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Anti‑inflammatory effect 
of oligostilbenoids from Vitis heyneana 
in LPS‑stimulated RAW 264.7 macrophages 
via suppressing the NF‑κB activation
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Abstract 

Background:  Vitis heyneana is widely distributed in the north of Vietnam, it has been used in Vietnamese traditional 
medicine as an agent for treatment of arthritis, bronchitis, carbuncles and inflammatory conditions, and menstrual 
irregularities. However, this plant has not been investigated in phytochemical constituents and biological effects, 
especially in the anti-inflammatory property.

Results:  Bioassay-guided fractionation of the EtOAc soluble fraction from the aerial part of Vitis heyneana resulted in 
the isolation of a series of oligostilbenoids as piceid (1), 2-r-viniferin (2), betulifol A (3), vitisinol C (4), (-)-trans-ε-viniferin 
(5), α-viniferin (6), shoreaketon (7), amurensin B (8), vitisinol B (9), and cis-vitisin B (10). Compound 5 showed the 
most potent inhibitory activities by suppressing LPS-induced COX-2 expression and PGE2 production. This compound 
exhibited significantly reduced LPS-induced nitric oxide (NO) release in a dose-dependent manner. These effects are 
accompanied with the inhibition of transcription factor NF-κB activation.

Conclusion:  The results suggested that trans-ε-viniferin exerts anti-inflammatory effects via suppression the NF-κB 
activation in RAW 264.7 cells. 
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Background
The genus Vitis (family Vitaceae) is in the major group 
with more than 66 species identified and is distrib-
uted throughout the world [1]. In Vietnam, 6 species 
of Vitis genus have been reported until now, including 
V. larbusca L., V. heyneana Roem, & Schult., V. retordii 
Roman du Caill. Ex Planch. V. vinifera L., V. balansana 
Planch., V. flexuosa Thunb [2]. Typical constituents 
in Vitis genus have been reported to be oligomers of 

resveratrol named stilbenoids [3–7]. To date, over 1000 
stilbenoids have been identified in various plant families 
such as Celastraceae, Cyperaceae, Fabaceae, Iritaceae, 
Moraceae, Paeoniaceae, and Vitaceae. The Vitaceae 
family includes about 900 species within 14–17 gen-
era, primarily in tropical climate [8, 9]. Of these genera, 
only five, the Ampelopsis, Cissus, Cyphostemma, Par-
thenocissus, and Vitis genera reported the presence of 
stilbenoids. However, chemical constituents of the spe-
cies in Vitis genus have been studied the most. Stilbe-
noids possessed various pharmacological activities such 
as antioxidative, anti-inflammatory, and antimicrobial 
activities, as well as having cardioprotective, hepatopro-
tective, and neuroprotective effects [10–14]. Although 
approximately 100 stilbenoid monomers, dimers, and 
oligomers have been found in all Vitis species, research 
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on the chemical compositions and biological activities 
of Vitis genus remains lacking [15]. Our screening anti-
inflammatory effect of an ethanol extract of 4 Vitis spe-
cies including V. heyneana Roem. & Schult. (VH), Vitis 
vinifera L. (VV); Vitis balansana Planch. (VB), and Vitis 
labrusca L. (VL) collected in Vietnam via suppression 
of LPS-induced COX-2 expression found that 96% of 
ethanol extract of VH exhibited the most activity [16]. 
Besides, V. heyneana is widely distributed in northern 
Vietnam, for example in Cao Bang, Lang Son, and Lao 
Cai provinces. The stems and roots of this species are 
traditionally used for the treatment of arthritis, bron-
chitis, carbuncles and inflammatory conditions, and 
menstrual irregularities in Vietnamese indigenous peo-
ples [17]. So far, few studies have been done to investi-
gate the chemical constituents of VH. Currently, only a 
few studies have referred to the presence of stilbenoids 
in VH [17–19]. However, evaluation of anti-inflamma-
tory activities of the VH species have not been studied 
yet. This study reports the anti-inflammatory effects of 
VH extracts and its isolated oligostilbenoids via sup-
pressing LPS-induced COX-2 expression, PGE2 and 
NO productions, and NF-κB activation in RAW 264.7 
macrophages.

Results and discussion
Screening inhibitory activities
To study the cytotoxic effects of extract and its fractions 
on cell viability, the RAW 264.7 cells were incubated 
and treated a concentration of all materials (50 µg/mL). 
The results showed that all the extract and fractions that 
induced cell toxicities were negligible at the above con-
centrations [16]. In order to examine candidate extract/
fractions inhibiting COX-2 in RAW 264.7 cells, ethanol 
V. heyneana extract (VH) and its fractions (n-hexane-
VHH, ethyl acetate-VHE and water-VHW) were tested 
on COX-2 mRNA expression level by qPCR. As shown in 
Fig. 1, the inhibitory effect of COX-2 mRNA was mostly 
potently suppressed by VHE and VH.

Structure identification of the isolated compounds
To investigate the active components from the poten-
tial fraction, several chromatographic techniques were 
applied and ten compounds were obtained after puri-
fication. On the basis of NMR spectroscopic analysis, 
and in comparison with the previous studies, the chemi-
cal structures of these compounds were identified as 
piceid (1), 2-r-viniferin (2), betulifol A (3), vitisinol C 
(4), (-)-trans-ε-viniferin (5), α-viniferin (6), shoreaketon 
(7), amurensin B (8), vitisinol B (9), and cis-vitisin B (10) 
(Fig. 2) [17, 20–26].

Screening inhibitory activities of oligostilbenoids 
by suppressing LPS‑induced COX‑2 expression and PGE2 
production in RAW 264.7 macrophages
The effects of all isolated compounds at concentration 
of 10  µM, and a reference agent, meloxicam (20  µM) 
were further examined on LPS-induced COX-2 protein, 
mRNA expression and LPS-induced PGE2 production in 
RAW 246.7 cells by reported method with slight modifi-
cation. As the results in Fig. 3, western blotting and real 
time-PCR assays revealed that, among the active metabo-
lites, trans-ε-viniferin (5; 10  µM) potently suppressed 
LPS-induced COX-2 expression in RAW 246.7 cells 
(Fig. 3a, b). Furthermore, ELISA assay confirmed that 5 
most inhibited the level of LPS-induced PGE2 produc-
tion in RAW 264.7 cells (Fig. 3c).

Effects of 5 on COX‑2, iNOS expression and PGE2 
production in RAW 264.7 macrophages
Considering that the 5 was the most active metabolite, 
the effects of this compound was investigated on LPS-
induced PGE2 production in RAW 264.7 cells using 
ELISA method with slight modification. As the results in 
Fig. 4a show, stimulation of cells resulted in the increase 
of PGE2 production compared with unstimulated vehi-
cle cells. In the administration of 5 (1–30 µM), the PGE2 
productions were remarkably reduced in a concentra-
tion dependent manner (p  <  0.05). We further investi-
gated whether the inhibition effect by the same range of 
concentration of 5 was related to the gene expression, 

Fig. 1  COX-2 expression effects of V. heyneana extract (VH) and its 
fractions (VHH: n-hexane, VHE: ethyl acetate, VHW: water fraction; all 
50 µg/mL). Eighteen hours after treating cells with LPS (5 µg/mL) with 
or without fractions in RAW 264.7 cells. Samples were harvested and 
lysated for COX-2 mRNA level by qPCR. Relative changes in the COX-2 
mRNA expression (*significant as compared to control, *, p < 0.05; 
**, p < 0.01; ***, p < 0.001; #significant as compared to LPS group, 
n = 4–5)



Page 3 of 9Ha et al. Chemistry Central Journal  (2018) 12:14 

O

OH

OH

HO

HO

O

HO

HO

HO

OH

OH

OH
1

4

7

8
9

11
13

10'

11'

13'

9'

7'
8'

'4 '3

4''
7''

8'' 9''
10''

11''

13''

7'''8'''

9'''10'''

11'''
13'''

4'''

1'''

1'

H
H

H

H

HH

O

OH
H

H

HO

OHO

HO HH

1

4

7
8

9

10

11

1' 4'7'
8'

9'

10'

11'
13'

13

2

3

4

HO

OH

O

OH

OH

HO
1 47

8
9

11

13
1'

4'

7'
8'

9' 10'

11'13'

5

6

7

OO

OH

HO OH

OH

HOOH

HO

1
3

5

7

8
9

11

13 1'

3' 5'

7'
8'

9'
10'

11' 13'

14'
1''

3''

5''

7''

8''
9''

11''

13''

8

O

HO

OH

OH

OH

1

3

5
7

8

9

11

131'
3'

5'

7'

8'

9'
10'

11'
12'

13'

O

O

O

OH

HO

HO

OH

OH

OH

1
3

5

7 8
9
10

11

13

1'

3'

7'

8'

9'
10' 11'

13'

1''

3''

5''

7''

8''

9''

11''

10''

13''

O
HO

OH

H

H
HO

OH

HO

OH

OHC

13

5

7 8
9

1012

14

1'

3' 5'

7' 8'

9'
10'

11'

13'

1''
3''

5''

9

HO

HO
O

HO

OH

O

OHO
HO

OH

OH

HO

1
3

5

7

8
9

11
13

1'

3'

5'

7'
8'

9'10'

11'
13'

1''

3''
4''

7''

8''
9''

11''

13''

1'''3'''

7'''

8'''
9'''11'''

13'''

10

O

OH

OH
H

H

1
2

3

4
5

6

a

b

1'

2'
3'

4'

5'

6'

O
HO

HO
OH

OH

1''
2''3''

4'' 5''
6''

1

O

O

OH

HO

O

HO

HO

H

H

H

H

H

H

H R O

OH

OH

OH

HO
H

H

R=

1

3

5

7
8

9

10

12

14

1'2'

4'

7' 8'

9'

11'

13'

1''

3''
5''

7''
8''

9''
11''

13''

1'''

3'''
5'''

7'''
8'''

9'''

10'''

12'''

Fig. 2  Chemical structures of oligostilbenoids from V. heyneana (1–10)
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especially in quantitation protein and mRNA level of 
COX-2 by performing western blotting and real-time 
PCR. As shown in Fig.  4b and c, COX-2 levels were 
decreased by both of protein amount and mRNA levels. 
These results were also confirmed by dose dependent 
manner.

Effect of 5 on NO productions and NF‑κB activation
As shown in Fig.  5a, 5 (Code VH07,  1–30  µM) signifi-
cantly inhibited LPS-induced NO production in a dose 
dependent manner. Especially, at the highest concen-
tration (30  µM), this compound could decrease the 
amount of NO production more than 2-fold compared 
to unstimulated vehicle. Since NF-κB was identified as 
an important transcription factor that controls several 
pro-inflammatory mediations, we investigated the NF-κB 
transcription activity by performing luciferase reporter 
gene assay and the results are shown in Fig.  5b. Com-
pound 5 (1–30  µg/mL) dose dependent reduced LPS-
induced NF-κB transitivity (p < 0.05).

Discussion
Vitis sp. is widely distributed and has been used as the 
raw material for juice and wine all over the world. For 
the pharmaceutical application, it has been reported 
that the roots, stems and leaves possessed anti-inflam-
matory, antioxidants, and anti-tumour activities, and 
contains a number of stilbenoid and resveratrol oligom-
ers. Previously, resveratrol (3,4′,5-trihydroxystilbene) 
isolated mostly from Vitis sp. as a main metabolite with 
high concentration, was shown to play an important role 
in human health with extremely extensive bioactivities 
such as anti-bacterial, anti-thrombotic, anti-oxidation, 
anti-inflammatory, reduce hypertension, and especially 
anti-cancer [9–13]. In addition, several studies focused 
on resveratrol oligomers that are characterized by the 
polymerization of several resveratrol units [9–13]. In 
this study, we demonstrated the potential involvement of 
the NF-κB pathway in the anti-inflammation of metabo-
lites from V. heyneana. Among the active components, 
5 was found to be the most anti-inflammatory activity 

Fig. 3  Comparison of COX-2 protein expression effects of compounds from V. heyneana. 18 h after treating cells with LPS (5 μg/mL) with or without 
compounds in RAW 264.7 cells, samples were harvested and lysated to immunoblottings with COX-2 and β-actin antibodies. b COX-2 mRNA level 
by qCPR (***significant as compared to control, *p < 0.05; #significant as compared to LPS group, n = 5. c Comparison of PGE2 production effects of 
all compounds (10 M). RAW 264.7 cells were incubated with 5 μg/mL LPS for 18 h with or without compounds and amount of PGE2 in medium was 
determined using PGE2-specific ELISA assays (***significant as compared to control, *p < 0.05; #significant as compared to LPS group, n = 5. Codes: 
VH02 compound 1; VH03 - 2; VH04 - 3; VH06 - 4; VH07 - 5; VH08 - 6; VH11 - 7; VH13 - 8; VH15 - 9; and VH16 - 10. 
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Fig. 4  Effect of 5 on COX-2 and iNOS expression in dose-dependent manner (1–30 µM). Raw264.7 cells were treated with 5 μg/mL LPS for 18 h 
with or without VH07 and then harvested and lysated to immunoblottings with COX-2, iNOS and β-actin antibodies. b Effect of 5 on LPS-induced 
COX-2 was analyzed by qPCR (***significant as compared to control, *p < 0.05; #significant as compared to LPS group, n = 5). c Effect of 5 on PGE2 
production. RAW 264.7 cells were incubated with 5 μg/mL LPS for 18 h with or without 5 and amounts of PGE2 in medium was determined using 
PGE2-specific ELISA assays. (***significant as compared to control, *p < 0.05; #significant as compared to LPS group, n = 4)

Fig. 5  Compound 5 (VH07) reduced LPS-induced NO production and NF-κB activity in RAW 264.7 macrophages in a dose-dependent manner. 
***significant as compared to control, *p < 0.05; #significant as compared to LPS group, n = 4
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in suppression of NO, PGE2, and COX-2 production in 
LPS-stimulated RAW 264.7 macrophage cells. We also 
found that, this oligostilbenoid inhibited LPS-induced 
NF-κB activation.

RAW 264.7 cells are the murine macrophage cells line 
that plays an important testable model for anti-inflamma-
tory agent nowadays. When the macrophage cells were 
activated by LPS, a number of cytokines were released 
and recordable. Among them, NO is an inflammation 
mediator, in which, NO produced by iNOS coursed 
toxicity to cells and directly concern to the pathogen-
esis of inflammation process. COX-1 and COX-2 are 
the isozymes that convert arachidonic acid to prosta-
glandin, however, COX-2 responses mainly to produce 
a huge amount of PGEs in macrophage cells. Inhibition 
of the above productions may be the effective method for 
the treatment of several types of inflammation. Of our 
experiments, this is the first report confirming that oli-
gostibene from V. heyneana suppresses the LPS-induced 
inflammatory response by activating NF-κB in  vitro. 
(-)-Trans-ε-viniferin was first isolated from V. vinifera 
and classified as a model for its bio-synthesis from resver-
atrol. Similar to resveratrol, this dimer was shown to have 
several biological properties such as anti-oxidant, antide-
pressant, and anti-adipogenesis [27–30]. This compound 
showed cytotoxicity in several cancer cell lines as C6, 
Hep G2, HeLa, and MCF-7n and exerted the anti-pro-
liferative and pro-apoptotic effect in U266, RPMI8226, 
Jurkat, K562 and U937 and other cancer cell lines [4, 
31]. (-)-Trans-ε-viniferin and its derivative compounds 
slightly reduced cell proliferation on human adenocar-
cinoma colon cells and could constitute new putative 
anti-cancer agents on colon carcinoma [32]. (-)-Trans-
ε-viniferin significantly attenuated mutant Htt-induced 
depletion of SIRT3 and protected cells from mutant Htt. 
This compound also decreased levels of reactive oxygen 
species and prevented loss of mitochondrial membrane 
potential in cells expressing mutant Htt [33]. The other 
form, α-viniferin, also down-regulated the LPS-induced 
expression of pro-inflammatory genes such as iNOS and 
COX-2 by suppressing the activity of NF-κB via dephos-
phorylation of Akt/PI3K. This compound suppressed NO 
and PGE2 production in the late stage of inflammation 
through induction of heme oxygenase-1 (HO-1), and the 
expression of pro-inflammatory genes iNOS and COX-2 
in the early stage of inflammation by inhibiting the Akt/
PI3K-dependent NF-κB activation in BV2 microglial cells 
[34]. The V. thunbergii extract that was rich in (-)-trans-
ɛ-viniferin significantly inhibited PGE2 production in 
LPS-induced PHCs cells without exhibiting significant 
cytotoxicity [35].

Even though (-)-trans-ɛ-viniferin and its isomers have 
been shown to have several anti-inflammatory effects, 

the molecular mechanism underlying the anti-inflamma-
tory in LPS-induced RAW 264.7 has not been completely 
elucidated thus far. The results of our research indicate 
that among the active components, treating the RAW 
264.7 macrophage cells with several concentrations of 
(-)-trans-ɛ-viniferin (5) could inhibit LPS-induced NO, 
PGE2, iNOS, COX-2 productions in a dose dependent 
manner. With the highest concentration at 30  µM, this 
oligostibene significantly reduced the above produc-
tions more than 50% as compared to the LPS-treated cell 
alone.

Methods
Plant materials
The aerial parts of V. heyneana were collected from Lao 
Cai province (north of Vietnam) in September 2016 and 
botanically identified by Assoc. Prof. Dr. Nguyen The 
Cuong, Institute of Ecology and Biological Resources. 
A voucher specimen (TL07) has been deposited at the 
Herbarium of IEBR and Department of Phytochemistry, 
Hanoi, Vietnam.

General experiment procedures
Melting points were determined on an Electrothermal 
apparatus. Optical rotations were measured on a JASCO 
V-550 UV/Vis spectrometer (Tokyo, Japan). The NMR 
[1H (500  MHz), 13C (125  MHz)] experiments were per-
formed on a Bruker Advance 500 spectrometer (United 
State). Chemical shift was reported in ppm downfield 
from TMS, with J in Hz. Mass spectra were obtained 
with an AGILENT 1200 series LC-MSD Ion Trap (United 
State). Analytical TLC was performed on Kieselgel 60 
F254 (Merck) plates (silica gel, 0.25  mm layer thickness) 
and RP-18 F254 (Merck) plates (0.25 mm layer thickness). 
UV spots were visualized using ultraviolet irradiation (at 
254–365 nm) and by spraying with 10% H2SO4, followed 
by heating with a heat gun. Column chromatography 
was performed on silica gel (70–230 and 230–400 mesh, 
Merck), YMC RP-18 resin (30–50 μm, Fuji Silysia Chemi-
cal Ltd.), and Sephadex™ LH-20 columns (Amersham 
Biosciences, Uppsala, Sweden). Dulbecco’s modified 
Eagle’s medium (DMEM), trypsin and fetal bovine serum 
(FBS) were purchased from Gibco BRL (Grand Island, 
NY). COX-2 (1:1000, Cat: 610204) was obtained from BD 
Biosciences. Secondary mouse or rabbit HRP-conjugated 
antibodies (1:5000 or 1:10,000, Cell Signaling, #7074, 
#7076). β-actin (Cat: A5316), LPS (Cat: L4391), meloxi-
cam (cat: M3935) and MTT (cat: M2128) were purchased 
from Sigma-Aldrich.

Cell culture
RAW 264.7 cells were purchased from the American 
Type Culture Collection (ATCC, Rockville, MD). Cells 
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were cultured and growth in DMEM (Gibco) medium 
containing 10% fetal Bovine Serum (FBS) (Gibco), 
100  units/mL penicillin, and 100  μg/mL streptomycin 
at 37  °C in 5% CO2-95% air. Penicillin and streptomycin 
were obtained from Biochrom.

Western blot analysis
RAW 264.7 cells were seeded in 6 well-plate and treated 
with extractions or compounds from V. heyneana. Cells 
were collected and washed with cold phosphate-buff-
ered saline (PBS). The collected cells were lysed on ice 
for 30 min in 100 μL lysis buffer [120 mM NaCl, 40 mM 
Tris (pH 8), 0.1% NP40 (Nonidet P-40)] and centrifuged 
at 12,000 rpm for 30 min. BCA protein assay kit (Pierce, 
Rockford, IL) was used to measure protein concentra-
tions as described in a previous report [36]. Finally, 
bands were detected by ECL kit (Pierce West Femto), and 
images were acquired using the Odyssey Fc Imager (LI-
COR Biosciences).

Quantitative real‑time PCR (qRT‑PCR)
Total RNA was isolated using Trizol (Takara, Japan) 
according to the manufacturer’s instructions. COX-2 
mRNA expression was analyzed by real-time qPCR (Ste-
pOnePlus qPCR cycler, Applied Biosystems) using Quan-
tiFast SYBR Green RT-PCR Kit Qiagen, (#204156) and 
primers (Qiagen): COX-2 (Ptgs2) (Cat: QT00165347), 
Mm_GADPH (Cat: QT01658692).

Measurement of nitrite
RAW 264.7 cells (5 ×  105  cells) were pre-incubated at 
37  °C for 12  h in serum-free medium and NO produc-
tion was monitored by measuring nitrite levels in cul-
ture media using Griess reagent (1% sulfanilamide, 0.1% 
N-1-naphthylenediamine dihydrochloride, and 2.5% 
phosphoric acid). Absorbance was measured at 540  nm 
after incubating for 10 min.

Reporter gene assay
One µg of the plasmid NF-κB or 50  ng of pRL Renilla 
was transfected into the cells using LipofectAMINE2000 
(Invitrogen Corp., Carlsbad, CA) using the Dual-Lucif-
erase Reporter Assay Systems (Promega, Madison, WI, 
USA). After 6  h, the transfection medium was replaced 
with the DMEM without serum and the cells were fur-
ther incubated for 18 h. The firefly and hRenilla luciferase 
activity was detected using a multilaber counter. Ratio of 
activity was determined by normalizing the promoter-
driven luciferase activity versus hRenilla luciferase.

Enzyme‑linked immunosorbent assay (ELISA)
Prostaglandin E2 (PGE2) concentrations in DMEM 
media were measured by ELISA kit (Cayman 

Chemical, Ann Arbor, MI) according to the manufactur-
er’s protocols.

Extraction and isolation
The aerial part of V. heyneana (5.0 kg) was extracted with 
EtOH 96% (3  h ×  3L) at 50  °C. The combined extracts 
were filtered and evaporated under pressure to give 
green residue (235.5  g) which was suspended in water 
and partitioned with organic solvent to get n-hexane 
(26.05 g), EtOAc (129.67 g), and aqueous extract (50.4 g), 
successfully. The EtOAc extract (34.0  g) was initially 
chromatographed on a silica gel column (63–200  µM 
particle size, Merck) eluting with a stepwise gradient of 
methylene chloride (MC)-MeOH (from 100:1 to 1:100) 
to yield seven fractions (VHE1-VHE7). Fraction VHE4 
(1.5  g) was fractionated by normal-phase silica gel CC 
(40–63 µM particle size, Merck) eluted with MC-MeOH 
(20:1) to obtain compound 3 (13  mg) and five smaller 
fractions (VHE4.1-VHE4.5). Fraction VHE4.3 Fraction 
VHE4.4 (500 mg) was subjected to Sephadex eluted with 
a mixture of MeOH-H2O (2:1) to give 4 (23  mg) and 5 
(40 mg). Fraction VHE5 (3.5 g) was isolated by silica gel 
CC with elution mixture of MC-MeOH (15:1) to yield ten 
sub-fractions (VHE5.1-VHE5.10). Compound 6 (25  mg) 
was purified from fraction VHE5.3 (400  mg) by using 
Sephadex LH-20 eluting with MeOH-H2O (5:1). Fraction 
VHE5.4 (1.1 g) was applied to RP-C18 gel CC using a gra-
dient mixture of MeOH-H2O (from 1:2 to 2:1) to obtain 
7 (25 mg), 8 (22 mg), and 9 (13 mg) and eight fractions 
(VHE5.4.1-VHE5.4.8). Compound 10 (14 mg) was puri-
fied from fraction VHE5.4.5 (300 mg) by using MCI gel 
CC eluting with MeOH-H2O (3:2). Fraction VHE6 (1.3 g) 
was separated on Sephadex gel CC eluting with MeOH-
H2O (3:2) to yield 1 (12  mg), and 2 (25  mg). Structural 
identification of the isolated compounds 1–10 have been 
previously published by our group [37, 38].

(-)-Trans-ε-viniferin (5): Grey-brown solid; mp150–
152  °C, soluble in ethanol, methanol, and acetone; 
[α]25D  -47.0 (c =  0.5, MeOH); Rf =  0,64 (TLC, silica gel, 
dichlomethane-methanol 7:1, v/v). 1H-NMR (500  MHz, 
acetone-d6), δH (ppm): 7.20 (2H, d, J = 8.5 Hz, H-2, 6), 7.17 
(2H, d, J = 8.5 Hz, H-2′,6′), 6.90 (1H, d, J = 16.5, H-7′), 
6.83 (2H, d, J = 8.5 Hz, H-3, 5), 6.73 (2H, d, J = 9.0 Hz, 
H-3′,5′), 6.72 (1H, brs, H-14ʹ), 6.71 (1H, d, J =  16.5  Hz, 
H-8′), 6.33 (1H, d, J = 2,0 Hz, H-12′), 6.24 (3H, s, H-10, 12, 
14), 5.42 (1H, d, J = 5.5 Hz, H-7), 4.47 (1H, d, J = 5.5 Hz, 
H-8); 13C-NMR (125  MHz, acetone-d6), δC (ppm): 162.5 
(C-11′), 159.9 (C-11, 13), 159.6 (C-13′), 158.2 (C-4, 4′), 
147.4 (C-9), 136.4 (C-9′), 133.9 (C-1), 130.1 (C-7′), 129.9 
(C-1′), 128.7 (C-2′, 6′), 127.9 (C-2, 6), 123.5 (C-8′), 119.8 
(C-10′), 116.3 (C-3′,5′), 116.2 (C-3, 5), 107.0 (C-10, 14)), 
104.2 (C-14′), 102.1 (C-12), 96.8 (C-12′), 93.9 (C-7), 57.1 
(C-8). ESI–MS m/z: 477 [M + Na]+.
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Statistics
Values are presented as mean  ±  SE unless otherwise 
stated. P-values were calculated by Student’s t test or 
one-way analysis of variance followed by Bonferroni post 
hoc testing using GraphPad Prism 5 (GraphPad Soft-
ware Inc.). P  <  0.05 was considered statistically signifi-
cant. Data are expressed as mean ± SEM. *, p < 0.05; **, 
p < 0.01; ***, p < 0.001.

Conclusion
This the first time that a Vietnamese V. heyneana extract 
and its phytochemical constituents have been reported 
to possess an anti-inflammatory activity. The results 
demonstrated that one of the most active compounds, 
(-)-trans-ɛ-viniferin, decreased NO, PGE2, iNOS, and 
COX-2 productions in RAW 264.7 macrophage cells 
after LPS stimulation. This anti-inflammatory activity 
may mediate by the NF-κB activation mechanism in the 
RAW 264.7 cells. However, to imply that this Vitis sp. 
and its components may be useful in the prevention or 
treatment of inflammatory diseases may be premature 
as further studies and confirmation of these results are 
required.
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