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Abstract: Breast cancer (BC) is the most common malignancy in women worldwide and leads, in
more than 70% of patients with advanced disease, to skeleton colonization and formation of bone
metastases (BM). This condition implies a severe disability and deterioration of the quality of life,
with consequent additional social costs. In recent decades, several studies explored the role of agents
acting within the bone microenvironment to counteract BM development, and several bone-targeting
agents (BTAs) have been introduced in the clinical practice to manage bone lesions and reduce the
risk of skeletal complications. However, long-term exposure to these agents is not free from potential
toxicities and needs careful monitoring. In this context, the potential capability to prevent BM onset
in selected BC patients, through the early administration of BTAs, has been explored by several
researchers, with the belief that “prevention is better than cure” and that, ultimately, metastatic BC is
an incurable condition. Here, we revised the mechanisms of BM development in BC as well as the
strategies for selecting high-risk patients suitable for early BTA treatment.

Keywords: breast cancer; bone metastasis prevention; bone-targeting agents; bisphosphonates;
denosumab

1. Introduction

Breast cancer (BC) is the most common malignancy and the leading cause of cancer-related death
in women worldwide. In the United States of America, the numbers of estimated new cases and deaths
for 2020 were 276,480 and 42,170, respectively [1]. In Europe, despite the increased incidence registered
in recent decades [2], the mortality rate was expected to fall from 17.9/100,000 in 2002 to 13.4/100,000 in
2020 [3].

Longer life expectancy, however, also implies a higher risk of late metastasis onset, especially in
bone. In this regard, while 5–6% of BC patients exhibit bone metastases (BM) at the time of diagnosis,
up to 65–75% of women with hormone-receptor-positive advanced BC develop skeletal lesions as the
disease evolves, with consequent medical, social and economical repercussions [4,5].

In particular, one of the major concerns related to BM development pertains to the onset of skeletal
complications, namely the “skeletal-related events” (SREs), which have a serious impact on patient
autonomy, quality of life (QoL) and survival [6].

The effectiveness of bone-targeting agents (BTAs) in delaying and preventing skeletal complications
has been widely demonstrated in clinical trials [7], although the histological diagnosis of a luminal
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B malignancy, the detection of increased serum calcium levels at baseline and previous palliative
radiotherapy have been listed among risk factors for SREs in BC patients receiving BTAs [8].

Hence, preventing BM onset in high-risk subjects through the early administration of BTAs would
be the best strategy to improve both patient QoL and life expectancy and has become the goal of
several independent research groups [9]. In this context, adequate patient stratification and selection
for adjuvant BTA treatment is imperative, and numerous biomarkers with potential predictive or
prognostic meaning are under intensive investigation [10].

The aim of the present review is to revisit the major mechanisms involved in the development of
BM from BC, along with the preventative strategies attempted so far, based on the use of currently
approved bone-microenvironment-modifying agents.

2. Mechanisms of BM Formation in BC

Similarly to other epithelial malignancies, primary breast tumors are able to drive the metastatic
process from the very earliest stages of the disease [11].

On the one hand, BC cells undergo epithelial-to-mesenchymal transition (EMT) (Figure 1) to activate
their migration capability and invasiveness by acquiring mesenchymal features (e.g., spindle-like shape;
loss of intercellular junction; expression of N-cadherin, vimentin, fibronectin) at the expense of epithelial
ones (e.g., cell polarity, tight cell–cell interaction, expression of cytokeratins and E-cadherin) [12].

Figure 1. Role of primary breast cancer (BC) in the earliest phases of bone metastases (BM) establishment.
In the majority of patients with BC, malignant cells are capable in advance to drive the skeleton
colonization leading to BM formation. In fact, while BC cells undergo epithelial-to-mesenchymal
transition (EMT) to acquire both migratory capability and invasiveness, concurrently they also organize
premetastatic niches by releasing cytokines, growth factors and exosomes with the cooperation of
myeloid cells from bone marrow. Thus, after invading the surrounding tissues, BC cells intravasate in
blood and lymphatic vessels to reach distant anatomical sites, towards which they are attracted by the
expression of specific chemokine receptors and other molecules involved in the bone-homing process.
After their extravasation, BC cells can settle in bone microenvironment, competing with hematopoietic
stem cells for niche control.
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On the other hand, primary BC organizes the preparation of premetastatic niches by recruiting
myeloid cells from the bone marrow through the release of cytokines, growth factors and exosomes,
i.e., tumor cell-derived vesicles incorporating proteins, small nucleic acid fragments and other soluble
factors, capable of conditioning the premetastatic niche for the subsequent homing of disseminated
tumor cells (DTC) [13].

At this stage, cancer cells that have acquired the capability to invade surrounding tissues may
penetrate blood or lymphatic vessels (intravasation) and reach distant anatomical sites [14]. Since the
seed and soil theory proposal [15], a lot of researchers have investigated cancer organotropism, identifying
chemokine axes (e.g., C–X–C motif chemokine receptor-4, CXCR-4/C–X–C motif chemokine-ligand-12,
CXCL-12; CXCR-6/CXCL-16 and CXCR-3/CXCL-10) [16–18] involved in the bone-homing process.
With respect to BC, other molecules, such as the calcium-sensing receptor, have also been correlated
with tumor cell migration towards bone [19,20]. Furthermore, expression of the receptor activator of
nuclear factor k-B (RANK) by tumor cells has been found to contribute to their attraction towards
osteolytic areas [21].

Following extravasation, disseminated BC cells can settle in the new microenvironment, competing
with hematopoietic stem cells (HSCs) for niche control [22]. At this stage, settled tumor cells enter
a state of dormancy, regulated by the balance between extracellular-signal-regulated kinases (ERK)
1/2 and p38 proteins [23], as well as by growth-arrest-specific 6 (GAS6) and bone morphogenetic
proteins (BMPs) [24,25]. Inhibition of the phosphoinositide 3-kinase (PI3K)-AKT pathway is typically
associated with a dormant phenotype in BC cells [26]. This state of quiescence and the acquisition
of bone cell markers, through a process termed “osteomimicry”, enable BC evasion from antitumor
immune response and treatments [11]. With respect to osteomimicry, Wang and coworkers have
recently demonstrated the key role of the transcription factor forkhead box F2 (FOXF2), which is
physiologically involved in the maintenance of tissue homeostasis and embryo development but has
also been shown to activate BMP-4/SMAD1 signaling in BC cells while up-regulating bone-related
genes to sustain the bone metastatic process [27].

The process underlying reactivation of dormant cells, under intrinsic and extrinsic stimuli, has
not been fully elucidated, although genetic and epigenetic changes seem to play an important role [26].
Once BC cells exit from dormancy, clinically detectable BM may arise (Figure 2). In fact, tumor cells
wake up from the dormancy steady state and proliferate within the metastatic niche, undergoing local
expansion and activating a number of reciprocal stimulations with the bone marrow cells and other
elements of the bone compartment, including osteoclasts. Such a continuous cell-to-cell crosstalk
results in the activation of the “lytic BM vicious circle” in which tumor cells secrete pro-osteoclastogenic
cytokines to stimulate bone resorption. Osteoclast activation relies on the cell polarization and the
formation of a specialized bone resorptive machinery, in which the cell ruffled border plays a key role;
indeed, while the osteoclast strongly attaches to the bone matrix, the ruffled border transports H+ ions
and proteolytic enzymes, such as cathepsin K, which degrade bone minerals and proteins, respectively.
As a consequence, growth factors physiologically stored in bone are released, promoting further BC
proliferation [28].

In a similar fashion, production of pro-osteoblastogenic factors by tumor cells may stimulate
the development of sclerotic lesions, although mixed patterns are observed in the majority of
cases. Tumor-derived factors which may stimulate osteoblast differentiation and activation include
endothelin-1 (particularly in prostate-cancer-derived BM), BMPs, connective tissue growth factor and
adrenomedullin. Their definite role in BC, however, has not been fully elucidated. Additionally, in
sclerotic BM, a vicious circle involves the chronic stimulation of osteoblasts from BC cells which in
turn are supported in their growth by soluble factors secreted by osteoblasts themselves [29].
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Figure 2. Reactivation of dormant BC cells and establishment of the “lytic BM vicious circle”. Once
disseminated BC cells are settled in the premetastatic niche within the bone marrow, they enter a
dormancy state that makes cells capable of escaping antitumor immune response and anticancer drugs.
Such a dormant state may also last for years, and revitalization of dormant BC cells is dependent
upon extrinsic and intrinsic stimuli, including soluble and inflammatory factors as well as genetic and
epigenetic modifications. Once BC cells exit from dormancy, they undergo local expansion and secrete
pro-osteoclastogenic cytokines to prime neighboring osteoclasts in their bone reabsorbing function,
leading to a vicious circle where growth factors physiologically stored in bone are released and further
accelerate BC cell proliferation.

3. Role of Currently Approved BTAs in the Disruption of the “BM Cascade”

Several agents have been developed with the purpose of modifying the bone microenvironment
and interfering with critical steps of BM development, although the majority of them are still under
preclinical or clinical investigation [7].

Bisphosphonates (BPs) and denosumab have received regulatory approval for BM management
in BC patients, thanks to their capability to prevent and delay the onset of SREs [30–33]. Moreover,
their administration alongside long-term endocrine therapies in patients at high risk of osteoporosis
has proved effective in preventing cancer-treatment-induced bone loss which may further sustain
tumor cell seeding in the skeleton [34,35]. In this regard, both ovarian suppression and tamoxifen
administration have been shown to induce accelerated bone loss in premenopausal women, who may
also experience premature ovarian failure due to gonadotoxic chemotherapy regimens [34,35]. On the
other hand, tamoxifen exerts a bone-protective effect in postmenopausal women, based on its partial
agonist activity on the estrogen receptor (ER), while the long-term deprivation of both circulating and
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tissue estrogen, observed during adjuvant aromatase inhibitor treatment, has the most detrimental
effect on bone mineral density in this clinical setting [36].

As pyrophosphate analogues, BPs include in their chemical structure a bone-matrix-binding P-C-P
domain and a variable R’ chain that may incorporate (or not) a nitrogen atom for which it is possible to
distinguish between “nitrogen-containing” BPs (N-BPs; e.g., alendronate, ibandronate, risedronate,
zoledronate) and “non-nitrogen-containing” ones (e.g., clodronate, etidronate) [37].

Such a structural feature also implies functional differences between the two classes of drugs.
Indeed, N-BPs are able to inhibit a key enzyme of the mevalonate pathway, namely farnesyl
pyrophosphate synthase, which is fundamental for osteoclast activity and survival (Figure 3a),
whereas non-nitrogen-containing agents, once internalized by osteoclasts, promote their apoptosis
after being converted into cytotoxic adenosine triphosphate analogues [38].

Figure 3. Pleiotropic effects of approved bone-targeting agents (BTAs). (a) Nitrogen-containing
bisphosphonates (N-BPs) inhibit a key enzyme of the mevalonate pathway, namely the farnesyl
pyrophosphate synthase, which is critical for osteoclast activity and survival. These BTAs also interfere
with the formation of premetastatic niches by targeting osteoblasts and endothelial cells, as well
as by inhibiting angiogenesis. Direct activities against BC cells, such as apoptosis induction and
invasiveness inhibition, have been also described, along with γδ T-cell activation against tumor cells.
(b) Denosumab is a fully human anti-RANK-L antibody that neutralizes the interaction of this cytokine
with its receptor, RANK, expressed by osteoclasts. Thus, osteoclasts are suppressed in their maturation
and activity. However, putative direct inhibitory effects of denosumab on BC carcinogenesis have been
also described, together with the capability to improve the anticancer immunity.
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Interestingly, BPs have been shown to interfere with the formation of premetastatic niches by
targeting osteoblasts and endothelial cells [39–41] and potentially by inhibiting angiogenesis [42–44].
Direct effects against BC cells, in terms of apoptosis promotion and invasiveness inhibition, have been
also described [45–48]. Moreover, BPs can upregulate γδ T-cells and reinforce anticancer immune
response [49].

Denosumab is a fully human anti-RANK ligand (RANK-L) antibody that prevents the interaction of
this cytokine with its receptor, thereby suppressing osteoclast maturation and function (Figure 3b) [38].

Besides the key role played in osteoclastogenesis, other functions have been attributed to
RANK/RANK-L axis, including the modulation of immune response [50,51] and the regulation of
progesterone-induced mammary carcinogenesis [52,53]. Interestingly, following the detection of
RANK upregulation in BRCA1mut breast malignancies, inhibition of RANK-L by denosumab was
found able to restrain progesterone-induced proliferation in a preclinical model of BRCA1mut BC [54].
Moreover, Vetter et al. have recently described a significant reduction of circulating tumor cell (CTC)
count in advanced BC patients receiving denosumab compared to those who did not receive the
anti-RANK-L antibody (p = 0.03), suggesting a potential inhibitory effect of this agent against tumor
cell intravasation [55].

4. Impact of Adjuvant/Neoadjuvant BTAs on BC Relapse

4.1. Adjuvant BPs

A number of clinical trials have been designed with the purpose of investigating the BM-preventing
capability of adjuvant BPs in patients with locally advanced BC [9,34].

Among these, studies on clodronate yielded conflicting results [56]. Indeed, while the earliest study
by Diel and coworkers demonstrated a substantial favorable effect on both skeletal and extraskeletal
relapse, deriving from the addition of clodronate to standard adjuvant treatment in BC patients
with bone marrow micrometastases (BM were observed in 8% of patients in clodronate arm vs. 17%
in control arm; visceral relapse occurred in 8% patients in clodronate arm vs. 19% in control arm;
p < 0.005 in both instances) [57], long-term follow-up data from the same trial did not demonstrate
any significant difference in terms of disease free survival (DFS) (p = 0.816), BM incidence (p = 0.770)
and visceral metastasis onset (p = 0.222) between the two arms but showed an overall survival (OS)
advantage in women receiving the BP (20.4% risk of death at 103 months vs. 40.7% in that control arm,
p = 0.049) [58]. Nevertheless, another randomized placebo-controlled trial reached opposing results,
showing a significant improvement of the risk of BM at five years in clodronate arm (hazard ratio, HR
= 0.692, p = 0.043), especially in patients with stage II/III BC, in the absence of meaningful effects on
OS (23% risk of death reduction for all patients, HR 0.768, 95% CI 0.591–0.999, p = 0.048; 26% risk of
death reduction for patients with stage II/III BC, HR 0.743, 95% CI 0.558–0.989, p = 0.041) [59]. Later on,
the National Surgical Adjuvant Breast and Bowel Project (NSABP)-B34 trial failed in demonstrating
differences, in terms of DFS (HR 0.91, 95% CI 0.78–1.07, p = 0.27), OS (HR 0.84, 95% CI 0.67–1.05, p = 0.13)
or BM-free survival (BMFS)(HR 0.77, 95% CI 0.55–1.07, p = 0.12),between the overall population of
BC patients receiving the adjuvant BP and those in placebo arm, while a significant BMFS increase
was found in women aged 50 years or more treated with clodronate (HR 0.62, 95% CI 0.40–0.95,
p = 0.027) [60].

With respect to ibandronate, the multicenter German Adjuvant Intergroup Node-Positive (GAIN)
trial randomized 3023 early BC patients with lymph node metastases to receive two different dose-dense
adjuvant chemotherapy regimens; patients were further randomized to undergo oral ibandronate
treatment for two years versus observation, but neither the DFS (HR 0.945, 95% CI 0.768–1.161,
p = 0.589) nor the OS (HR 1.040, 95% CI 0.763–1.419, p = 0.803) were found improved in the BP arm [61].

The major contribution to this issue came from the Austrian Breast Cancer Study Group (ABCSG)-12
and AZURE clinical trials. The former showed a significant DFS advantage in premenopausal
ER-positive BC patients receiving adjuvant hormone treatment (including ovarian suppression) plus
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six-monthly zoledronate (88.4% versus 85% of control arm, p < 0.05) [62]. The latter, by applying a
more intensive zoledronate schedule to a wider patient cohort, described no benefit in the overall
population but a significant advantage in terms of invasive DFS and occurrence of BM as first relapse
(HR 0.76, 95%CI 0.63–0.92, p = 0.005) in women receiving the BP who were postmenopausal at the time
of randomization [63,64].

The results of these studies suggested that zoledronate effectiveness, in terms of “BM prevention”,
could be restricted to women in physiological menopause and those undergoing ovarian suppression,
induced by the addition of gonadotropin-releasing hormone agonists to either tamoxifen or aromatase
inhibitors in patients with hormone-receptor-positive BC [65], probably attributable to the potentially
overlapping bone-protecting effect of estrogens and BPs in fertile age [66].

In this regard, a multicenter phase III Italian clinical trial (HOrmonal BOne Effects, HOBOE)
randomized 1065 premenopausal women with hormone-receptor-positive early BC to receive adjuvant
triptorelin in addition to tamoxifen (TT), letrozole (TL) or letrozole + zoledronate (TLZ). Interestingly,
at five years, the highest DFS was reached in TLZ arm (93.3%, 95% CI 89.8–95.6), and the comparison
of TLZ versus TT reached statistical significance, with an absolute risk reduction of greater than 7%
observed with TLZ from the fourth year on (p = 0.003) [67].

A large meta-analysis performed by the Early Breast Cancer Trialists’ Collaborative Group
(EBCTCG) involved 22,982 BC patients from 36 clinical trials and confirmed the capability of adjuvant
BPs to prevent distant recurrences, particularly in the skeleton (HR 0.72, 95% CI 0.60–0.86, p = 0.0002),
as well as BC-related death (HR 0.82, 95% CI 0.73–0.93, p = 0.002) in postmenopausal women only.
Such a benefit was independent of the BC histological subtype as well as the type and schedule of
administered BP [68].

Based on all these data, current North American and European guidelines recommend the addition
of either an oral (clodronate, ibandronate) or an intravenous (zoledronate) BP to standard adjuvant
treatment in postmenopausal BC patients at intermediate–high risk of relapse and in premenopausal
women undergoing ovarian suppression [9,69,70].

4.2. Neoadjuvant BPs

The potential capability of BPs to interfere with the metastatic process has been also explored
in neoadjuvant BC setting, based on the hypothesis that these agents could act on both the primary
tumor, exerting a direct antiproliferative activity and inhibiting the premetastatic niche formation, and
on DTCs in the bone marrow to promote their clearance and interfere with subsequent reactivation.

To this purpose, Aft and coworkers randomized 120 patients with stage II-III BC to receive
neoadjuvant chemotherapy with or without the addition of three-weekly zoledronate; after three
months, they reported a nonsignificant reduction of the number of women with detectable DTCs in BP
arm (p = 0.054) [71]. However, after a median follow-up of 61.9 months, no significant differences were
found between the two groups in terms of DFS and OS (p = 0.92 in both instances) [72].

A subgroup of patients enrolled in the AZURE trial (n = 205) received neoadjuvant chemotherapy
with or without the addition of zoledronate. However, the aim of this sub-study was to demonstrate
the direct antitumor effect of the BP on BC by detecting any potential variations of pathological primary
tumor responses, rather than to explore the capability of zoledronate to prevent skeletal recurrences
once administered before surgery [73].

In a similar fashion, two phase III clinical trials were prospectively designed to detect pathological
complete response (pCR) rates in stage II-III BC women undergoing neoadjuvant chemotherapy with
or without zoledronate addition, but none of them demonstrated a significant advantage deriving
from BP treatment [74,75].

A subsequent meta-analysis evaluated individual patient data from all these studies, describing
the absence of any significant correlation between pCR variations and zoledronate treatment in the
overall population; however, in postmenopausal women, the pathological parameter significantly
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improved following zoledronate administration, although no data were provided in terms of DFS and
OS outcomes [76].

More recently, Lelièvre et al. described a lowering of serum vascular endothelial growth factor
(VEGF) levels in early BC patients receiving neoadjuvant zoledronate + chemotherapy, even if
not statistically significant (p = 0.52), which might be in line with the preclinical evidence of BP
anti-angiogenic properties [44,77]. Furthermore, the authors have described no variations in CTC
levels, although the methodology employed for their detection has not been mentioned [77].

In a recent study, 246 patients with stage II-III human epidermal growth factor receptor 2
(HER2)-negative BC were randomized to receive standard neoadjuvant chemotherapy with/without
zoledronate, administered three-weekly for six cycles. After a median follow up of 6.4 years, no
difference in terms of DFS was found between the two arms (p = 0.147); however, the small sample size
and the premenopausal status of most enrolled patients limit the result interpretation [78].

In conclusion, there is no evidence that BP association with neoadjuvant treatments may effectively
prevent BM in patients with locally-advanced BC. It is noteworthy that neoadjuvant protocols include a
much shorter lenght of BP treatment, compared to adjuvant ones. Further studies might either confirm
or disprove the lack of efficacy of these agents, in terms of BM prevention, once administered in such a
clinical setting.

4.3. Studies Focused on Denosumab

The strong evidence of denosumab effectiveness in BC patients with BM [32,33], its superiority to
zoledronate in terms of median time to first SREs (32.4 months vs. 26.4 months) and subsequent on-study
SREs (that were reduced by the anti-RANK-L antibody by 22%, as compared to zoledronate) [32,79]
and the preclinical data on RANK/RANK-L role in mammary epithelium proliferation [52–54] led to
investigate the potential activity of the monoclonal antibody in early BC setting, in terms of disease
relapse prevention.

The ABCSG-18 trial investigated the effects of six-monthly denosumab versus placebo in
postmenopausal BC patients at moderate risk of relapse, receiving an aromatase inhibitor after
loco-regional treatment. The primary study endpoint was the time to first clinical fracture, which
was significantly improved in denosumab arm (HR 0.50, 95% CI 0.39–0.65, p < 0.0001) [62], while the
secondary endpoint was the DFS. In a recent update of the study results, the DFS has emerged as
significantly improved in denosumab arm (HR 0.82, 95% CI 0.69–0.98, p = 0.0260), especially with
respect to nonhistologically confirmed BC metastases and new primary malignancies [80].

On the other hand, in the D-CARE study, 4509 patients with high-risk stage II/III BC were
randomized to receive adjuvant denosumab (120 mg every 3–4 weeks for six months, then three-monthly
for up to five years) versus placebo, in addition to standard neoadjuvant or adjuvant chemotherapy. The
primary endpoint of the study was the BMFS, which was not significantly improved in denosumab arm
(p = 0.70), while an higher incidence of osteonecrosis of the jaw (5% versus < 1%) and hypocalcaemia
(7% versus 4%) emerged from the comparison with placebo [81].

The two trials differed in terms of patient features (i.e., moderate- versus high-risk early BC),
denosumab schedules and endpoints, impeding a direct comparison of study results. Further
investigation will probably enable a precise patient selection, based not only on clinical parameters but
also on the analysis of molecular primary tumor features.

5. Seeking Prognostic and Predictive Biomarkers

Based on the abovementioned clinical studies, several efforts have been made to identify biomarkers
that are able to classify early BC patients according to their risk of BM development and that can be
used as tools to predict any benefit or harm potentially deriving from the adjuvant administration of
BTAs [82].

Indeed, while conflicting data have emerged from denosumab clinical trials [80,81], the adjuvant
administration of bisphosphonates has proved its effectiveness, in terms of BM prevention and survival
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improvement, in BC patients in physiological or iatrogenic menopause [68]. However, the menopausal
status definition may be challenging in several instances [83], suggesting the need for additional,
objective selection criteria.

Genetic aberrations, protein deregulation and microRNA (miRNA) signatures have been
extensively investigated in BC cell lines and primary tumor samples [10], although only a limited
number of putative biomarkers has been validated on a wide patient series.

Among these, a copy number variation (CNV), namely the 16q23 gain, encoding v-maf avian
musculo-aponeurotic fibro-sarcoma oncogene homolog (MAF) transcription factor, was shown to drive
the process of bone colonization in ER-positive BC cell lines; the detection of at least 1.5 copies of this
region in 334 paraffin-embedded BC samples, normalized to the CEP16 centromeric probe, significantly
correlated with BM occurrence at any time (p < 0.001) [84]. The association between this CNV and
BC recurrence in bone was retrospectively validated in a subgroup of AZURE trial patients (n = 865),
with high MAF levels being prognostic for poor invasive DFS in postmenopausal women. On the
other hand, patients with MAF-negative BC receiving adjuvant zoledronate exhibited a reduced risk of
disease progression and increased OS, regardless of their menopausal status [85].

A quantitative proteomic analysis was performed on both parental and bone-homing
subpopulations of the MDA-MB-231 cell line through stable isotope labeling of amino acids in cell
culture and mass spectrometry. The analysis showed a number of proteins significantly upregulated in
osteotropic cells, including the macrophage-capping protein (CAPG), PDZ domain-containing protein
member 1 (GICP1) and high dedicator of cytokinesis protein 4 (DOCK4) [86,87]. The expression
of these markers was investigated by immunohistochemistry on primary BC samples belonging to
AZURE patients (n = 364 for CAPG and GIPC1; n = 689 for DOCK-4), revealing that subjects whose
tumors expressed high levels of both CAPG and GIPC1 significantly benefited from the adjuvant
administration of zoledronate in terms of HR reduction for first recurrence in the skeleton (10-fold
HR reduction versus placebo, p = 0.008) [86]. With respect to DOCK-4, its upregulation was found
to correlate with first recurrence in bone in patients not receiving the BP (HR 2.13, 95% CI 1.06–4.30,
p = 0.034), but this association was absent in zoledronate arm (HR 0.812, 95%CI 0.176–3.76, p = 0.790),
confirming the efficacy of the drug in preventing BM in high-risk patients; it is of note that DOCK-4
overexpression did not correlate with extraskeletal dissemination of BC (p = 0.08) [87].

Among soluble biomarkers, serum N-terminal propeptide (PINP) and C-terminal telopeptide
(CTX) of type I collagen above the normal range emerged as prognostic for subsequent skeletal
colonization in 872 patients enrolled in the AZURE trial (p < 0.05 in both instances); however, these
markers were not predictive for response to adjuvant zoledronate [88].

Despite such an intensive investigation, none of these potential biomarkers have presently entered
routine clinical practice, for which independent prospective confirmation trials are urgently needed.

6. Conclusions

Despite the therapeutic advances registered in the last decades, the clinical and socioeconomical
impact of BM in BC patients is still a critical issue, for which intensive investigation aimed at the
development of novel treatment options is in progress [7].

However, preventing the onset of skeletal lesions through the inhibition of key steps of the
“BM cascade” might more significantly impact both patient QoL and survival and has become the
major target of several research groups [9,89].

With respect to currently approved BTAs, adjuvant BPs have been demonstrated to reduce the
risk of BM in patients with iatrogenic or physiological menopause, while data on denosumab are
contradictory and need further investigation [68,80,81].

At least in the preclinical setting, further agents are being explored with this purpose, including
anabolic agents such as the parathyroid hormone analogue (teriparatide) whose administration in
murine models of BC was found able to counteract the onset of spontaneous BM [90]. However, safety
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concerns regarding this agent have limited, to date, its use in cancer patients [91] and may hamper
further clinical investigation.

In the era of “personalized medicine”, careful BC patient stratification based on the identification
of prognostic and predictive “osteotropism” markers is the next challenge to face, and several putative
biomarkers have been developed so far, even if none of them are currently available in routine
clinical practice.
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