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The purpose of this study is to evaluate the accuracy and precision of the Clarity 
3D ultrasound system to track prostate gland positional variations due to setup 
error and organ motion. Seventeen patients (n = 17) undergoing radical external 
beam radiation therapy for localized prostate cancer were studied. Subsequent 
to initial reference ultrasound and planning CT scans, each patient underwent 
seven repeat weekly tracking CT and ultrasound (US) scans during the course of 
treatment. Variations in the location of the prostate between reference and track-
ing scans were measured. Differences reported by CT and ultrasound scans are 
compared. Ultrasound tracking was initially performed clinically by a group of 
trained general users. Retrospective prostate localization was then performed by 
a trained dedicated user upon the original raw data set and also a reduced data set 
derived from the original by an expert user from Resonant Medical. Correlation 
accuracy between ultrasound and CT shifts acquired and delineated by a pool of 
trained general users was deemed unacceptable for radiotherapy purposes. A mean 
discrepancy between CT and US localizations of greater than 10 mm, with a 5 mm 
or greater discrepancy rate of nearly 90%, was observed. Retrospective analysis 
by a dedicated user of both the original and Resonant Medical reduced data sets 
yielded mean CT-Us discrepancies of 8.7 mm and 7.4 mm, respectively. Unfor-
tunately, the 5 mm or greater CT-US discord rate for these retrospective analyses 
failed to drop below 80%. The greatest disparity between CT and ultrasound was 
consistently observed in the superior–inferior direction, while greatest agreement 
was achieved in the lateral dimension. Despite an expert reanalysis of the original 
data, the Clarity ultrasound system failed to deliver an acceptable level of geometric 
accuracy required for modern radiotherapy purposes. 

PACS numbers: 8755ne, 87.56Da, 87.63dh
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I.	 Introduction

Mounting evidence supports improved disease-free survival with dose-escalated radiation 
therapy using both 3D conformal and intensity-modulated radiation therapy.(1,2) The use of 
tighter margins requires more accurate target localization. Patient setup with the use of portal 
images is associated with significant limitations primarily due to a reliance on bony landmarks 
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rather than the intended soft target tissue.(3) Other methods of verification have been explored 
in order to improve the accuracy of setup while limiting labor and technical costs. The merits and 
limitations of these approaches are discussed below. This study assesses the accuracy and precision 
of the Clarity three-dimensional ultrasound system (Resonant Medical, Montreal, QC) when used 
as recommended by the manufacturer to correct for positional uncertainties due to setup error and 
motion of the prostate gland during the course of external beam radiation therapy.

Implantation of metallic gold seeds into the prostate periphery prior to treatment has been 
used to aid in radiographic localization of the prostate during radiation delivery. Litzenberg et 
al.(4) showed that positional errors in all directions can be reduced significantly using of this 
method. The disadvantages of this invasive procedure include the expertise and time required, 
risk of seed migration which may adversely affect accuracy, and prolonged treatment time. 

Kilovoltage CT scanning is a verification method utilizing direct visualization of soft tissues 
with a high degree of accuracy. Lattanzi et al.(5) demonstrated a maximal portal placement error 
of 3 mm using this technique in six patients. Hoogeman et al.(6) also showed that systematic 
errors can be reduced by a factor of two. Both studies required patient transfer from the simu-
lation room to treatment area, which introduces potential errors into the process. Ghilezan et 
al.(7) evaluated the accuracy of online image-guided IMRT by performing multiple scans with 
on-board cone-beam CT during treatment in 22 prostate cancer patients. The average equiva-
lent uniform target dose was improved, along with significantly improved bladder and rectum 
sparing. Sequential CT examinations incur not only significant costs in terms of personal and 
technical resources, but also require the presence of a CT scanner in each treatment room. This 
limitation has diminished in recent years through the development of on-board cone-beam 
imaging, which is now more readily available. 

Ultrasound is a proven modality for prostate localization and has several advantages includ-
ing relatively low cost, avoidance of invasive seed placement procedures, and the potential of 
reduced patient setup times. It is also nonionizing. Latanzi et al.(8) compared a two-dimensional 
ultrasound-based targeting system (BAT; NOMOS Corporation, Sewickley, PA) with CT scans 
for verification of boost phase 3D CRT in 10 prostate cancer patients. In their study, the BAT 
ultrasound system was found to correlate with CT within a small absolute magnitude of differ-
ence. Mean differences in isocenter localization between CT and ultrasound of 3 mm, 4.6 mm, 
and 2.6 mm in the antero–posterior, supero–inferior, and lateral directions were observed. An 
update of this study with 35 patients revealed a similar correlation. Chandra et al.(9) published 
their experience of the BAT system with 147 prostate cancer patients treated with IMRT and 
concluded that the quality of the images by the BAT system was acceptable in 95% of cases, 
and major alignment adjustments by radiation therapists were required only 3% of the time. 

Ultrasound-based verification methods may be subject to interuser variability in target local-
ization. Serago et al.(10) evaluated the interuser variability of BAT ultrasound guidance using 
38 patients with prostate cancer. Two consecutive independent ultrasound localization sessions 
were performed per patient, each by an independent operator. Interpair localization differences 
of < 1 mm were obtained at a frequency of approximately 50% in the anterior–posterior and 
superior–inferior directions and 80% laterally. Discrepancies of < 3 mm were observed in all 
directions for between 80% and 90% of all paired scans. A BAT interuser variability study by 
Fuss et al.(11) revealed user experience to be a significant factor in the overall accuracy obtained 
with this form of ultrasound guidance.

With the goal of reducing interuser variability, procedure duration, and operator-dependence, a 
three-dimensional ultrasound system named Clarity was developed. The Clarity system acquires 
3D ultrasound pelvic data with a 2D abdominal ultrasound probe outfitted with positional sen-
sors, which is swept across the patient’s region of interest. An infrared camera is used to track 
these sensors so that the position and orientation of each 2D image may be determined in order 
to reconstruct a 3D dataset. Using this system, target verification and patient alignment may be 
completed within 90 seconds. The Clarity system is intended to be used largely independent 
of CT by radiation technologists with training provided by Resonant Medical. A prospective 



102  R  obinson et al.: 3D US prostate localization	 102

Journal of Applied Clinical Medical Physics, Vol. 13, No. 4, 2012

clinical trial with 40 prostate cancer patients (217 alignment procedures) was conducted by Cury 
et al.(12) comparing the BAT system and the Clarity system. A difference in paired BAT- and 
Clarity-measured prostate displacements was found to be statistically significant in the lateral 
and supero–inferior directions. The Clarity system was compared with CT scans which were 
acquired during the treatment of 10 patients. Clarity was found to correlate with CT with regard 
to prostate displacement in all directions. The authors concluded that Clarity displacements 
were consistent with CT displacements and produced greater prostate alignment accuracy as 
compared to the BAT system. A similar 3D ultrasound system (SonArray, ZMed Inc., Ashland, 
MA) is under evaluation and initial clinical experience is reported as encouraging.(13,14) An 
investigation by Johnston et al.,(15) however, found the Clarity system to be inferior to fiducial 
markers for daily prostate alignment. In addition to use with prostate, the Clarity system has 
also been investigated in regard to its application to breast radiotherapy.(16,17,18,19,20,21) 

Motivated by potential advantages of ultrasound localization, the Clarity system was installed 
within a CT simulation suite. This study was undertaken to access the prostate localization 
accuracy of the Clarity system in comparison to CT by repeated scans with both modalities 
using a cohort of prostate cancer patients slated for radiation therapy. A secondary goal was 
the comparison of results obtained with trained general users, a trained dedicated user, and an 
ultrasound expert user (supplied by Resonant Medical).  

 
II.	 Materials and Methods

Use of the Clarity 3D ultrasound system is intended to improve prostate localization for ra-
diotherapy. This system has been approved for sale on the basis that vendor-provided training 
is sufficient to allow for clinical use by general users. As a precursor to clinical utilization, an 
ultrasound quality assurance (QA) scan must be performed with an alignment phantom in the 
CT suite to ensure proper registration between coordinate systems. This phantom is positioned 
in accordance with CT alignment lasers, as this provides an inherent registration between ul-
trasound and CT coordinate systems.  

At the time of a patient’s CT scan for treatment planning, an initial reference ultrasound 
is acquired with the patient remaining in position on the CT support couch. Later these two 
datasets are registered and a planning reference volume (PRV) corresponding to the prostate 
gland is contoured on the ultrasound images. In its intended normal clinical use, subsequent 
tracking ultrasound scans are to be performed (with the patient in treatment position) imme-
diately preceding the delivery of each radiotherapy fraction in order to aid in optimum patient 
positioning. This is achieved through a set of orthogonal shifts applied to the therapy treatment 
couch prior to radiation delivery, based on the ultrasound tracking scan. These pretreatment 
tracking ultrasound sessions were not performed for this study. All ultrasound tracking scans 
were performed in the CT suit.

Seventeen patients who underwent radical radiotherapy for localized prostate cancer were 
accrued to this study. All patients received standard pretreatment staging investigations where 
indicated, including CT of the abdomen, pelvic exam, and a bone scan. A strict bowel and blad-
der preparation was followed: clear liquid diet for 24 hours prior to scanning, and full bladder 
and empty rectum (via enema) at scan time. Patients were not scanned if poor bladder filling 
or rectal emptying was observed. Prior to treatment, each patient underwent initial reference 
ultrasound and planning CT scans. During the course of their treatments, each patient also 
submitted to seven weekly tracking sessions (one session per week consisting of a CT scan 
and two independent ultrasound scans). For the purpose of this investigation, all ultrasound 
tracking scans were performed in the CT suite (rather than a therapy vault) in order to allow 
for an accurate comparison with concurrent tracking CT scans. Two tracking ultrasound scans 
were performed per session: the first immediately preceding the tracking CT scan, and the 
second immediately following. These two tracking ultrasound scans were each performed by a 
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different operator. These general users consisted of a pool of radiation technologists trained by 
Resonant Medical who carried out tracking as a part of their routine duties in accordance with 
the manner of use recommended by Resonant Medical. Variations in prostate location between 
the initial reference and subsequent tracking scans were independently tracked according to 
both CT and ultrasound. Differences between the tracking of the prostate as reported by each 
modality are compared. All CT scans (3 mm slice thickness contiguous spiral acquisition) were 
performed with a Brilliance Big Bore Scanner (Philips Medical Systems, Cleveland, OH). In 
order to minimize variability, a single radiation oncologist was responsible for the approval of 
all contours drawn in both CT and ultrasound.

The Clarity system produces 3D images by means of two ceiling-mounted cameras which 
track the motion of infrared light emitting diodes mounted in the handle of its ultrasound 
transducer. Overall system tracking accuracy is reported to be ± 1 mm by the manufacturer. As 
already mentioned, the unit is calibrated with respect to the coordinate system defined by the 
CT alignment lasers using an alignment phantom supplied by the manufacturer. Throughout this 
study, QA using this ultrasound phantom was performed on a daily basis to test this calibration 
prior to the acquisition of patient data. The alignment lasers for the CT scanner used in this 
investigation were maintained to an accuracy of ± 0.5 mm in each of the cardinal directions. 
A maximum uncertainty of ± 1 mm was also adhered to  with regard to the positioning of the 
ultrasound alignment phantom. Patient positioning for both the planning (reference) and track-
ing scans was performed to ± 1 mm.

Movement of the prostate was assessed by measuring shifts (tracking vs. reference) in the 
centroid of the target volume delineated according to each modality. These centroid shifts 
were observed both intra- and intermodality, producing motion according to CT, movement 
as determined by ultrasound, and the difference between these two. All contouring (both CT 
and ultrasound) was performed using software provided by Resonant Medical on a Clarity  
(V. 2.0.0.401) research workstation.

The entire ultrasound dataset was subjected to two retrospective analyses. The first of these 
was performed by a single dedicated technologist (being judged most proficient at both CT and 
ultrasound from amongst the pool of general users, and afforded dedicated time for this re-anal-
ysis) and involved the inspection of every US image and PRV initially drawn. The modification 
required of these primal PRVs ranged from nil to minimal to extensive to complete redefinition 
(in some cases). Scans with images which were deemed suboptimal were excluded from PRV 
delineation. The resulting dedicated user retrospective dataset was analyzed in like manner to 
the original. A second revisit of the data was performed by Resonant Medical which provided 
an independent inspection for images with poor prostate definition and suboptimal US-CT 
registration. Those tracking scans deemed to suffer from compromised prostate definition or 
poor US-CT registration were culled and the resulting diminished Resonant Medical-reviewed 
(RMr) US dataset was formed. This diminished RMr dataset utilized the modified PRVs pro-
vided by the dedicated user retrospective analysis.

 
III.	Res ults 

A.	 Initial ultrasound dataset
A total of 136 CT and 272 US shifts were obtained from the 17 accrued patients. Differences 
between US and CT shifts were determined in the anterior–posterior (AP) (anterior = positive), 
the lateral (Lat) (patient right = positive), and superior–inferior (SI) (superior = positive) direc-
tions for each set (two US and one CT) of tracking scans. The variation between each pair (first 
(US1) and second (US2)) of ultrasound tracking scans was also computed.

Scatter plots of US shifts as a function of CT shifts in the AP, Lat, and SI dimensions are 
presented in Figs. 1(a), 1(b), and 1(c), respectively. Ideal correlation would manifest as equal 
shifts recorded by both US and CT at each tracking session, producing linear plots. The data, 
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however, clearly reveals distinct points corresponding to each tracking session which are 
clustered about the desired US shift = CT shift line. Dotted lines on these graphs represent a 
± 5 mm deviation between US and CT shifts. The discord between CT and ultrasound tracking 
is greatest in the AP direction and least in the lateral dimension. A histogram of the Euclid-
ean distance between CT and corresponding ultrasound shifts for this dataset is presented in 
Fig. 2(a). Here the mean, median, and standard deviation in Euclidean distances between CT 
and ultrasound shifts are 10.3 mm, 8.7 mm, and ± 7.9 mm, respectively. The minimum observed 
discrepancy between CT and ultrasound-determined shifts with this dataset is 1.3 mm, while 
the maximum is 61.4 mm.

The preceding graphs reveal not only differences between CT and ultrasound tracking, but 
also differences between the first and second ultrasound localizations of each tracking session. 
These ultrasound differences (AP, Lat, and SI) are presented in Figs. 3(a), 3(d), and 3(g). In 
each cardinal direction (AP, Lat, SI), the results are roughly centered about zero with mean and 
standard deviation values of -1.2 mm ± 7.3 mm, -0.3 mm ± 5.3 mm, and 0.2 mm ± 6.5 mm, 
respectively. In its intended clinical use, patient positioning for treatment delivery is to be based 
not on a statistical mean of numerous scans but rather on a single concurrent ultrasound local-
ization measurement. Thus, a more relevant measure of clinical accuracy is the absolute value 
of the difference between each pair of ultrasound tracking determinations. When the absolute 
value of the difference between first and second ultrasound localizations is considered, one 
has mean and standard deviation values of 5.4 mm ± 5.0 mm, 3.8 mm ± 3.7 mm, and 5.1 mm ± 
6.5 mm (AP, Lat, and SI, respectively). Most relevant to clinical patient positioning accuracy is 
the Euclidean distance between the paired ultrasound localizations, as shown in Fig. 4(a). Here 
the mean and median distances between first and second ultrasound localization measurements 
are 9.6 mm and 8.0 mm, with a standard deviation of ± 5.6 mm.  

	

Fig. 1.  Scatter plots of ultrasound vs. CT shifts (mm) [  CT-US1, • CT-US2] in the AP, LAT, and SI directions for the 
initial dataset (1(a), 1(b), and 1(c), respectively), for the dedicated user dataset (1(d), 1(e), and 1(f), respectively), and for 
the RMr dataset (1(g), 1(h), and 1(i), respectively). Dotted lines represent CT - US = ± 5 mm.
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Fig. 2.  Histograms of the Euclidean distance (mm) between CT and ultrasound shifts for the initial (a), dedicated user 
(b), and RMr (c) datasets.
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Fig. 3.  Histograms of the distances between consecutive ultrasound localization determinations (US1-US2) in the AP, 
LAT, and SI directions for the initial dataset (3(a), 3(d), and 3(g), respectively), for the dedicated user dataset (3(b), 3(e), 
and 3(h), respectively), and for the RMr dataset (3(c), 3(f), and 3(i), respectively).  
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B.	 Dedicated user retrospective dataset
As a result of the retrospective analysis by a single dedicated technologist, 62 datasets were 
judged to be of insufficient image quality to allow proper PRV definition and image registration 
with CT and were excluded from further analysis. Of the 210 US datasets remaining, only 8% 
of the original PRVs were deemed acceptable without need of modification, 59% were regarded 
in need of minor modification (< 5 mm change in PRV centroid location), and 33% required 

Fig. 4.  Histograms of the Euclidean distance US1-US2 (mm) between two consecutive ultrasound localization determina-
tions (US1-US2) for the initial (a), dedicated user (b), and RMr (c) datasets.
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major alterations (> 5 mm change in PRV centroid position). These refined PRVs were also 
used in conjunction with the RMr dataset.

Using this dedicated user dataset, scatter plots of US shifts as a function of CT shifts in the 
AP, Lat, and SI dimensions are presented in Figs. 1(d), 1(e), and 1(f), respectively.  This data 
reveal improved conformality to the corresponding CT shifts in comparison to the original 
general user ultrasound dataset. As before, the dotted lines on these graphs represent a ± 5 mm 
deviation of US shifts from CT shifts. The discord between CT and ultrasound tracking is again 
greatest in the AP direction and least in the lateral dimension. A histogram of the Euclidean 
distance between CT and corresponding ultrasound shifts is presented in Fig. 2(b). Here the 
mean, median, and standard deviation in Euclidean distances between CT and ultrasound shifts 
are 8.7 mm, 7.6 mm, and ± 4.9 mm, respectively. The minimum observed discrepancy between 
CT and ultrasound determined shifts is 1.0 mm, while the maximum is 40.0 mm.

Differences (AP, Lat, and SI,) between the first and second ultrasound localizations  
(US1-US2) of each tracking session are presented in Figs. 3(b), 3(e), and 3(h). In each cardinal 
direction, the results are again roughly centered about zero with mean and standard deviation 
values of -0.4 mm ± 4.7 mm, -1.0 mm ± 4.0 mm, and -0.3 mm ± 4.2 mm (AP, Lat, and SI, 
respectively). The absolute value of the difference between first and second ultrasound localiza-
tions yields mean and standard deviation values of 3.6 mm ± 3.0 mm, 3.0 mm ± 2.8 mm, and 
3.3 mm ± 2.6 mm (AP, Lat, and SI, respectively). The Euclidean distance between the paired 
ultrasound localizations for this dataset is presented in Fig. 4(b). Here the mean and median 
Euclidean distance between first and second ultrasound localization measurements are 6.5 mm 
and 5.9 mm, with a standard deviation of ± 3.9 mm. 

 
C.	R esonant Medical-reviewed (RMr) dataset
A review of the original tracking data by Resonant Medical resulted in 153 of the original 272 
scans being judged to be of insufficient image quality to allow proper PRV definition and were 
excluded from analysis. The refined PRVs from the dedicated user dataset were then adopted 
for the 119 remaining US tracking scans which form this RMr dataset. Of these 119 RMr scans, 
only 12% had PRVs which were unaltered from their original definition, 61% were of the minor 
modification (< 5 mm change in PRV centroid location) class, and 27% belonged to the major 
alteration group (> 5 mm change in PRV centroid location).

Using this RMr dataset, scatter plots of US shifts as a function of CT shifts in the AP, Lat, 
and SI dimensions are presented in Figs. 1(g), 1(h), and 1(i), respectively. This data produced 
further improvement in conformity to the corresponding CT tracking shifts. As before, the dotted 
lines on these graphs represent a ± 5 mm deviation of US shifts from CT shifts. As with the 
previous two datasets, the discordance between CT and ultrasound tracking is greatest in the 
AP direction and least in the lateral dimension. A histogram of the Euclidean distance between 
CT and corresponding ultrasound shifts is presented in Fig. 2(c). Here the mean, median, and 
standard deviation in Euclidean distances between CT and ultrasound shifts are 7.4 mm, 7.3 mm, 
and ± 3.1 mm, respectively. The minimum observed discrepancy between CT and ultrasound 
determined shift is 1.8 mm, while the maximum is 17.1 mm.

Differences (AP, Lat, and SI) between the first and second ultrasound localizations of each 
tracking session for this expert user dataset are presented in Figs. 3(c), 3(f), and 3(i). In each 
cardinal direction, the results are, as before, roughly centered about zero with mean and standard 
deviation values of -0.4 mm ± 3.7 mm,  -1.1 mm ± 3.3 mm, and -0.5 mm ± 4.2 mm (AP, Lat, 
and SI, respectively). The absolute value of the difference between first and second ultrasound 
localizations yields mean and standard deviation values of 3.1 mm ± 2.0 mm, 2.8 mm ± 2.0 mm, 
and 3.3 mm ± 2.6 mm (AP, Lat, and SI, respectively).  The Euclidean distance between the 
paired ultrasound localizations is presented in Fig. 4(c). Here the mean and median Euclidean 
distance between first and second ultrasound localization measurements are 6.5 mm and 5.9 mm, 
with a standard deviation of ±3.9 mm.
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IV.	 DISCUSSION

The initial dataset was generated by a pool of trained general users for whom both CT and 
ultrasound scans were but part of their daily radiotherapy related tasks, and was in keeping 
with the original intended use of the Clarity system. When used in this manner, considerable 
differences are observed between the two modalities and also between consecutive ultra-
sound scans. The mean Euclidean distance between CT and ultrasound tracking was 10.3 mm  
(SD = 7.9 mm). Discrepancies between CT and ultrasound of 15 mm or more occurred in 
17.9% of all tracking sessions, and 20 mm or more in 9.4% of all tracking scans. Two tracking 
sessions produced differences of greater than 50 mm, and one produced a difference of greater 
than 60 mm. Clearly, when used in this manner, this ultrasound system proves a poor substitute 
for CT tracking. A portion of the observed discrepancy between CT and ultrasound tracking 
undoubtedly stems from the significant variabilities encountered between consecutive ultrasound 
scans. With a mean distance between first and second ultrasound determined PRV centroids 
of 9.6 mm (SD = 5.6 mm), differences of 15 mm or more are seen in 17.9% of all tracking 
sessions and 20 mm or more in 5.4% of all tracking scans.

Retrospective analysis by a single dedicated user resulted in the culling of approximately 
23% of the original ultrasound tracking sessions due to an assessment of substandard image 
quality. Re-analysis of the remaining tracking scans (including PRV redefinition, where needed) 
reduced the mean discrepancy between CT and ultrasound shifts to 8.7 mm (SD = 4.9 mm). 
Compared to the original general user dataset, the number of tracking scans where CT and 
ultrasound shift differences were 15 mm or more was reduced to 9.5% and to 2.9% for devia-
tions of 20 mm or more. Mean discrepancies between consecutive ultrasound tracking scans 
for this culled dataset were reduced to 6.5 mm (SD = 3.9 mm). The occurrence of differences 
of 15 mm or more was reduced to 3% and deviations of 20 mm or more were diminished to 
2%. No differences of greater than 25 mm were observed. In comparison to the results of the 
original analysis, this retrospective analysis reduced the mean difference between consecutive 
ultrasound localizations by more than 32% (6.5 mm vs. 9.6 mm), while the average discrepancy 
between CT and ultrasound was diminished by only 15.5% (8.7 mm vs. 10.3 mm). That the 
reduction in intra-ultrasound variability is more than twice the corresponding decrease seen 
between CT and ultrasound localization is significant. This result strongly indicates that the 
differences observed between CT and ultrasound localization cannot be explained solely on 
the basis of the variations experienced with ultrasound. Strict adherence throughout the course 
of this study to maintaining CT and ultrasound registration to within ± 1 mm also mitigates 
against poor spatial alignment as a root cause.

The retrospective analysis by Resonant Medical resulted in the culling of more than 56% 
of the original ultrasound tracking sessions owing to a judgment of substandard image quality. 
A representative set of tracking scans (one CT and its associated first and second ultrasound 
scans) from this RMr data set is shown in Fig. 5. The differences in prostate definition are 
clearly evident between all three images. Analysis of the remaining tracking scans reduced the 
mean discrepancy between CT and ultrasound shifts to 7.4 mm (SD = 3.1 mm). The number 

Fig. 5.  Representative images drawn from the RMr dataset showing the prostate localization provided by a tracking CT 
scan (a) and its two associated ultrasound tracking scans: US1 (b) and US2 (c). 
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of tracking scans where CT and ultrasound shift differences were 15 mm or more was reduced 
to 0.9% with no deviations greater than 17.1 mm. Mean discrepancies between consecutive 
ultrasound tracking scans for this culled dataset were reduced to 6.0 mm (SD = 2.8 mm). The 
occurrence of intra-ultrasound differences of 15 mm or more was reduced to nil. In compari-
son to the results of the original general user analysis, this retrospective analysis reduced the 
mean difference between consecutive ultrasound localizations by 37.5% (6.0 mm vs. 9.6 mm), 
while the average discrepancy between CT and ultrasound was diminished by 28.2% (7.4 mm 
vs. 10.3 mm). Clearly the massive rejection of over 56% of original ultrasound scans on the 
basis of inferior image clarity or poor registration failed to produce a commensurate increase 
in agreement between either intra-ultrasound localizations or CT and ultrasound shifts. The 
disparity between the reductions achieved for consecutive ultrasound localizations and those 
between CT and ultrasound is less dramatic than occurred with the dedicated user dataset. The 
reduction in intra-ultrasound variability is, however, still significantly greater than the cor-
responding decrease seen between CT and ultrasound localization and bolsters the conviction 
that the discrepancies observed between CT and ultrasound localization cannot be explained on 
the basis of the variations experienced with ultrasound alone. These results suggest, but do not 
confirm, the existence of a more fundamental discord (at least for the Clarity system) between 
CT and ultrasound localizations. These results are in contrast to those of Cury et al.(12) who found 
consistency between CT and Resonant Medical ultrasound prostate positional determinations. 
Both studies (ours and that of Cury) were conducted with ultrasound and CT located in the 
same room and acquisitions by each modality in immediate temporal proximity. The level of 
user expertise in the Cury study was not specified. Results presented here reveal a progressive 
increase in agreement between ultrasound and CT localizations concomitant with expertise in 
postscan analysis. This suggests that improved results might have been realized if ultrasound 
scans were performed by dedicated expert users rather than general practitioners. Unfortunately, 
this was beyond the scope of our investigations and remains an untested hypothesis. 

The distribution of discrepancies which are observed with the general user, dedicated user, 
and expert user analyses between CT and ultrasound and first and second ultrasound tracking 
scans are summarized in Tables 1 and 2.

Table 1.  Frequency (%) at which discrepancies between CT and ultrasound localization are greater than, or equal to, 
specific Euclidean distances. The number of tracking scans of which each dataset is comprised is shown in brackets.

Frequency (%) of Occurrence

	 Data Set	 Euclidean Distance Between CT and Ultrasound Shifts
	 (# of scans)	 ≥5mm	 ≥10mm	 ≥15mm	 ≥20mm	 ≥25mm	 ≥30mm	 ≥40mm	 ≥50mm

General User (272)	 88.8	 42	 17.9	 9.4	 4.9	 2.7	 1.3	 0.9
Dedicated User (210)	 81.9	 35.7	 9.5	 2.9	 1.0	 0.5		
Expert User (153)	 84.8	 27.7	 0.9					   

Table 2.  Frequency (%) at which discrepancies between first and second ultrasound tracking scans are equal to, or 
greater than, specific Euclidean distances. The number of tracking scans of which each dataset is comprised is shown 
in brackets.

Frequency (%)  of Occurrence

	 Data Set	 Euclidean Distance Between First and Second Ultrasound  Localizations
	 (# of scans)	 ≥5 mm	 ≥10 mm	 ≥15 mm	 ≥20 mm	 ≥25 mm

General User (272)	 88.4	 38.4	 17.9	 5.4	 3.6
Dedicated User (210)	 68	 12	 3	 2	
Expert User (153)	 64.6	 8.3			 
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V.	 Conclusions

Results obtained with a pool of trained general users performing both scan acquisition and 
PRV delineation (as promoted by the manufacturer) resulted in poor correlation between CT 
and Ultrasound prostate shifts. The mean discrepancy between CT and ultrasound was greater 
than 10 mm, with a discord of 5 mm or more occurring for almost 90% of all tracking scans. 
Used in this manner, the Clarity system fails to yield the accuracy required for modern radio-
therapy purposes.

Retrospective analysis of the original general user dataset by both a dedicated user and 
Resonant Medical expert user resulted in significant reductions in the discrepancy observed 
between paired ultrasound localizations. Despite this, the occurrence rates of disparity of greater 
than 5 mm between CT and ultrasound failed to drop below 80%.  Even with a culling of over 
56% of the original data, this ultrasound system fails to deliver an acceptable level of geometric 
accuracy with regard to prostate localization. This excessive cull rate argues strongly against 
the manufacturer’s recommended use of the Clarity system by general users.

The improvements in outcome obtained with the dedicated user and the expert review pro-
vided by a Resonant Medical strongly suggest that the use of dedicated expert users should be 
investigated in regard to ultrasound scan acquisition. Unfortunately, this was beyond the scope 
of this investigation. The persistent discord between CT and ultrasound prostate localization, 
irrespective of the level of expertise applied to the analysis of the original data, indicates the 
existence of a fundamental inequity in the localization capabilities of these two modalities. These 
findings are in keeping with the study of Johnston et al.(15) who concluded that this ultrasound 
system was incapable of safely replacing fiducial markers for daily prostate radiotherapy align-
ment, and suggested user variability as a root cause of the unacceptable variances in ultrasound 
localization that they observed.  	
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