantages and disadvantages but in the 
end a clinical grade nuclease would have both high on-target 
activity to simulate the gene correction in a large fraction of 
cells and a high specificity such that few genomic mutations 
at other sites in the genome were created in the gene correc-
tion process. Natural meganucleases are the most specific but 
have been challenging to re-engineer to novel disease-related 
target sites. ZFNs are currently the most clinically advanced 
having already entered clinical trials, as an approach to cre-

ate autologous cells that are resistant to HIV by disrupting 
the CCR5 gene [66]. In addition, the use of ZFNs targeting 
IL2RG for the correction of hematopoietic stem cells from 
X-linked SCID patients has been recently reported [67]. 
TALENs are simpler to engineer than ZFNs, show improved 
specificity over ZFNs and have been utilized in a number of 
pre-clinical studies for genetic diseases ([68-70], and Por-
teus, unpublished data). Finally, CRISPR /Cas9 RGENs are 
the simplest to engineer, have shown tremendous activity in 
a range of different cell types [71] but because they have 
only been used for genome editing since 2013, issues about 
specificity and activity in primary somatic cells (including 
HSC) remain. Because mutations that cause IPEX are scat-
tered throughout the gene, the most efficient gene editing 
strategy would probably be a functional gene correction ap-
proach. In this approach a wild-type FOXP3 cDNA would be 
precisely inserted such that it utilized the endogenous initia-
tion codon. In this way the wild-type cDNA would be ex-
pressed and regulated from the endogenous regulatory ele-
ments and with the correct design of the donor construct, any 
splicing regulation could also be maintained. By targeting 
the wild-type cDNA to functionally correct the endogenous 
gene, one would solve the potential drawbacks of insertional 
oncogenesis and mis-regulated gene expression that may 
occur in a lentiviral strategy. Current experiments are ongo-
ing to test the advantage and feasibility of gene correction 
for IPEX. 

CONCLUDING REMARKS 

Knowledge and biotechnology have tremendously em-
powered the field of gene manipulation and gene correction 
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for multiple diseases. Physicians and researchers will have to 
continue working to confirm the benefit of such an approach 
and to make gene therapy not only feasible, but also afford-
able for a large number of centers and for patients all around 
the world. 

LIST OF ABBREVIATIONS

Ab = Antibody 
ADA-SCID = Adenosine Deaminase deficient Severe 

Combined Immune Deficiency 
Ag = Antigen 
CD = Crohn’s Disease 
DSB = DNA double strand break 
FOXP3 = Forkhead box p3 
GvHD = Graft-versus-host disease 
HSCT = Hematopoietic stem cell transplantationì 
IPEX = Immune Dysregulation Polyendocrinopa-

thy Enteropathy X-linked 
IS = Immunosuppressive 
LV = Lentiviral-vector 
miR = micro-RNA 
PBMC = Peripheral blood mononuclear cells 
PID = Primary immunodeficiency 
RGENs = RNA guided endonucleases 
(t)Treg cell = (thymic-derived) regulatory T cell 
T1D = Type 1 diabetes 
TALENs = Transcription activator-like effector nucle-

ases
Teff cell = Effector T cell 
Tr1 cell = T regulatory type 1 cell 
WAS = Wiscott Aldrich syndrome 
ZFNs = Zinc finger nucleases 
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