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Abstract: This work explores an innovative strategy for increasing the efficiency of compressed
sensing applied on mm-wave SAR sensing using multiple weighted side information. The approach
is tested on synthetic and on real non-destructive testing measurements performed on a 3D-printed
object with defects while taking advantage of multiple previous SAR images of the object with
different degrees of similarity. The tested algorithm attributes autonomously weights to the side
information at two levels: (1) between the components inside the side information and (2) between
the different side information. The reconstruction is thereby almost immune to poor quality side
information while exploiting the relevant components hidden inside the added side information.
The presented results prove that, in contrast to common compressed sensing, good SAR image
reconstruction is achieved at subsampling rates far below the Nyquist rate. Moreover, the algorithm
is shown to be much more robust for low quality side information compared to coherent
background subtraction.

Keywords: compressed sensing; synthetic aperture radar; mm-wave sensing; side information;
non-destructive testing; additive manufacturing

1. Introduction

Terahertz and mm-wave sensors have the advantages of using harmless radiation, as opposed
to X-ray scans. This type of sensor is able to image the inner structure of the objects from a
stand-off distance, in contrast to ultrasound NDT, where contact with smooth surfaces is required [1,2].
The sensor used in this work is a mm-wave Synthetic Aperture Radar (SAR), delivering high resolution
in-depth images of the inner structure of an object. Two configurations are possible: in a SAR
configuration, the radar antenna moves along the object, creating synthetically a large antenna and
emitting wideband frequency modulated signals; or the object can be placed on a moving stage and be
passed in front of the sensor in an Inverse SAR (ISAR) configuration. Due to the mechanical scanning,
the 3D-inspection of large objects becomes time consuming and thereby impacts the off-duty time of
the equipment. The SAR sensing process produces high data volumes, inconvenient for data handling
or transfer and requiring demanding storage capabilities [3].

Over the past decade, Compressed Sensing (CS) has been applied to a large variety of applications
challenged by large data volumes, incomplete data, long measurement times or expensive equipment,
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such as: medical imaging [4], telecommunications [5] or radar imaging [6]. The CS performance
for reconstructing an unknown signal from a small number of measurements largely depends on
the sparsity or compressibility of that signal; a requirement that is rarely satisfied in many SAR
applications [7], leading to mediocre reconstruction performances. If besides the prior assumption of
sparseness, other prior information is available, such as a model of the object or a prior measurement,
e.g., recursive inspections for structural health monitoring, this side information should be exploited
to further decrease the number of measurements needed to obtain the required information and
potentially achieve greatly reduced measurement times and data volumes. A fast-forward solution
and alternative for our strategy, for inserting the prior information into the reconstruction algorithm, is
background subtraction [8], used for example for MR imaging [9] and in through-the-wall radar
imaging [10]. Recently, a variety of CS reconstruction techniques with prior information has
been explored, integrating the prior information alongside the sparsity assumption into the CS
algorithm [11–14]. The prior information can contain multiple side information [15–17] or even
heterogeneous side information [18].

The chosen approach for adding prior information to the CS algorithm is tested on real data
obtained from NDT measurements on a 3D-printed test object with artificially added anomalies.
Additive Manufacturing (AM) has become an extremely popular technology and is widely used
for prototyping, copying and producing objects [19]. 3D-printing allows for in situ fabrication of
objects manufactured from metallic, ceramic, polymeric materials or a combination, with complex
and optimized geometries. Many parameters, for example, high temperature gradients, calibration
problems or unadapted printing speeds, can induce weaknesses or defects inside the objects.
Performant Non-Destructive Testing and Evaluation (NDT&E) techniques for AM applications are
highly needed in order to assure the integrity of the printed object [20–22], e.g., for critical structures
used in the aviation or the space industry [23].

1.1. Contributions

In this work, an innovative Compressed Sensing (CS) algorithm incorporating autonomously
weighted Side Information (SI) is proposed for mm-wave SAR measurements. The contributions can
be summarized as follows:

1. To the best of the authors knowledge, CS with weighted SI is applied on SAR measurements for
the first time in this work.

2. Extensive simulations are performed in order to evaluate the applicability of the proposed
technique, the reconstruction performance when subsampling, the robustness against poor quality
SI and against the use of multiple SIs with different qualities. The results are compared with
common CS reconstruction and background subtraction.

3. The results obtained through the synthetic measurements are confirmed with experiments on real
mm-wave NDT measurements of a 3D-printed test object, proving its direct applicability and
demonstrating its high performance level.

1.2. Organization

The remainder of this paper is organized as follows. Section 2 describes the notions of mm-wave
SAR, CS and CS with Side Information (SI) which are applied in the later sections of this paper. Section 3
starts with the description of the measurement setup, used for the synthetic experiments, and tests
the reconstruction performance and robustness of the proposed solution. The conclusions drawn from
the simulations in Section 3 are then confirmed by a series of experiments on real NDT mm-wave SAR
measurements. Section 4, finally, concludes the work and gives some hints for future work.
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2. Compressive Sensing mm-Wave SAR with Side Information

2.1. mm-Wave SAR
The mm-wave sensor used for the experiments described in this document is a Vector Network

Analyzer (VNA) emitting L discrete frequencies fl , evenly spaced (with frequency step = ∆ f ) over
the total bandwidth B. The emitted signal is thus a Stepped-Frequency Continuous Wave (SFCW)
signal described by:

s(t) =
L

∑
l=1

rect
(

t− lTp

Tp

)
exp(j2π flt), (1)

where rect(.) is the rectangular function and Tp the period for emitting the total bandwidth B (Figure 1).
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Figure 1. Stepped-frequency continuous wave signal.

The received signal by the sensor is the sum of the K signals backscattered on K reflectors
characterized by reflection coefficients ak,l and located at distances Rk from the sensor antenna.
The reflected signal from scatterer k reaches the sensor antenna at t = the Round Trip Time (RTT),
which is equal to 2Rk

c , with c the propagation speed of the electromagnetic waves through the medium
(c = c0√

µε ):

s(t) =
K

∑
k=1

L

∑
l=1

ak,lexp{j2π fl(t− RTTk)}. (2)

The received signal after homodyne demodulation becomes:

sb(t) =
K

∑
k=1

L

∑
l=1

ak,lexp{−j2π fl
2Rk

c
}. (3)

The range resolution obtained with this sensor is defined by the total emitted bandwidth and
equal to:

∆rra =
c

2B
. (4)

In order to obtain a cross-range resolution of the same order of magnitude as the resolution in
the range direction, a synthetic antenna aperture is created by moving the sensor in the cross-range
direction. At each sensor position along the cross-range track, the beat signal (3) is measured and
added to the growing raw-data matrix, which finally reaches dimensions equal to the number of sensor
positions times the number of emitted frequencies (L). The high-resolution image is then obtained
through the application of a SAR compression algorithm [24]. Alternatively, the SAR image can also
be constructed by means of a Compressed Sensing (CS) algorithm [25].
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2.2. Compressed Sensing

Consider an unknown signal x ∈ CN with at most k << N nonzero entries, i.e., x is said to be
k-sparse. Suppose further that we sense this unknown vector x by applying a set of n < N linear
measurements, resulting in a measurement vector y ∈ Cn:

y = Ax, (5)

where A ∈ Cn×N is the observation matrix. In the context of SAR measurements: x is a vector
describing the reflection characteristics of the discretized scene; the matrix A models the linear sensor by
mapping the reflection characteristics of the scene into a vector y, containing the obtained beat signals.
CS theory states that x can be reconstructed from this underdetermined set of equations with high
probability if A satisfies the Restricted Isometry Property (RIP) [26,27] or a null-space property [28],
and the estimation x̂ for x can be found by solving the following Basis Pursuit (BP) problem:

min ‖x‖1 s.t. y = Ax, (6)

where ‖x‖p := (∑n
i=1 |xi|)1/p denotes the `p-norm of x. For noisy measurements, y = Ax no

longer holds and an accuracy threshold ε is introduced, resulting in the Basis Pursuit Denoising
(BPDN) problem:

min ‖x‖1 s.t. ‖Ax− y‖2 ≤ ε. (7)

In the literature, a number of recovery algorithms have been proposed, which can be classified
into the following categories: greedy algorithms, convex and relaxation algorithms and Bayesian-based
algorithms [29]. For this application, a high reconstruction quality performance is needed. For this
reason, we opt for a basis pursuit algorithm.

2.3. CS with Side Information

The cornerstone of CS is the assumption that x is sparse or has a sparse representation in a
known basis. By adding this prior knowledge to the set of underdetermined equations, the infinite
set of candidates for x̂ can be reduced to the single and correct solution x. Often, the sparsity of x
is not the only knowledge available prior to the measurement. Additional information, commonly
named as Side Information (SI), can be added to the reconstruction algorithm to further lowering
the subsampling bound, ensuring the correct reconstruction of x. In this subsection, three strategies
are explained for injecting this SI into the minimization Equation (7).

2.3.1. Coherent Background Subtraction

Consider z ∈ CN to be a vector sharing a high degree of similarity with x. z can for example
be a previous measurement of the object under test or a measurement of a similar object. This SI
is equal to the unknown vector, except in a small number of its entries, and can be considered to
be the background for the vector x. Minimizing the foreground, i.e., the vector (x − z), instead of
minimizing the `1-norm of x, will be more effective at low sampling rates since we can assume that
‖x− z‖1 < k. The minimization Equation (7) becomes:

min ‖x− z‖1 s.t. ‖A(x− z)− (y− Az)‖2 ≤ ε, (8)

where the foreground is equal to (x− z) and with (y− Az) is the coherent subtraction of the synthetic
measurements of the SI (Az) from the effective measurements y.

2.3.2. `1`1-Minimization

Coherent background subtraction neglects the sparsity of x and concentrates on minimizing
the number of nonzero elements of the foreground (x− z). A different approach for adding the SI z
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into the minimization equation is to minimize the weighted sum of the `1 norm of x and the difference
between x and z [12,30]:

min{‖x‖1 + βg(x− z)} s.t. ‖Ax− y‖2 ≤ ε, (9)

with g(.) a function expressing the similarity between x and z and β > 0 a trade-off factor between
the sparsity of x and the similarity between x and z. Popular choices for g(.) in the literature are
the `2- and `1-norm, resulting in `1`2- minimization and `1`1-minimization, respectively. The work
in [31] compares both approaches and concludes that `1`1-minimization outperforms the `1`2 approach,
and the authors further prove that β = 1 delivers the sharpest undersampling bound:

min{‖x‖1 + ‖x− z‖1} s.t. ‖Ax− y‖2 ≤ ε. (10)

2.3.3. Weighted n`1-Minimization:

Suppose that we dispose over multiple SIs: zj, with varying and a priori unknown qualities. From
the different SIs, a mean SI: meanj(zj) can be computed and inserted into the background subtraction
approach (8) where z is replaced by: meanj(zj). Alternatively, the `1`1-minimization problem (10) can
be extrapolated towards the n-`1-minimization equation:

min
x
{1

2
‖Ax− y‖2

2 + λ
J

∑
j=0

∥∥x− zj
∥∥

1}, (11)

where z0 = 0. These two approaches attribute the same impact to each of the SIs, neglecting
possible differences in quality. SI of poor quality will thereby contaminate the mean SI or corrupt
the minimization of (11). Alternatively, the work in [15] proposes a weighted multiple SI algorithm,
RAMSIA, for solving the following minimization equation:

min
x
{1

2
‖Ax− y‖2

2 + λ
J

∑
j=0

β j(
∥∥Wj(x− zj)

∥∥
1)}, (12)

where β j ≥ 0 are the weights among the SIs and Wj ≥ 0 is the diagonal weight matrix attributed to SI
zj and whose diagonal elements (wj1, wj2, ..., wjn) are populated with the weights between the different
elements of zj. We note that (12) is reduced to the unweighted Equation (11) when choosing β j = 1
and Wj = I (where I is the unit matrix). The weights β j will valorize the global impact of the SIs
possessing a high degree of similarity compared to x and suppress the poor SIs during the minimization
process, while the weights Wji regulate the relative impact of the different elements inside a single SI
zj. The implementation of RAMSIA is based on a Fast Iterative Shrinkage-Thresholding Algorithm
(FISTA) [32] and iteratively updates the SI weights in two stages: first an update for the intra-SI weights
Wj is computed, followed by the calculation of the inter-SI weights β j. A more detailed explanation
of the RAMSIA algorithm and the pseudo-code can be found in [15]. The user can choose from three
different stopping criteria for ending the iterative sequence: (1) the maximum number of iterations;
(2) a threshold for the relative variation of the objective function; (3) the minimum number of non-zero
components of the estimate for x.

3. Results

3.1. Simulations

This section describes a series of synthetic experiments conducted in order to test the efficiency
of the algorithm for sparse reconstruction with multiple weighted side information for subsampling,
for poor quality SI and for multiple SI with varying qualities. The performance of RAMSIA is evaluated
against the results obtained with common CS and with the coherent background subtraction approach.
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3.1.1. Setup

The synthetic measurements in this section are performed with a simulated sensor presenting
similar sensor specifications as the real mm-wave SAR sensor used during the NDT measurements.
The relevant specifications are listed in Table 1. The sensor is based on a Vector Network Analyzer
(VNA), and the measured quantity is the complex reflection parameter S11:

S11( fp) =
SRx( fp)

STx( fp)
, (13)

where SRx( fp) and STx( fp) are the complex amplitudes of the received signal and the transmitted
signal at frequency fp, respectively. The S11 reflection parameter is equal to the received signal after
homodyne demodulation (3). For the simulated measurement, these values are obtained by applying
the measurement matrix A on a random k-sparse reflectivity function x populated with the reflectivity
coefficients of all N pixels composing the sensed scene. The size of the pixels is defined by the range and
cross-range resolutions of the sensor. The matrix A models the sensing procedure and is column-wise
populated with the vectorized sensor responses to a reflectivity function containing a single reflective
component. Each column corresponds thus to a vectorized version of a measurement of size nsp × n f
with nsp the number of sensor positions and n f the number of emitted frequencies:

A =



Sx1,1
11 (sp1, f1) Sx1,2

11 (sp1, f1) ... Sx2,1
11 (sp1, f1) ... S

xnsp ,n f
11 (sp1, f1)

Sx1,1
11 (sp1, f2) Sx1,2

11 (sp1, f2) ... Sx2,1
11 (sp1, f2) ... S

xnsp ,n f
11 (sp1, f2)

...
...

. . .
...

. . .
...

Sx1,1
11 (sp1, fn f ) Sx1,2

11 (sp1, fn f ) ... Sx2,1
11 (sp1, fn f ) ... S

xnsp ,n f
11 (sp1, fn f )

Sx1,1
11 (sp2, f1) Sx1,2

11 (sp2, f1) ... Sx2,1
11 (sp2, f1) ... S

xnsp ,n f
11 (sp2, f1)

...
...

. . .
...

. . .
...

Sx1,1
11 (spnsp , fn f ) Sx1,2

11 (spnsp , fn f ) ... Sx2,1
11 (spnsp , fn f ) ... S

xnsp ,n f
11 (spnsp , fn f )


, (14)

where S
xi,j
11 (spt, fp) denotes the S11 parameter measured at sensor position spt and at frequency fp of a

scene with a single nonzero scatterer located at position xi,j in the 2D-scene. In other words: S
xi,j
11 (spt, fp)

is the beat signal (3) with fl = fp, and Rk is the distance between the scatterer at position xi,j and
the sensor at position spt. Different strategies can be adopted to undersample the measurements:
(1) random sampling of the frequencies over the whole SAR measurement; (2) random sampling
of SAR sensor positions; (3) a combination of position and frequency sampling [33]. In this work,
the authors chose to apply a pseudo-random frequency selection over the whole SAR measurement.
This strategy corresponds with performing a synthetic measurement with n randomly selected rows
of A.

Table 1. Sensor characteristics of the simulated and real sensor used in the experiments.

NDT Sensor Parameter Value

Starting frequency f0 45 GHz
Bandwidth 30 GHz

Frequency step ∆ f 731.7 MHz
Scanning distance 0.30 m

Number of cross-range measurements 30
Number of frequencies 41
Aperture angle (−3 dB) 15◦
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3.1.2. Robustness Against Subsampling

This experiment evaluates the performances of the coherent background subtraction approach
and the RAMSIA algorithm for the reconstruction of a random k-sparse vector (k = 10) of length
N = 200 compared against common compressed sensing. The reconstruction quality is measured as
the Euclidean distance between the original vector x and its reconstructed version x̂, for an increasing
number of samples. The similarity between the unknown vector x and the SI z is quantified as
the fraction of elements with a different entry and named the change rate. For this experiment,
the change rate is fixed to 5%. For each subsampling rate from 2% up to 60% (with a step of 2%),
the reconstruction was executed 32 times with a different pseudo-random sampling scheme in order to
render the results independent of the selection of samples.

The metric for evaluating the performances of the different algorithms is the Euclidean distance
between the original vector and the recovered vector (‖x− x̂‖2). Figure 2 depicts the reconstruction
error obtained after reconstruction with a common BP algorithm (blue curve), with background
subtraction (red curve) and with RAMSIA (yellow curve). Both for the results in (a) and in (b),
the change rate was equal to 5%. In (a), x was first created with a sparsity equal to 5%, and thereafter,
10 randomly selected entries of x were given a different value in order to obtain z. This involves that x
happens to be sparser than z in (a), while in (b), the inverse course of action for generating x and z was
adopted, resulting in a sparser vector z compared to x.
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(b)
Figure 2. Mean reconstruction error (‖x− x̂‖2) for increasing subsampling rates obtained with CS, CS
with background subtraction and RAMSIA. (a) Sparsity(x) ≤ sparsity(z); (b) sparsity(x) ≥ sparsity(z).

The background subtraction reconstruction and the RAMSIA algorithm attain comparable
reconstruction performances and clearly outperform common BP without SI. In the case that x is
sparser than z, the RAMSIA algorithm reaches a reconstruction error equal to zero at a slightly lower
subsampling rate than the background subtraction approach. In the inverse case (b), the background
subtraction approach performs better than RAMSIA. This difference in reconstruction performance can
be attributed to the fact that both reconstruction approaches minimize the `1-norm of the difference
between the two vectors, while only the algorithm with weighted SI minimizes the `1-norm of x and
will thus be affected by its sparsity.

3.1.3. Robustness against Poor Quality SI

In order to test the impact of the quality of the SI on the reconstruction performance of both
algorithms, a set of synthetic experiments was performed using vectors z with different qualities.
The random vector x of length N = 200 has again 10 nonzero random entries and is reconstructed
using SI with change rates equal to 10%, 15%, 20%, 25%, 30% and 99%.

The results in Figure 3 show that the RAMSIA algorithm outperforms the background subtraction
algorithm when the quality of the SI decreases. At a change rate of 20%, the background subtraction
approach performs at the same level as common BP, and the SI no longer has a positive impact;
while the RAMSIA algorithm continues to filter out the relevant information hidden in the SI,
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resulting in much better reconstruction performances at low subsampling rates. If the quality of
the SI further decreases, the SI pollutes the background subtraction reconstruction, resulting in
even worse reconstruction performances. In the extreme case, when the SI has nothing in common
with the original signal x, in this experiment simulated by choosing a change rate = 99%, a similar
reconstruction performance is achieved for RAMSIA and common CS without SI. This illustrates
the excellent performance of the adaptive weights used in RAMSIA.
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Figure 3. Mean reconstruction error (‖x− x̂‖2) for increasing subsampling rates obtained with CS
(blue curve), CS with background subtraction (red curve) and RAMSIA (yellow curve) using one Side
Information (SI) with different quality levels (change rates: 10%, 15%, 20%, 25%, 30% and 99%).

3.1.4. Multiple SI with Varying Qualities

In this section, different scenarios with multiple SIs are simulated. The setup is identical to
the experiments described in the previous sections. For these experiments, x has a length of 200 and
has 20 nonzero elements. Three different SIs are used: (1) SI1: a single SI, characterized by a change
rate of 5%; (2) SI2: two SIs, with identical change rates of 5%; and (3) SI3: two SIs, with change rates
equal to 5% and 20%. The reconstruction performance is compared with the CS reconstruction without
using SI.

The results of this experiment obtained with the background subtraction approach are depicted
in Figure 4a,b for the RAMSIA algorithm. RAMSIA outperforms the coherent background subtraction
approach in all three scenarios. Adding side information of the same quality does not enhance
the reconstruction performance in the case of coherent background subtraction: the curves obtained
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for SI1 and SI2 are perfectly identical. When using RAMSIA, the supplementary information is used,
resulting in much better reconstruction performances. Adding SI information of poor quality to
good quality SI has a negative impact on the background subtraction results, while the RAMSIA
algorithm filters the relevant information out of the poor quality SI, which further enhances the
reconstruction performance.
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Figure 4. Mean reconstruction error (‖x− x̂‖2) for increasing subsampling rates obtained with (a) CS
(blue curve) and CS with background subtraction and (b) CS (blue curve) and RAMSIA for multiple
SIs with varying change rates. (SI1) J = 1 (change rate 5%); (SI2) J = 2 (change rates = 5% and 5%);
(SI3) J = 2 (change rates = 5% and 20%).

3.1.5. Conclusions

The following conclusions can be drawn from the set of synthetic experiments described in
this section:

1. Both CS with coherent background subtraction and CS with weighted SI enhance the robustness
against severe subsampling and show comparable performances, dependent on the relative level
of sparsity of the signal and the SI.

2. Background subtraction can jeopardize the reconstruction of a sparse vector if the SI is of poor
quality, whereas the adaptive weighting algorithm is almost immune to low quality SI and can
only have a positive impact on the reconstruction performance.

3. When multiple SIs are available, CS reconstruction using adaptive weighting of the SI filters out
the relevant information of each SI and adds this complementary information to the reconstruction.
Adding a new SI to the set of SIs cannot harm the reconstruction even if the SI has a low degree of
similarity compared to the signal to be reconstructed.

3.2. Experiments on Real NDT Data

3.2.1. Setup

The sensor used for the NDT measurements described in this section has the same characteristics
as listed in Table 1 and as the sensor used for the synthetic measurements. The real setup consists of
a Vector Network Analyzer (mVNA, ABmm) connected to a single antenna and measuring the S11

complex reflection parameter. The object under test (Figure 5a) is a 3D-printed rectangular block
(dimensions: 18 × 5 × 10 cm made of ABS (Acrylonitrile-Butadiene-Styrene) polymer. The test
object is placed on a scanning platform and moves over a total distance of 30 cm parallel to
the opening of the antenna while taking measurements adhering to a stop and go method with
steps of 1 cm. An in-depth image of a horizontal section through the object can be constructed from
these measurements (Figure 5b).
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(b)
Figure 5. (a) Schematic representation of the test object (a massive 3D-printed ABS block, dimensions:
18 × 10 × 5 cm). Three defects were artificially added by drilling 3 identical vertical holes
(radius: 5 mm) through the test object; (b) mm-Wave SAR image obtained from a full measurement of
the test object with defects after applying a common range-Doppler algorithm. The image shows an
in-depth view for a horizontal cut through the test object.

In total, four measurements are performed (Figure 6): the test object without any defects and
three measurements of the test object with one, two and three defects at different ranges (the holes are
drilled vertically through the test object and have a radius of 5 mm). For the experiments described in
this section, the first three SAR images are considered to be three SIs, whereas the fourth measurement
(the test object with three holes) is the unknown image that needs to be reconstructed. The Euclidean
distances between the vectorized image that needs to be reconstructed (x) and the three SIs are equal
to: 0.0805 for the test object without defects (z1), 0.1071 for the test object with one defect (z2) and
0.2408 for the test object with two defects (z3). We note that the image of the test object without
defects is surprisingly the most similar SI to x, whereas the test object with two holes is the SI with the
lowest quality.
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Figure 6. SAR image reconstructions from full data sampled at the Nyquist rate: (a) test object without
defects (=z1); (b) test object with one defect (=z2); (c) test object with two defects (=z3); and (d) test
object with three defects (=x).

3.2.2. Visual Evaluation

Figure 7 shows a visual comparison for the reconstruction of the test object with three holes
with SI = [z1z2z3]. The first column shows the images obtained after the reconstruction with regular
CS, whereas the second column shows the images obtained by coherent background subtraction,
and the third column, finally, depicts the results obtained through the RAMSIA algorithm for different
subsampling rates.

We can conclude from these images that the best reconstruction performance is achieved
with RAMSIA: the defects are visible with only 20% of samples, whereas the defects are lost in
the reconstruction clutter for the background subtraction algorithm and even not visible with common
CS with 40% of samples.

3.2.3. Robustness against Poor Quality SI

In order to confirm the conclusions drawn from the synthetic measurements and from the visual
comparison, a series of experiments was conducted for several scenarios, using the real measurements
and different combinations of the SIs.

Figure 8a,b depicts the reconstruction error, expressed as Euclidean distance between x and
the reconstruction x̂, achieved by CS with background subtraction and by CS with weighted SI,
respectively, using a single SI with two levels of quality. First, z1, which shares a high degree of
similarity with x, is added as SI (red curve), which decreases the reconstruction error significantly
for both the background subtraction approach and the RAMSIA algorithm. Secondly, poor quality SI
is added: z3 (yellow curve). The reconstruction performance is slightly improved with the RAMSIA



Sensors 2018, 18, 1761 12 of 17

algorithm, while the background subtraction algorithm shows a strongly decreased performance
compared to common CS without SI.
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Figure 7. Visual comparison of the reconstruction performance of CS without SI (CS, first column), CS
with background subtraction (BS, second column) and CS with weighted SI (RAMSIA, third column)
for different subsampling rates: 10%, 20%, 30%, 40% and 60%.
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Figure 8. (a) Reconstruction error for increasing subsampling rates, obtained by CS with coherent
background subtraction. In blue: CS without SI; in red: background subtraction with high quality
SI (z1); and in yellow: background subtraction with poor quality SI (z2); (b) Reconstruction error
for increasing subsampling rates, obtained by CS with weighted SI. In blue: CS without SI; in red:
RAMSIA with high quality SI; and in yellow: RAMSIA with poor quality SI; (c) Reconstruction error
for increasing subsampling rates, obtained by CS with coherent background subtraction. SI1 = [z1],
SI2 = [z1z2] and SI3 = [z1z2z3]; (d) Reconstruction error for increasing subsampling rates, obtained by
CS with weighted SI. SI1 = [z1], SI2 = [z1z2] and SI3 = [z1z2z3].

Figure 8c,d depicts the reconstruction errors for the SAR images obtained with background
subtraction (c) and with RAMSIA (d), when adding multiple SIs: SI 1 = [z1], SI 2 = [z1z2] and
SI 3 = [z1z2z3]. The conclusions drawn from the synthetic measurements are here confirmed: adding
poor quality SI to the set of SIs contaminates the SI and deteriorates the reconstruction performance
when applying background subtraction, whereas CS with weighted SI is almost not affected by adding
a lower quality SI to the set of SIs.

3.2.4. Adaptive Weights

The excellent performance of RAMSIA and its robustness against poor quality SI originate from
the iterative adaptive weights. This is illustrated in Figures 9 and 10.

Figure 9c shows the values of the elements on the diagonal of W1 and placed on the corresponding
positions in the image for a subsampling rate of 30%. The image in Figure 9a shows the SAR image
obtained with RAMSIA at a subsampling rate of 30%, whereas Figure 9b depicts the difference between
x and the SI z1. The distribution of the weights attributed to the different pixels of zj clearly follows
the result shown in Subfigure (b). The calculation of the intra SI-weights is thus successful even at low
sampling rates.
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Figure 9. (a) Reconstructed SAR image with RAMSIA from 30% of the original number of samples with
SI = z1; (b) difference between x and z1; (c) intra-SI weights W1 positioned in the corresponding pixel.

Figure 10 shows the evolution of the inter-SI weights β j for increasing subsampling rates,
attributed to the different SIs: z1, z2 and z3. The order of the weights attributed to the three SIs
corresponds to the order of the quality of the SIs, measured by calculating the Euclidean distance
between the three SIs and x. From a subsampling rate less than 20%, the algorithm autonomously
allocates the right amount of importance to each of the three SIs. Indeed, z1 (the red curve) is the SI
with the best quality, and the impact of this SI will be promoted; whereas z3 (the purple curve) is the SI
with the poorest quality and will almost be neglected during the reconstruction of x.
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Figure 10. Distribution of the inter-SI weights β j for increasing subsampling rates.

4. Conclusions

The idea for exploring the use of compressed sensing with multiple weighted side information
applied to mm-wave SAR for NDT was motivated by two observations: (1) The sensor has to take
a very large number of measurements in order to image the inner structure of an object of considerable
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dimensions, taking long measurement times and producing large amounts of data; (2) In many
situations, the structure of the object under test is known through the modeling of the object or
previous measurements. In a common setup, this information is not used, and the sensor invests time
and power in sensing already known information.

In this paper, we proved the applicability of an innovative approach for CS exploiting
multiple weighted SI applied on mm-wave SAR measurements. Through an extensive series of
synthetic experiments, we compared the approach with common CS and background subtraction.
These simulations led to the following conclusions: (1) CS with weighted SI outperforms common
CS when the signal is reconstructed from a set of severely subsampled measurements; (2) whereas
background subtraction can jeopardize the reconstruction of the unknown signal if the SI is of poor
quality, our approach can only have a positive impact on the reconstruction of the signal, even in
the extreme case that the SI has nothing in common with the signal; (3) when having access to multiple
SIs, our approach will filter out the relevant information from the different SIs and allocate the right
weight to each of the SIs in accordance with their quality.

These conclusions were then confirmed with tests on real NDT measurements, using a mm-wave
SAR sensor for imaging the interior structure of a 3D-printed test-object. These tests prove the direct
applicability and potential of the proposed solution.
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