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Expressed sequence tag analysis in Cycas, the most primitive living seed plantCycads are ancient seed plants (living fossils) with origins in the Paleozoic. Cycads are sometimes considered a 'missing link' as they exhibit characteristics intermediate between vascular non-seed plants and the more derived seed plants. Cycads have also been implicated as the source of 'Guam's dementia', possibly due to the production of S(+)-beta-methyl-alpha, beta-diaminopropionic acid (BMAA), which is an agonist of animal glutamate receptors.

Abstract

Background: Cycads are ancient seed plants (living fossils) with origins in the Paleozoic. Cycads
are sometimes considered a 'missing link' as they exhibit characteristics intermediate between
vascular non-seed plants and the more derived seed plants. Cycads have also been implicated as
the source of 'Guam's dementia', possibly due to the production of S(+)-beta-methyl-alpha, beta-
diaminopropionic acid (BMAA), which is an agonist of animal glutamate receptors.

Results: A total of 4,200 expressed sequence tags (ESTs) were created from Cycas rumphii and
clustered into 2,458 contigs, of which 1,764 had low-stringency BLAST similarity to other plant
genes. Among those cycad contigs with similarity to plant genes, 1,718 cycad 'hits' are to
angiosperms, 1,310 match genes in gymnosperms and 734 match lower (non-seed) plants. Forty-
six contigs were found that matched only genes in lower plants and gymnosperms. Upon obtaining
the complete sequence from the clones of 37/46 contigs, 14 still matched only gymnosperms.
Among those cycad contigs common to higher plants, ESTs were discovered that correspond to
those involved in development and signaling in present-day flowering plants. We purified a cycad
EST for a glutamate receptor (GLR)-like gene, as well as ESTs potentially involved in the synthesis
of the GLR agonist BMAA.

Conclusions: Analysis of cycad ESTs uncovered conserved and potentially novel genes.
Furthermore, the presence of a glutamate receptor agonist, as well as a glutamate receptor-like
gene in cycads, supports the hypothesis that such neuroactive plant products are not merely
herbivore deterrents but may also serve a role in plant signaling.
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Background
The Cycadales (cycads) are the most primitive living seed
plants and have endured over 270-280 million years since
their origins in the Lower Permian [1,2]. Cycads have a fern or
palm-like appearance, largely due to their pinnately com-
pound leaves (Figure 1a,b). Unlike ferns or palms, however,
cycads belong to the gymnosperms, or non-flowering seed
plants. Of the four orders that comprise the gymnosperms,
the Cycadales are considered to be the most ancestral com-
pared to Ginkgoales, Gnetales and Coniferales (Figure 2)
[3,4]. Cycads (non-flowering seed plants) exhibit a number of
characteristics that reflect their evolutionary position
between ferns (non-seed plants) and angiosperms (flowering
seed plants). Such characteristics include pollen tubes, which
release motile sperm before fertilization; dichotomous
branching (versus axillary branching in higher plants); and
ovules, which contain a large, free-nuclear megagameto-
phytic stage, that are borne on the margins of leaf-like
megasporophylls [5-7]. These characteristics, among others,
place cycads at a key node in plant evolution.

In addition to their evolutionary importance, cycads have also
been studied in the field of medicine, because they produce
neurotoxic compounds. In particular, cycads produce a sec-
ondary compound, BMAA (S(+)-beta-methyl-alpha, beta-
diaminopropionic acid), which has been implicated as the
possible cause of Guam's dementia [8]. This disorder occurs
among the indigenous Chomorro people, who ate cycads as
food, and now suffer from Alzheimer's and Parkinson's
dementia [9-11]. BMAA production is unique to cycads, where
it has been used as a monophyletic character in plant classifi-
cation [7]. It is present in both seeds and leaves of all genera
of the Cycadaceae [12]. BMAA is neurotoxic in mammals
[9,13] because of its excitotoxic action as an agonist of gluta-
mate receptors (GLRs) [14]. The discovery of GLR-like genes
in Arabidopsis suggests that plant-derived GLR agonists, as
well as acting as potential deterrents to herbivores, might also
operate in signaling during plant growth and development, by
interacting with native plant GLRs [15]. In partial support of
this hypothesis, BMAA was shown to affect the development
of Arabidopsis and consequently was used in a pharmacolog-
ically-based genetic screen to isolate mutants in a putative
GLR pathway in Arabidopsis [16].

Despite the importance of cycads in the study of plant evolu-
tion, and their role in neurological disorders in humans,
nothing is known about the genes responsible for these traits
- primarily because cycads are recalcitrant to genetic analysis.
Unlike genetically tractable plants such as tomato, maize and
Arabidopsis, cycads are dioecious (male and female organs
on separate plants), produce a limited number of seeds and
take up to 30 years to become reproductive. Furthermore,
cycad genomes are large (20,000-30,000 million base-pairs
(Mbp)) [17,18] compared to Arabidopsis (125 Mbp) [19]. Con-
sequently, cycads have remained outside the realm of both
traditional genetic studies and modern genome-sequencing

initiatives. Fortunately, recent advances in plant genomics
[20,21], provide new tools to study genetically complex spe-
cies such as cycads. In particular, the availability of the

Cycas rumphii used for cDNA library constructionFigure 1
Cycas rumphii used for cDNA library construction. (a) Mature cycad trunk 
with developed (de) leaves and young, expanding (ex) leaves. (b) Young 
emergent leaves (arrow) at the crown, which were used to generate a 
cDNA library database.
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complete, annotated sequence of two angiosperm genomes -
the dicot Arabidopsis thaliana [19,22] and the monocot rice
(Oryza sativa) [23,24] - now makes it possible to study the
genomes of evolutionarily important plants by comparing the
expressed genes of cycads (ESTs) to the complete genomes of
higher plants.

To begin a survey of expressed genes of cycads, the genus
Cycas was chosen for expressed sequence tag (EST) analysis
because Cycas is at the basal node - that is, the sister taxon to
the rest of the Cycadales [25-27]. Furthermore, the species
Cycas rumphii Miq. was selected for this analysis as it is sus-
pected to be the dietary cause of Guam's dementia. It has been
established that in C. rumphii, from which the EST library
was made, BMAA levels are nearly 0.1 mg/g tissue [28].
Because of its evolutionary position as a key node within the
plant kingdom, as well as its medicinal significance to
humans, Cycas is ideally suited for genomic prospecting [29].

Here, we describe the construction of a cycad EST database
from RNA of young C. rumphii leaves. Using this database,
our comparison revealed conserved genes, including those
involved in development and signaling in present-day
flowering plants. Our analysis defined a set of cycad clones
that have no similarity to any known angiosperm genes, but
possess similarity only to genes of other gymnosperms. Fur-
thermore, as a first step to understanding the function of neu-
rotoxins produced in cycads, we defined a number of
candidate genes that encode putative enzymes involved in the
biosynthesis of BMAA, as well as a cycad GLR-like gene, the
suspected target of BMAA action in animal brains. These
cDNA tools will be useful to test whether BMAA, which has

been postulated to serve as an herbivore deterrent [5], also
acts to regulate GLR function in plants.

Results
Construction of a cDNA library from Cycas rumphii
At maturity, C. rumphii leaves can reach up to 3 meters in
length (Figure 1a). The tissue used in this study consisted of
10 to 40 cm of the immature leaf terminus protruding from
the crown collected shortly after emergence (Figure 1b).
Immature leaves consist of a petiole, a central rachis and
circinate leaflets composed of both expanding and meristem-
atic cells [30]. RNA extracted from this tissue was used to
construct a cDNA library from C. rumphii. Size fractionation
was used to enrich for full-length cDNAs during library con-
struction. It was determined that 53% of the cDNA clones
were over 500 bp long. From this cDNA library, 4,210
sequence reads (ESTs) were generated. The majority of these
reads (3,917) were generated from the 5' end of the cDNA;
however, a small subgroup (293) were sequenced from the 3'
end. Cluster analysis performed at the Munich Information
Center for Protein Sequences (MIPS) of the entire EST data-
set produced a UniGene set of 2,458 contigs consisting of
1,917 singletons and 541 assemblies. Of the clustered ESTs,
the longest contig was 1,836 bp. The entire UniGene set can
be viewed on the MIPS Sputnik website [31], which features
sequence annotations and peptide sequence predictions. At
the MIPS Sputnik site there are links to download the com-
plete cycad sequences as an EST fasta file, a cluster fasta file
or as the derived peptide fasta file.

Classification of C. rumphii ESTs by functional 
categories
Each contig from the database was automatically assigned to
a functional category on the basis of its top match against the
complete genomic sequence of Saccharomyces cerevisiae
and A. thaliana databases using BLASTP. A non-stringent
expect value (E-value) of <1e-10 was chosen as the threshold.
The pie chart in Figure 3 illustrates the relative fraction that
each functional category comprises within the entire UniGene
set. The four largest predominant categories of cycad ESTs
according to this functional categorization are: 'cellular
organization' (22%), 'metabolism' (10%), 'unclassified pro-
teins' (10%), and 'cell growth, cell division/DNA synthesis'
(9%).

Cycad contig matches to genes in angiosperms, 
gymnosperms and lower plants
Using TBLASTX, a comparison was made between the C.
rumphii UniGene set versus all available ESTs from GenBank
and predicted Arabidopsis genes from The Arabidopsis
Information Resource (TAIR). Both EST and predicted genes
were grouped into three subcategories: angiosperms, gymno-
sperms, and lower plants. The angiosperm database encom-
passes all annotated rice and Arabidopsis genes identified
from their respective genomic sequences, as well as all higher

Cycads are the sister group to the seed plantsFigure 2
Cycads are the sister group to the seed plants. A phylogenetic tree shows 
that cycads (highlighted) are the least derived of the seed plants. Cycads 
are believed be the oldest extant seed plants.
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plant ESTs. The gymnosperm database contains ESTs from
all gymnosperms, the majority of which came from the Pinus
taeda EST sequencing project [32,33]. The lower plant data-
bases included genes from all remaining plant ESTs including
ferns, fern allies, bryophytes and algae available in GenBank.
The angiosperm subgroup consisted of 84.5%, the gymno-
sperms 6.5% and lower plants 9.0% of the total genes used in
this analysis.

The Venn diagram shown in Figure 4 displays the total
number of cycad contigs shared between one or more of the
plant gene datasets at very low BLAST stringency values
(expect < 1e-5). The majority of cycad contigs (1,764/2,458)
have counterparts in other plants, leaving 694 with no match
to other plant genes. As one would expect, most Cycas hits
(1,718) are to angiosperms, because of the predominance of
angiosperm accessions in GenBank. Many of the cycad
matches to angiosperms also match gymnosperms and/or
lower plants (1,416). There are 1,310 cycad contigs that match
gymnosperm genes and 734 that match genes from lower
plants.

Full-length sequencing of cycad clones that match only 
gymnosperm genes
As shown in Figure 4, 44 Cycas ESTs specifically match only
genes in the gymnosperm subgroup. Two additional Cycas
ESTs match genes from gymnosperms and lower plants, but
not angiosperms. To further analyze these 46 contigs that
match only gymnosperms and/or lower plants, we next
sequenced these Cycas cDNAs in their entirety to determine

whether this 'gymnosperm/lower plant' specific grouping
held up when the remaining portions of the cDNA were
sequenced. Because ESTs, even when clustered into contigs,
usually represent only a portion of the actual gene (particu-
larly for genes poorly represented in the library) 37 of the 46
Cycas cDNAs were sequenced in their entirety (the remaining
nine clones were not successfully recovered for sequencing),
and this sequence can be downloaded from the Internet [34].
Of these 37 fully sequenced cDNAs, 14 clones still showed no
similarity to any known angiosperm genes, even at this low
stringency cut-off. The insert size for each clone ranges from
586 bp to 1,899 bp, with predicted open reading frames
(ORFs) varying from 69 to 527 residues (Table 1). None of
these 14 Cycas cDNA clones is homologous to any known
genes outside the plant kingdom, although Interpro analysis
identified a small number of conserved motifs, which are
listed in Table 1. To confirm that these genes were indeed
derived from C. rumphii, gene-specific primers designed to
each of the 14 genes were able to amplify a fragment from
genomic DNA isolated from a different C. rumphii specimen
and different tissue (sporophyll) from the source tissue of the
cDNA library (data not shown). This distinct C. rumphii spec-
imen was cultivated in a geographically separate location
(Florida) from the cDNA source C. rumphii specimen used for
cDNA library construction (New York).

Cycad genes similar to developmental regulators
A survey of the cycad EST dataset reveals a surprisingly large
number of genes with highest similarity (BLASTP score < e-5)
to genes with defined roles in growth and development in

Functional gene categories of cycad ESTsFigure 3
Functional gene categories of cycad ESTs. Clustered cycad ESTs were assigned to a functional category based on top BLASTP similarity scores. An expect 
value (E-value) of > 1e-10 was chosen as the cut-off threshold. The analysis was performed at the Munich Information Center for Protein Sequences.
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angiosperms (Table 2). Some of these Cycas genes have
similarity to Arabidopsis transcription factors, including
CONSTANS [35,36], two distinct homeobox genes [37] and a
YABBY gene [38,39]. Other cycad ESTs have similarity to
other regulators of Arabidopsis development, including
ARGONAUT [40] and COP9 [41,42].

Cycas genes with similarity to Arabidopsis genes 
involved in signaling
A number of genes in our cycad EST library showed similarity
to components of signaling pathways found in higher plants
(Table 2). These genes include a photolyase blue-light recep-
tor, genes involved in secondary signaling (including those
for calmodulin, kinases, and phosphatases), a 14-3-3 protein,
and genes involved in phytohormonal responses, including
auxin (IAA-9 and IAA-13) pathways as reviewed in Chory and
Wu [43]. Surprisingly, a Cycas EST with high similarity to
plant GLR-like genes was also found (Table 2) [15,44]. The
presence of a GLR-like gene in cycads is of particular interest
as it relates to BMAA, as described below.

A predicted pathway for BMAA synthesis in Cycas is 
supported by EST analysis
BMAA, an agonist of mammalian GLRs, is a suspect causative
agent of neurological disorders [9,13]. However, nothing is
known about the genes and enzymes involved in the biosyn-
thesis of BMAA. Because the structure of BMAA is similar to
other beta-substituted alanines [45,46], it is likely that BMAA
biosynthesis utilizes phosophoserine, cysteine, o-acetylserine
or cyanoalanine as a beginning substrate. On this basis, a
likely BMAA biosynthetic pathway is shown in Figure 5. This
would require a two-step reaction initiated with the transfer
of NH3 at the beta-carbon of the substituted alanine (Figure
5a), followed by an addition of CH3 (Figure 5b) to produce
BMAA (Figure 5c). NH3 transfer would require a nucleophilic
reaction catalyzed by a cysteine synthase-like protein. A
preliminary survey of genes in the cycad EST library identi-
fied candidate genes for both of these enzymatic steps (Table
2). The cycad leaf EST library contains two ESTs, which each
encode a cysteine synthase. To catalyze the second step of
BMAA synthesis, the EST library contains two potential
methyltransferases (caffeic acid O-methyltransferase II and
caffeoyl-CoA 3-O-methyltransferase). The second step would
require a methyl donor, the most likely candidate being S-
adenosylmethionine (SAdM). Consumption of SAdM would
require the presence of enzymes to regenerate SAdM. A
number of cycad ESTs can be implicated in SAdM recycling
including: adenosylhomocysteinase, S-adenosylmethionine
synthetase and homocysteine methyltransferase. Taken
together, the cycad EST library contains candidate genes for
all of the enzymes predicted to be present during the biosyn-
thesis of BMAA.

Discussion
Cycads can be regarded as living fossils
Extant genera, such as Cycas, have changed little in morphol-
ogy from their extinct relatives, such as Crossozamia, which
existed during the Permian [1,2]. The study of cycads has
proved to be useful in reconstructing plant evolution, in
particular in understanding the rise of important plant struc-
tural innovations such as the evolution of seeds [47]. Cycads
also produce a variety of neuroactive compounds, some of
which are suspected to be the source of Guam's dementia
[11,48]. However, despite their scientific importance in plant
biology and medicine, virtually nothing is known regarding
gene expression, development and signaling in the Cycadales.
As a first step in this direction, a cDNA library was made from
young, developing C. rumphii leaves to produce a cycad EST
database.

A cycad EST database: a foundation to study the 
evolution of early seed plants
One advantage of a genomics approach is that it provides
rapid access to genes important for evolutionary studies. The
more traditional homology-based gene-cloning approach is
limited by tedious gene-by-gene purification. It is also limited

A Venn diagram reveals shared gene sets between cycad contigs versus lower plants, gymnosperms and/or angiospermsFigure 4
A Venn diagram reveals shared gene sets between cycad contigs versus 
lower plants, gymnosperms and/or angiosperms. BLASTX (cut-off E value 
> 1e-5) was used to compare the cycad contigs against all angiosperm 
ESTs and annotated genes from the full Arabidopsis and rice genome 
sequence from GenBank. Genes that do not have a match to angiosperm 
genes were then compared to available ESTs from all gymnosperms or 
lower-plant ESTs available in GenBank. Genes that are common to cycads 
and more than one group are shown in the intersecting (shaded) regions.
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in that it may miss related genes if the degeneracy is too great
or if nonconserved regions of the protein are chosen during
primer design. Finally, the targeted gene approach can never
be used to discover new genes.

Sequence analysis of contigs with BLAST similarity to 
gymnosperms but not angiosperms
An EST project in Pinus taeda (loblolly pine) sampled 59,797
transcripts from wood-forming tissues [32]. In this analysis,
66 P. taeda contigs showed BLAST similarity at low strin-
gency only to other gymnosperms. Similarly, in our analysis,
we found 46 cycad contigs that only matched gymnosperms
(including P. taeda) and/or lower plant ESTs, but were not
found in the genomes of higher plants or non-plants.
Complete sequencing of 37 of these cycad cDNA clones
showed that 14 clones, ranging in length from 586 to 1,899 bp,
were still found only in other gymnosperms. Having no hom-
ology to the completely sequenced genomes of two different
angiosperm species - Arabidopsis [19] (a dicot) and rice
[23,24] (a monocot) - suggests that these 14 genes are found
only in gymnosperms or lower plants, in which genomic stud-
ies have only just begun. However, because ESTs as well as
contigs usually represent only a portion of the full-length
gene sequence, these results are preliminary. For instance, in
P. taeda, larger contigs have a higher BLAST match rate to
other plant genes then do shorter contigs [32]. Thus, these
preliminary results of clade specificity are tenuous and pre-

sumably will change as more ESTs, as well as full-length gene
sequences, from cycads and other species are generated in the
future.

Genes with potential developmental roles in cycads
As in higher plants, cycad leaves are derived from the shoot
apical meristem (SAM) [30]. In Cycas leaflet primordia, mer-
istematic growth ceases at the apex, while proceeding basipe-
tally where it becomes localized to the leaflet margins [30].
The presence of these marginal meristems may explain why a
surprising number of developmental genes were identified in
a relatively small number of ESTs from young cycad leaves
(Table 2).

A gene with identity to the YABBY gene family was among the
cycad ESTs. YABBY genes encode transcription factors
expressed on the abaxial side of all lateral organs that
promote abaxial cell fate [38]. In Arabidopsis, mutations in
the YABBY gene INO (INNER-NO-OUTER), lead to the loss
of the outer integument [49] reminiscent of gymnosperm
(and cycad) unitegmy (the presence of a single integument).
Unitegmy is considered to be the ancestral condition in seed
plants [5,47]. An analysis of YABBY gene expression in cycads
may help to explain the origin of the integument in gymno-
sperms, and/or possibly the second integument in
angiosperms. One cycad EST from the library has highest
similarity to COP9. COP9 encodes a subunit of the COP9 

Table 1

Fully sequenced cycad clones from contigs that match only genes in gymnosperms

Contig GenBank accession number Transcript length (bp) Peptide (residues) InterPro result

gy79c04_704 CB090702 586 72 No matches found

gy78g12_244 CB090673 627 84 No matches found

te82h02_741 CB093328 647 107 No matches found

he95e08_721 CB091708 651 114 No matches found

hf04g07_288 CB092366 684 141 ASP_RICH (unintegrated)

hk42a07_743 CB093061 790 142 No matches found

gp23c01_369 CB089407 791 189 No matches found

gp26f08_297 CB089628 827 69 No matches found

gy82g05_181 CB090964 840 118 No matches found

he92f06_688 CB091462 935 170 No matches found

gy81e11_544 CB090877 948 211 ASP_RICH (unintegrated)

he97c12_740 CB091858 965 140 No matches found

gp32b03_724 CB089926 1311 335 Peptidoglycan-binding LysM

te83a03_729 CB093338 1899 527 No matches found

Average 893 173

All available ESTs and annotated genes from GenBank were divided into three categories (angiosperms, gymnosperms and lower plants) and 
compared with the C. rumphii UniGene set. Forty-six cycad ESTs that had no similarity to angiosperm genes, but matched gymnosperm and lower 
plant genes, were fully sequenced, of which 14 clones (listed) still have no similarity to angiosperms. To confirm that these genes were of cycad 
origin, all 14 were successfully amplified from the DNA of a C. rumphii specimen other than the one used to construct the cDNA library. The 
transcript length, as well as the predicted translation product size, is shown. Interpro analysis identified conserved motifs in three of these cycad 
ESTs as shown.
Genome Biology 2003, 4:R78
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signalosome complex, which controls multiple signaling
pathways that regulate development in all eukaryotes
[42,50]. In Arabidopsis, the cop9 mutant is constitutively
photomorphogenic in dark-grown seedlings [51]. Some gym-
nosperms, (in particular the Coniferales) are constitutively
photomorphogenic when grown in the dark [52,53]. As yet,
the phenotype of dark-grown cycad seedlings has not been
fully evaluated. The discovery of a gene encoding a putative
subunit of the COP9 complex in cycads could be a first step to

define the ancestral, developmental role of the signalosome in
gymnosperms, particularly with regard to its role in
photomorphogenesis.

Another gene potentially involved in cycad development has
highest similarity to the CONSTANS gene family, which are
regulators of flowering time that follow internal and external
(environmental) inputs in Arabidopsis [35]. Because cycads
predate the evolution of flowers, it would be of interest to

Table 2

Genes in Cycas rumphii with potential roles in signaling, development and biosynthesis of BMAA

GenBank accession
number

Subject description E-value % ID Score

Development CB092871 Argonaute-like protein 1 (AGO1) Arabidopsis thaliana 8.00e-10 0.85 34

CB090033 YABBY2 A. thaliana 2.00e-36 0.58 151

CB089539 Multisubunit regulator protein COP9 - spinach COP9 
Spinacia oleracea

2.00e-31 0.62 98

CB092157 CONSTANS B-box zinc finger family protein A. thaliana 1.00e-47 0.48 221

CB092462 CRHB3 homeoprotein Ceratopteris richardii 3.00e-44 0.70 131

CB089344 Homeodomain protein HB2 Picea abies 3.00e-29 0.62 117

Signaling CB089945 Photolyase/blue-light receptor PHR2 8.00e-76 0.69 197

CB091652 Putative glutamate receptor protein GLR3.4b 2.00e-45 0.54 161

CB093220 Calmodulin-like protein; protein ids At5g44460.1 A. 
thaliana

3.00e-07 0.58 45

CB089469 14-3-3 protein Fritillaria cirrhosa 8.00e-38 0.80 94

CB091066 Ser/Thr protein kinase isolog; protein ids, supported by 
cDNAs Arabidopsis

1.00e-10 0.28 185

CB090652 Ser/Thr specific protein phosphatase 2A B regulatory 
subunit beta Medicago

4.00e-86 0.94 162

CB093099 Auxin regulated protein (IAA13) A. thaliana 1.00e-34 0.63 125

CB089385 Auxin-induced protein IAA9 A. thaliana 8.00e-29 0.55 111

Biosynthetic enzymes of cycad
specific phytochemicals (BMAA)

Cysteine synthase CB089577 Cysteine synthase (O-acetylserine sulfhydrylase) 3.00e-50 0.75 128

CB092214 Plastid cysteine synthase 2 Solanum tuberosum 5.00e-27 0.64 83

Methyl transferases CB091906 Caffeic acid O-methyltransferase II Nicotiana tabacum 3.00e-35 0.56 122

CB090738 Caffeoyl-CoA 3-O-methyltransferase Oryza sativa 1.00e-37 0.47 188

SAdM metabolism

Adenosylhomocysteinase 
(S-adenosyl-L-homocysteine 
hydrolase)

CB091477 Adenosylhomocysteinase Phalaenopsis 1.00e-87 0.84 185

CB091821 Adenosylhomocysteinase Triticum aestivum 3.00e-78 0.90 156

CB090818 Adenosylhomocysteinase Medicago sativa 2.00e-18 0.68 66

S-adenosylmethionine synthase CB091682 S-adenosylmethionine synthetase Brassica juncea 4.00e-90 0.94 167

CB090997 S-adenosylmethionine synthetase (methionine 
adenosyltransferase) Petunia

1.00e-69 0.94 133

CB090407 S-adenosyl-L-methionine synthetase Elaeagnus umbellata 1.00e-93 0.88 191

Homocysteine methyltransferase CB092344 Methionine synthase protein Sorghum bicolor 4.00e-94 0.90 190

CB091647 5-methyltetrahydropteroyltriglutamate - homocysteine S-
methyltransferase

3.00e-79 0.76 205

C. rumphii ESTs were compared to GenBank with a BLASTP score < e-5. The top match produced from the BLAST search to the cycad EST is listed 
under subject description.
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determine if CONSTANS genes in cycads temporally regulate
sporophyll and cone induction, which typically follows a
yearly cycle [5,6].

A cycad GLR-like gene expressed in tissue producing 
the GLR agonist BMAA
An unexpected finding of the Arabidopsis EST genome
project was the discovery of GLR-like genes, or 'neural' recep-
tor genes, in plants [15]. In Arabidopsis, the GLR-like gene
family comprises 20 members [54]. Pharmacological evi-
dence has linked Arabidopsis GLRs to light and/or growth
signaling pathways [15,16]. Supplying exogenous BMAA to
growing Arabidopsis seedlings was shown to block light-
induced hypocotyl shortening and cotyledon expansion [16].
Because BMAA has such profound effects on Arabidopsis
development, we have previously proposed that BMAA, or
glutamate, the natural agonist of GLRs in humans, plays a
physiological role in Arabidopsis [15,16]. Continuing genetic
studies in Arabidopsis aim to identify the endogenous com-
ponents of the BMAA-targeted pathway in plants [16].

Cycads produce BMAA [8,9]. One EST uncovered in the C.
rumphii leaf cDNA library has a high degree of similarity to
plant GLR genes (Table 2). This discovery is intriguing,
because it suggests that BMAA might be interacting with
native GLR gene products in cycads. To further investigate
the relationship between cycad GLR genes and BMAA, we
sought to identify cycad genes potentially involved in BMAA
synthesis.

From the structure of BMAA, we hypothesized that cycads
produce BMAA in a simple two-step pathway, beginning with
a β-substituted alanine. To enhance the probability of finding
genes involved in BMAA synthesis, we made our cDNA
library from tissues that produce relatively large quantities of
BMAA (nearly 0.1 mg/g tissue) [28]. According to Ohlrogge

and Benning, there is a 95% chance of finding the gene for a
specified enzyme when it is expressed at 0.1% mRNA/protein
by sampling only 3,000 ESTs from an unnormalized library
[55]. Considering the prevalence of BMAA in Cycas, it is not
surprising that we discovered cognate genes for the predicted
enzymes for this BMAA biosynthetic pathway in the cycad
EST database (Figure 5, Table 2). Future biochemical and
molecular studies will determine if these genes play a part in
BMAA synthesis.

The discovery of GLR-like genes in C. rumphii raises the
intriguing possibility that endogenous BMAA may interact
with native cycad GLRs as a regulatory molecule. Future stud-
ies aim to understand the role of GLRs in plants, as well as the
role of BMAA in herbivore defense versus endogenous signal-
ing. The production of additional ESTs from cycads will
increase the variety of genes available for study, so that a
detailed expression profile can be evaluated during cycad
development. Complementation studies of these genes in
orthologous Arabidopsis mutations will help define their
roles in cycads. This combined approach to studying cycad
gene structure and function will help reveal molecular
changes in genes involved in signaling, metabolic and devel-
opmental pathways that led to the rise of the seed plants.

Materials and methods
Tissue collection and library construction and DNA 
purification
Newly emerged immature leaves from the crown of a C.
rumphii tree, accession 808/59 A, were collected from the
New York Botanical Garden Conservatory. Leaves collected
ranged from 5 to 30 cm in length. Tissue was frozen in liquid
nitrogen. RNA was extracted from pulverized, frozen tissue in
a mortar and pestle with the RNeasy maxi kit (Qiagen, Valen-
cia, CA) according to the manufacturer's protocol. Purified

Predicted two-step pathway for the biosynthesis for BMAA in cycadsFigure 5
Predicted two-step pathway for the biosynthesis for BMAA in cycads. A postulated route for BMAA biosynthesis supported by cycad EST analysis is 
shown. In this simple, two-step scheme, BMAA synthesis begins with (a) the transfer of NH3 to β-substituted alanine, where X = phosphoserine, cysteine, 
o-acetylserine or cyanoalanine, to form (b) an intermediate. The reaction is catalyzed by a cysteine synthase-like enzyme. This step is followed by transfer 
of a methyl group from S-adenosylmethionine (Ad-S-CH3) to the new amine group by a methyltransferase, which would lead to the formation of (c) 
BMAA. Candidate cycad genes encoding probable cysteine synthase-like enzymes and methyltransferase, as well as S-adenosylmethionine-regenerating 
enzymes that were identified in the cycad EST collection are listed in Table 2.

CH
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+ NH3
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Cycas RNA was precipitated in 2 M LiCl, washed twice with
70% ethanol, and resuspended in 50 µl water. Poly(A) RNA
was subsequently purified from total RNA with the Oligotex
Maxi kit (Qiagen). A cDNA library was constructed using the
Lambda ZAP-CMV cDNA synthesis kit (Stratagene, La Jolla,
CA) using 10 µg poly(A) RNA. Before cloning, cDNA was size
fractionated over a Sepharose CL-6b column. The first five
fractions containing a total of around 100 ng cDNA were col-
lected, pooled and precipitated in 70% ethanol/0.3 M sodium
acetate and resuspended in 3.5 µl water. cDNA (0.5 µl) was
then directionally subcloned into the vector at the EcoRI and
XhoI sites.

DNA was collected from unemerged C. rumphii sporophylls
using the DNeasy purification kit (Qiagen).

EST sequencing
Plasmid DNA was collected as described in the manual (Strat-
agene) catalog number 200450 in the in vivo mass excision
section. Sequence analysis was performed at Cold Spring
Harbor Laboratory using an ABI 3700 capillary sequencer
(Applied Biosystems, Foster City, CA) for separation and
nucleotide detection. Reactions were performed using a 1/16
Big Dye Terminator. Sequencing was performed with either
the -21 M13 forward and/or reverse primer.

EST clustering and assignment into functional 
categories
The EST sequences were clustered and assembled using the
HarvESTer application (Biomax informatics, Martinsried,
Germany). The default HarvESTer settings were optimized to
screen for vector against the UniVec nonredundant database
of vector and polylinker sequences [56]. The Hashed Position
Tree (HPT) clustering used a similarity link threshold of 0.7
and a maximum distance of six steps was required to define a
cluster from the similarity network, thus encouraging the sep-
aration of likely paralogs. Cluster consensus sequences and
concomitant alignments were derived from the HPT clusters
using the CAP3 application with default settings. The Har-
vESTer assemblies and coordinate alignments were imported
into the Sputnik EST and cluster analysis application [57].

Peptide extraction
BLASTX [58] was performed against a nonredundant protein
database for each of the cluster consensus sequences. Likely
coding sequences were derived for each cluster consensus
sequence by parsing the best BLASTX match and filtering the
results using the arbitrary expect value <1e-10. Dicodon
usage frequencies and probabilities were extracted using
tools from the ESTate package [59]. A peptide sequence was
predicted for each of the cluster consensus sequences using
the Framefinder application from the ESTate package with
the cycad-specific codon usage statistics. Framefinder was
run using the default parameters. The derived peptide
sequences were used as the basic scaffold for peptide-based
annotation in Sputnik.

Sequence annotation
Sequence annotation on each of the cycad cluster consensus
sequences and derived peptides were performed within the
Sputnik application. Results were assessed for possible con-
tamination by searching for homology to the Escherichia coli
and human genomes and were scored for homology to a wide
range of noncoding RNAs and plant chloroplast and mito-
chondrial genomes. Similarity searches were performed
using the BLAST application [58] and results were filtered
using the expectation value < 1e-10. Functional assignment
was performed on both cluster consensus sequence and the
peptide sequence. Assignments were made using BLASTX
and BLASTP respectively against the MIPS catalog of func-
tionally assigned proteins (funcat) [60,61]: tentative func-
tional assignments were filtered using the expectation value
< 1e-10.

Categorization of cycad contig
All cycad contigs sequences were aligned against the Plan-
tEST database using TblastX [58] and BlastX against the
NR(aa) database. The PlantEST database was created by
downloading all plant ESTs in GenBank and assembling them
using Phrap [60,61]. Todd Wood from Clemson University
provided the PERL script that creates the PlantEST databases
as described above. The NR(aa) database is a nonredundant
database of protein sequences from GenBank.

Determination of gymnosperm-specific genes
All available plant ESTs were downloaded from GenBank and
separated into three datasets consisting of angiosperms
(monocots and dicots), gymnosperms, or lower plants (ferns,
mosses and algae). Downloaded ESTs were assembled using
Phrap [60,61]. All matches with an expect value < 1e-5 were
considered significant.
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