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Abstract: The clinical pharmacodynamics of tacrolimus in renal transplant patients has significant
interindividual variability. T lymphocytes were selected to study the pharmacodynamic response of
tacrolimus, which was significantly correlated with renal function and the outcome of renal transplant
patients. Ultra-performance liquid chromatography–quadrupole time-of-flight mass spectroscopy
(UPLC/Q-TOF-MS) was performed to obtain the metabolic profiles of 109 renal transplant patients.
A partial least squares (PLS) model was constructed to screen potential biomarkers that could predict
the efficacy of tacrolimus. Multinomial logistic regression analysis established a bridge that could
quantify the relationship between the efficacy of tacrolimus and biomarkers. The results showed a
good correlation between endogenous molecules and the efficacy of tacrolimus. Metabolites such as
serum creatinine, mesobilirubinogen, L-isoleucine, 5-methoxyindoleacetate, eicosapentaenoic acid,
N2-succinoylarginine, tryptophyl-arginine, and butyric acid were indicated as candidate biomarkers.
In addition, the key biomarkers could correctly predict the efficacy of tacrolimus with an accuracy
of 82.5%. Finally, we explored the mechanism of individual variation by pathway analysis, which
showed that amino acid metabolism was significantly related to the efficacy of tacrolimus. Moreover,
orthogonal partial least squares discriminant analysis (OPLS-DA) showed that there was no difference
in key metabolites among different pharmacodynamic groups at 1 month and 3 months after dose
adjustment, suggesting that pharmacometabonomics is a useful tool to predict individual differences
in pharmacodynamics and thus to facilitate individualized drug therapy.

Keywords: pharmacometabonomics; tacrolimus; renal transplantation patients; T lymphocytes

1. Introduction

Delayed graft function and acute rejection are the most common complications after
renal transplantation and affect the long-term survival of the patients [1]. According to the
data from the Australian and New Zealand Dialysis and Transplant Registry, the incidence
of delayed graft function was 24.6%, and the incidence of allograft loss was 33.9% [2].
Tacrolimus (or FK506), a calcineurin inhibitor (CNI), is a first-line treatment option in
solid organ transplantation to prevent and treat graft rejection [3,4]. It primarily acts by
inhibiting calcineurin dephosphorylation, which is identified as a key signaling enzyme
in T cell activation [5]. However, due to the narrow therapeutic window [6] and high
variations in the intra- and inter-individual pharmacokinetics of FK506 [7,8], it is hard
to formulate an ideal dosage for patients. A higher dosage will contribute to excessive
immunosuppression and increase the risk of adverse effects, while a lower dosage will
lead to insufficient immunosuppression and increase the risk of rejection [9,10]. Therefore,
establishing an effective tool for designing personalized therapy becomes increasingly im-
portant. In clinical practice, therapeutic drug monitoring (TDM) is routinely implemented
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for individualization of FK506 dosage, but blood drug concentration is not necessarily
related to pharmacological effects [11]. Moreover, the most frequently used means of thera-
peutic drug monitoring is to measure the steady-state concentration, which may take some
time for patients to reach. Poor control of dosage during this period also has a huge impact
on the prognosis. Meanwhile, TDM is a post-event intervention. In addition, genotype
testing could also be used to predict the dosage of FK506 [12]; however, patient compliance
is poor due to high costs, and the inter-individual variability explained by genotype is less
than 40% [13], resulting in a low clinical effective guidance rate.

In addition to genetic variation, environmental factors, including diet, personal physio-
pathological conditions, and lifestyles, also play an essential role in drug response [14,15].
Pharmacometabolomics, an emerging “omics” that can obtain the global metabolic profiles
of metabolites, is a useful approach to comprehensively analyze the factors of individual
variation in drug response [15–17]. For instance, complicating toxicity induced by irinotecan
has large individual differences and could be predicted using the pre-dose metabolic profile,
even with no previous knowledge of the genotype [18]. The pharmacometabonomic
approach was also applied to predict the drug response of faropenem based on the pre-
dose plasma metabolic features of 36 healthy volunteers by gas chromatography–mass
spectrometry [19]. Metabolites had the potential to predict individual variation in the
pharmacokinetics (PK) of tacrolimus [16], which focused on predicting pharmacokinetic
variations using pre-dose metabolomic data from urine samples. Therefore, metabolic
profiling could provide critical information about an individual’s response to a drug, which
contributes to personalized medicine.

In this study, we aimed to provide a reference for individualized dosages of tacrolimus
after renal transplantation. We recruited 109 renal transplant recipients to investigate the
relationship between the pharmacodynamics and metabolic profiling, as well as to identify
the most significantly related metabolites for the prediction of the maintenance dosage. In
addition, we explored the function of these metabolites in tacrolimus immunosuppression
by pathway analysis and enrichment analysis. It provides a reference for individual dose
adjustment of tacrolimus in the clinical setting.

2. Materials and Methods
2.1. Patients

One hundred and nine renal transplant patients were recruited. All participants were
enrolled from The First Affiliated Hospital of Zhejiang University between 8 October 2018
and 29 March 2019. They were treated with tacrolimus (FK506), mycophenolate mofetil and
corticosteroids. We followed all patients for up to 3 months. Participants were excluded if
they died or were under-aged. In addition, we also excluded individuals who were lost
to follow-up in the study. The clinical information of participants is provided in Table 1.
The study protocol was approved by the Ethics Committee of the First Affiliated Hospital
of Zhejiang University, China (2018 llT-938). All participants signed an informed consent
form prior to inclusion in this study.

2.2. Sample Collection

Fasting blood samples for the determination of trough FK506 concentrations (C0) were
taken prior to the morning dose. The collected blood samples were centrifuged at 3000 rpm
for 10 min to obtain supernatant plasma. All samples were stored at −80 ◦C until analysis
(avoiding repeated freeze–thaw cycles). Before analysis, 100 µL samples were pretreated
by adding 300 µL of acetonitrile, followed by thorough mixing and centrifugation (15 min
at 13,000 rpm) in order to completely precipitate the proteins. Pooled quality control (QC)
samples were prepared by mixing 10 µL aliquots of plasma from all tested samples, which
can be used to evaluate the accuracy and robustness of the method. Next, an aliquot of
100 µL of the filtrates was transferred to autosampler vials for analysis.
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Table 1. Patient characteristics.

Clinical Characteristics Normal Group (n = 73) Low-Response Group (n = 16) High-Response Group (n = 20) p

Ages (years) 40.73 ± 11.29 40.44 ± 11.14 48.8 ± 8.03 0.093
Female (%) 24 (32.9%) 4 (25%) 5 (25%) 0.741

Tacrolimus dose 3.03 ± 0.75 3.19 ± 0.66 2.83 ± 0.90 0.369
BMI (kg/m2) 21.46 ± 3.14 21.70 ± 3.18 22.60 ± 3.04 0.254
Cr (µmol/L) 156.43 ± 110.56 154.06 ± 79.36 484.1 ± 338.47 <0.001

CYC (mg/mL) 2.43 ± 0.81 2.38 ± 0.75 5.58 ± 2.71 <0.001
Ccr (ml/min) 57.03 ± 22.62 56.66 ± 23.72 24.13 ± 25.62 <0.001

Albumin (g/L) 36.05 ± 3.04 35.83 ± 3.60 34.99 ± 2.78 0.405
Hemoglobin (g/L) 751.81 ± 538.32 97.35 ± 87.39 1017.98 ± 619.39 <0.001

Hematocrit (%) 30.70 ± 5.77 27.96 ± 5.76 29.53 ± 6.32 0.233
ALT (U/L) 30.23 ± 37.84 35.81 ± 22.31 31.15 ± 26.94 0.843
AST (U/L) 19.22 ± 13.47 18.25 ± 6.23 22.70 ± 16.40 0.532

Total bilirubin (µmol/L) 7.29 ± 3.49 6.73 ± 2.05 8.33 ± 4.94 0.398

Note: Cr, creatinine; CYC, cystatin C; ALT, alanine aminotransferase; AST, aspartate aminotransferase; BUN,
blood urea nitrogen; Ccr, creatinine clearance rate.

2.3. Metabolomics Analysis

Non-targeted metabolomics analysis was conducted on a UPLC Q-TOF mass spec-
trometer (Waters, Manchester, UK) connected to the ACQUITY UPLC system (Waters,
Milford, MA, USA) via an electrospray ionization (ESI) interface. Samples were separated
on an HSS T3 column (100 mm × 2.1 mm, 1.8 µm) (Waters, Milford, MA, USA). The mobile
phase consisted of 0.1% formic acid in water (solvent A) and acetonitrile (solvent B), with a
gradient elution of 0–0.5 min, 5% B; 0.5–2 min, 5–20% B; 2–3.5 min, 20–27.5% B; 3.5–4 min,
27.5–70% B; 4–7.5 min, 70–75% B; 7.5–8.5 min, 75–95% B; 8.5–13.5 min, 95% B; 13.5–16 min,
95–5% B; and 16–18 min, 5% B. The flow rate was 0.3 mL/min, and the autosampler was
maintained at 10 ◦C.

The optimal conditions of mass spectrometry were as follows: capillary voltage, 2.5 kV;
sample cone, 40 V; source temperature, 100 ◦C; desolvation temperature, 450 ◦C; cone gas
flow rate, 50 L/h; desolvation gas (N2) flow rate, 800 L/h. The ESI source was operated in
both positive and negative electrospray ionization (ESI+/−) modes. An MSE experiment
using two scan functions was carried out as follows: function 1 (low energy): 50–1200 mass-
scan range; 0.2 s scan time; 0.015 s inter-scan time; 6 eV collision energy; function 2 (high
energy): 50–1200 mass-scan range; 0.2 s scan time; 0.015 s inter-scan time; collision energy
ramp of 20–30 eV. Leucine-enkephalin (5 ng/mL) was used as the lock mass for accurate
mass acquisition. Additionally, blank samples were run at the beginning of each batch to
balance the column and assess the background ions introduced by sample derivatization.
Finally, the prepared solutions were kept at 10 ◦C, and an aliquot (2 µL) of each sample
was injected and analyzed by UPLC/Q-TOF-MS in a randomized fashion. During analysis,
1 quality control sample was inserted after every 10 injections of tested samples.

2.4. Pharmacodynamic Analysis

The accurate measurement of T lymphocytes was achieved by six-color flow cytometry.
The details are as follows: Whole blood was stained with the six-color reagent solution
and incubated for 15 min at room temperature in the dark. Then, red blood cells were
lysed with erythrocyte lysin and then mixed thoroughly and incubated for 15 min at room
temperature in the dark. Finally, flow cytometry was conducted to calculate the number
of T lymphocytes. According to the standard of T lymphocyte percentage in our hospital,
all patients were divided into three groups: the low-response group, whose T lymphocyte
percentage was higher than the upper limit of the reference range (n = 16); the normal-
response group, whose T lymphocyte percentage was within the reference range (n = 73);
and the high-response group, whose T lymphocyte percentage was lower than the upper
limit of the reference range (n = 20).
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2.5. Statistical Analysis

The obtained raw metabolomics data were analyzed by Progenesis QI ver. 2.2 (Nonlin-
ear Dynamic), including automatic alignment, peak picking, deconvolution, and compound
identification. SIMCA-P software (version 14, Umetrics, Umea, Sweden) was employed
to analyze the multivariate data matrix. Continuous data are expressed as mean ± SD.
Categorical data were compared by Fisher’s exact test. Correlation analysis was conducted
using the Pearson or Spearman rank test, and p-value < 0.05 was considered indicative of a
statistical significance. Multinomial logistic regression analysis for discriminant analysis
was performed using the Statistical Package for the Social Sciences (SPSS, v. 18.0; SPSS, Inc.,
Chicago, IL, USA).

3. Results
3.1. Basic Characteristics of the Study Cohorts

The general clinical characteristics and demographic information of all participants
on the 7th day after transplantation are presented in Table 1. According to the reasonable
range of T lymphocyte percentages in our hospital (53.7–80.9%), patients were divided into
three groups. Categorical variables are shown as numbers (%), and continuous variables
are shown as means ± standard deviations. There were no differences in age, sex, body
mass index (BMI), or liver function among the groups. However, there were significant
differences in the renal function indexes, including creatinine, cystatin C, and creatinine
clearance rate, which could affect the distribution and elimination process of tacrolimus.
Plasma samples were respectively collected from 109 transplant patients in different periods:
the 7th day, the 1st month, and the 3rd month after transplantation.

3.2. Correlation of T Lymphocytes with Renal Function Indexes and Outcome of
Renal Transplantation

The number of T lymphocytes was one of the indicators of the tacrolimus efficacy and
played an important role in the prognosis of renal function after transplantation. However,
T lymphocytes were highly variable among individuals. Serum creatinine, cystatin C, and
glomerular filtration rate were important indexes for evaluating renal function. Pearson
correlation analysis was performed, and the results showed that T lymphocytes were
significantly correlated with serum creatinine, cystatin C, and glomerular filtration rate
(Figure 1). Meanwhile, we found that patients in the high-response group were prone
to delayed graft function (p < 0.05). Although there was no significant difference in the
incidence of acute rejection between the low-response group and the normal group, the
risk of acute rejection in the low-response group was much higher than that in the normal
group (Table 2). These results indicated that T lymphocytes could be used as an efficacy
indicator of tacrolimus in renal transplant patients.

Figure 1. The correlation between T lymphocyte and renal function indexes.

3.3. Metabolic Profiling of Plasma Samples

The plasma samples of 109 patients were collected on the 7th day (D7), 1st month (M1),
and 3rd month (M3) after transplantation. Under the selected conditions, we detected and
identified 2695 metabolites from the LC-MS analysis in ESI+ and ESI- modes by searching
the HMDB library (https://hmdb.ca/spectra/ms/search, accessed on 18 October 2021)

https://hmdb.ca/spectra/ms/search
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and Lipid Map database (see Supplementary Materials). To ensure data reliability, we
preprocessed the data, mainly including deleting metabolites with more than 80% missing
values in the samples, using KNN (k-nearest neighbor) to fill in the missing values, retaining
metabolites with a relative standard deviation (RSD) in QC of less than 30%, and performing
local polynomial fitting on the basis of QC. Coefficients of variation of the distribution
of peaks in the QC samples indicated that the present analysis was stable and repeatable
(Figure 2). Furthermore, the results of principal component analysis showed that the QC
samples clustered tightly together, indicating that the present study was reliable (Figure 2).
Finally, 1514 metabolites were selected for further analysis.

Table 2. The incidence of delayed graft function and acute rejection in different pharmacody-
namic subgroups.

Subgroups Delayed Graft Function (%) Acute Rejection (%)

Normal group a (n = 73) 3 (4.11%) 7 (9.59%)
Low-response group b (n = 16) 0 4 (25%)
High-response group c (n = 20) 11 (68.75%) 0

p <0.0001 0.105

(p: the difference in the incidence of delayed relapse or acute rejection. a vs. b or a vs. c).

Figure 2. CV distribution of peaks in combinational dataset of ESI+ and ESI− modes. After prepro-
cessing the data, all peaks had coefficients of variation (CVs) below 30%.

3.4. Identification of Metabolites Significantly Associated with the Percentage of T Lymphocytes

To select metabolites that were significantly associated with the percentage of T lym-
phocytes, a two-stage PLS analysis was performed to predict the percentage of T lympho-
cytes using the metabolites. A scatterplot from the initial PLS analysis is shown in Figure 3,
in which each point represents one individual, metabolic profile data are X variables, and
the percentage of T lymphocytes, which represent the curative effect of tacrolimus, is the Y
variable. The results demonstrated a good correlation, with R2 = 0.923 for T cell percentage
(Figure 3A). The loading plot of the model is shown in Figure 3B, which shows the correla-
tion between every predictive biomarker and the response variable. The X variables in the
top-right corner of Figure 3B are positively correlated with the percentage of T lymphocytes,
while the variables in the lower-left corner are negatively correlated with the percentage of
T lymphocytes. The variable importance in the projection (VIP) is an index that represents
the contribution of X variables to the PLS model. Finally, a set of 95 variables with high VIP
values (VIP > 1.5) were applied to predict individual diversity in the initial PLS model.

The 95 selected variables were then used to build the second PLS model. It also
showed goodness of fit (R2 = 0.709), as well as high predictability (Q2 = 0.469) (Figure 3C).
Internal validation with 200 permutation tests was conducted to check whether the data
were overfitting. The results showed that all R2 (goodness-of-fit) and Q2 (predictability of
model) values from the original model (far right) were larger than those of the permuted
models (left), demonstrating the validity of the second PLS model (Figure 3D). Finally, we
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selected 43 metabolic features with VIP > 1 in the second PLS model to characterize the
individualized percentage of T lymphocytes.

Figure 3. The score plot for the initial PLS model (A) and second PLS model (C), in which the color
from blue to red represents the response variable from low to high. Loading plots for the percentage
of T lymphocyte prediction model (B), in which the blue box represents the response variable; each
circle represents a metabolic feature, and the circle in red represents metabolic features with VIP > 1.5.
Internal validation of the second PLS model (D) was performed using 200 permutation tests.

Moreover, to further identify the molecules that had a strong correlation with the
percentage of T lymphocytes, Pearson correlation analysis was conducted, and the level
of 0.05 was defined as significant (p < 0.05). Finally, 41 metabolic features were related
to the percentage of T lymphocytes, and 19 metabolic features were identified; the re-
sults are summarized in Table 3. To investigate the potential functional roles of these
metabolites in the individualized percentage of T lymphocytes, we conducted enrich-
ment analysis and pathway analysis using the 19 metabolites with MetaboAnalyst (https:
//www.metaboanalyst.ca/MetaboAnalyst/home.xhtml, accessed on 12 November 2021).
Homo sapiens (KEGG) was selected as the pathway library, and over-representation analy-
sis and pathway topology analysis were based on the hypergeometric test and relative be-
tweenness centrality, respectively. The results showed that the amino acid metabolism path-
way was the most relevant to the individualized pharmacodynamic response (Figure 4A,B).

3.5. Prediction of the Percentage of T Lymphocytes Based on Key Metabolites and
Clinical Characteristics

All individuals were divided into three groups based on the pharmacodynamic re-
sponse of tacrolimus, and the values of the pharmacodynamic response of tacrolimus were
significantly different among the groups. Clinical characteristics were also considered for
dosage optimization. Thus, Pearson correlation analysis was conducted to select the related
clinical characteristics. The level of serum creatinine had a significant relationship with
the T lymphocyte percentage. It was difficult to predict the individual pharmacodynamic
response of tacrolimus based on all variables in the clinical setting. To investigate the
predictive ability of the above variables, multinomial logistic regression was performed
to build a predictive model for pharmacodynamic classification and to further select the
variables that had a significant impact on the model. The results revealed that serum crea-
tinine, mesobilirubinogen, L-isoleucine, 5-methoxyindoleacetate, eicosapentaenoic acid,
N2-succinoylarginine, tryptophyl-arginine, and butyric acid had significant contributions
to the model (p < 0.05). In order to provide a reference for the individualized dosage of
tacrolimus after discharge, daily dosage was included in the model. The detailed informa-

https://www.metaboanalyst.ca/MetaboAnalyst/home.xhtml
https://www.metaboanalyst.ca/MetaboAnalyst/home.xhtml
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tion of the model is summarized in Table 4. Based on the results of multinomial logistic
regression, the results showed that the prediction accuracy of the model was 82.5%, the over-
estimation rate was 4.5%, and the underestimation rate was 12.8% (Figure 5A). In the final
PLS model, which was built based on nine metabolites, the prediction power (R2 = 0.605)
(Figure 5B) was 65.5% of that of the initial PLS model, which used 1514 metabolic features,
and 85.3% of that of the second PLS model, which used 95 metabolic features, indicating
that the prediction capability of the model was reasonably high.

Table 3. The summary of the 19 identified metabolites.

Metabolites ID Adduct
(Observed)

Retention
Time

m/z
(Observed) VIP Correlation

Coefficient p-Value

Mesobilirubinogen HMDB01898 [M + H]+ 4.69 593.33 1.25 −0.337 <0.001
Cinnamoside HMDB38923 [M + NH4]+ 4.78 536.27 1.23 −0.455 <0.001
L-Isoleucine HMDB00172 [M + H]+ 1.05 132.10 1.22 −0.271 0.003

5-Methoxyindoleacetate HMDB04096 [M − H]− 1.04 204.07 1.20 −0.413 <0.001
DG(18:0/22:6(4Z,7Z,10Z,

13Z,16Z,19Z)/0:0) HMDB07179 [M − H]− 11.13 667.53 1.19 −0.337 <0.001

PI(16:1(9Z)/0:0) LMGP06050009 [M + H − H2O]+ 4.71 553.28 1.17 −0.483 <0.001
Isoleucyl-Proline HMDB03141 [M + H]+ 1.05 229.15 1.16 −0.500 <0.001

Retinoyl b-glucuronide HMDB28915 [M + H − H2O]+ 4.64 459.24 1.16 −0.462 <0.001
Tryptophyl-Arginine HMDB29077 [2M + H]+ 4.65 721.39 1.15 −0.489 <0.001

Butyric acid HMDB00039 [2M + H]+ 4.65 177.11 1.13 −0.480 <0.001
Norepinephrine HMDB00216 [M + H]+ 1.05 170.08 1.12 −0.452 <0.001

Eicosapentaenoic acid HMDB01999 [M − H]− 9.72 301.22 1.08 −0.303 0.001
Gamma glutamyl

ornithine HMDB02248 [2M + H]+ 4.47 523.27 1.05 −0.446 <0.001

Methionyl-Methionine HMDB28979 [M − H2O − H]- 3.19 261.07 1.05 −0.309 0.001
Hydroxybutyrylcarnitine HMDB13127 [M + NH4]+ 4.94 265.18 1.05 −0.359 <0.001

N2-Succinoylarginine HMDB32764 [2M + H]+ 4.84 549.26 1.05 −0.299 0.001
L-Aspartyl-L-
phenylalanine HMDB00706 [M - H]- 0.98 279.10 1.04 −0.301 0.001

24-Keto-
25dehydrocholesterol LMST01010299 [M + H − H2O]+ 4.93 381.31 1.03 −0.287 0.002

7-Methylhypoxanthine HMDB03162 [M + H]+ 1.05 151.06 1.00 −0.373 <0.001

Figure 4. Summary plots of pathway analysis (A) and over-representation enrichment analysis (B) by
MetaboAnalyst (http://www.metaboanalyst.ca, accessed on 12 November 2021) with 19 metabolites
selected from the second PLS model.

Table 4. Parameter estimation of multinomial logistic regression and 95% CI.

Variables
Low-Response Group High-Response Group

95% CI 95% CI

p-Value OR Lower Upper p-Value OR Lower Upper

Dosages 0.783 0.888 0.383 2.060 0.376 0.555 0.151 2.040
Serum creatinine 0.693 0.471 0.011 19.876 0.104 86.550 0.401 18,686.260

Mesobilirubinogen 0.179 1.135 0.944 1.364 0.010 1.351 1.074 1.699
L-Isoleucine 0.062 0.649 0.412 1.022 0.001 0.256 0.114 0.574

5-Methoxyindoleacetate 0.836 0.934 0.490 1.782 0.040 3.176 1.054 9.568
Eicosapentaenoic acid 0.638 1.082 0.778 1.505 0.019 1.686 1.089 2.608
N2-succinoylarginine 0.114 1.014 0.997 1.031 0.108 1.014 0.997 1.031
Tryptophyl-arginine 0.038 1.158 1.008 1.329 0.009 1.357 1.079 1.707

Butyric acid 0.022 0.896 0.816 0.984 0.111 0.889 0.770 1.027

http://www.metaboanalyst.ca
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Figure 5. The results of multinomial logistic regression (A). Each dot represents an individual. The
black dots indicate individuals who could be correctly predicted, while red dots mean individuals
who were inaccurately predicted. Refined PLS predicted modeling to predict the percentage of T
lymphocytes of tacrolimus (B).

3.6. OPLS-DA Models to Characterize Pharmacodynamic Responses

The OPLS-DA model was used to validate the predictive ability of the selected
molecules. The OPLS-DA model was built based on the key metabolites and clinical
characteristics. Each circle represents an individual in high-response and low-response
groups, and score plots show an overview of clustering (Figure 6A). The selected molecules
separated the two groups (blue and green dots) clearly; R2Y was 0.577, and Q2 was 0.445.
Meanwhile, permutation tests were performed with 200 iterations to avoid overfitting the
predictive models (Figure 6B). The results showed that the values on the left (simulated
value) were lower than the values on the right (real value), indicating that the model was
stable without the risk of overfitting. It turned out that there were significantly metabolic
differences between the high-response group and low-response group. In other words, an
integrative approach to analyzing pharmacometabolomic and clinical characteristics may
have the ability to characterize individual variances in the pharmacodynamic response
phenotype. Consequently, it is expected to potentially avoid adverse drug reactions and
to help dosage optimization for each individual. Thus, to validate the practicability of the
method, we followed all patients for up to 3 months and collected plasma in the 1st month
and 3rd months after transplantation. The OPLS-DA model revealed that there was no
difference in the selected metabolites between the high-response group and low-response
group (Figure 6C,D).

Figure 6. OPLS-DA model to discriminate subgroups based on the selected variables. Each dot
represents an individual. Green dots indicate individuals in the high-response group, while blue
dots mean individuals in the low-response group. (A) The OPLS-DA model of individuals who
were 1 week after transplantation. (B) Permutation tests of the model in Figure 6A, which were
performed with 200 iterations, indicated that the predictive models were not overfitting. (C) The
OPLS-DA model of the individuals who were 1 month after transplantation. (D) The OPLS-DA
model of individuals who were 3 months after transplantation.
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4. Discussion

T lymphocytes are mainly derived from bone marrow, mature and differentiate in
the thymus, and play an immunomodulatory role [20]. T lymphocytes are activated by
stimulation after renal transplantation, and a large number of cloned and proliferated T
lymphocytes will lead to acute rejection [21]. Meanwhile, T lymphocytes also participate in
the development of ischemia–reperfusion injury, which is the main factor leading to delayed
graft function [22]. In this study, the percentage of T lymphocytes was correlated with the
function of the kidney, and individuals with a higher percentage of T lymphocytes were
more prone to rejection, while those with a lower percentage of T lymphocytes were more
prone to delayed graft function. In this study, more than 30% of individuals’ percentage of
T lymphocytes were not within the normal range. Tacrolimus is an immunosuppressive
drug that exerts immunosuppression by inhibiting the activation of T cells [23].

Pharmacometabonomics, an approach that has proved effective for personalized
medicine, was performed in this study to predict the percentage of T lymphocytes of renal
transplantation patients who took tacrolimus as an immunosuppressive drug. Based on
pharmacometabonomics analysis, T lymphocytes were found to have a significant correla-
tion with the metabolites, and the amino acid metabolic pathway was the most obvious.
Meanwhile, some amino acids have been established as biomarkers for some diseases. In
infectious viral diseases, the lack of arginine led to a decrease in T lymphocyte expression,
and thus, the virus could not be effectively cleared. However, after supplementation with
arginine, the number of T lymphocytes increased, and the virus was also inhibited [24].
In a study of Alzheimer’s disease, it was found that increased concentrations of pheny-
lalanine and isoleucine in the blood could stimulate the differentiation and proliferation
of T cells [25]. Meanwhile, isoleucine was significantly correlated with the production of
IL-10, which could inhibit the immune response of T cells [26]. Tryptophan metabolism
also plays an important role in the immune response. Tryptophan can be metabolized into
indole derivatives, induce the production of IL-22 [27], and then promote immune defense
and tissue repair [28]. Furthermore, tryptophan can be oxidized to kynurenine through
indoleamine 2,3-dioxygenase (IDO), which is related to the immune response [29].

Tacrolimus has been the first-line immunosuppressant for renal transplantation pa-
tients, and it has been studied extensively. The first pharmacometabonomics analysis of
tacrolimus proposed a prediction equation based on the relationship between metabo-
lites and the parameters of PK [16]. In this study, we focused on the correlation be-
tween endogenous molecules and the parameters of PD. Serum creatinine, mesobilirubino-
gen, l-isoleucine, 5-methoxyindoleacetate, eicosapentaenoic acid, N2-succinoylarginine,
tryptophyl-arginine, and butyric acid were finally selected as key biomarkers. The level
of creatinine in serum was associated with renal ischemia and reperfusion injury [30,31].
Mesobilirubinogen was associated with cirrhosis [32], which might affect the metabolism
of tacrolimus. Previous studies have shown that there is a potential relationship between
amino acids and T lymphocytes. Some amino acids, such as L-isoleucine and arginine,
have been known to be involved in immunosuppressive activities [16] and could affect the
response to tacrolimus. 5-Methoxyindoleacetate is the key metabolite of tryptophan [33],
which is a biomarker in diagnosing acute kidney injury among tacrolimus-treated kidney
transplant patients [34]. Eicosapentaenoic acid improved renal function in CNI-treated
transplant recipients by competing with substrates of the COX pathway [35] and acted as
an ineffective substrate for vasoconstrictive diene metabolites such as TXA2 [36]. According
to a previous study, butyric acid could regulate hyperglycemia caused by tacrolimus [37].

5. Conclusions

In this study, we explored the correlation between T lymphocytes and endogenous
molecules using the pharmacometabonomics approach. Serum creatinine, mesobilirubino-
gen, L-isoleucine, 5-methoxyindoleacetate, eicosapentaenoic acid, N2-succinoylarginine,
tryptophyl-arginine, and butyric acid were indicated as candidate biomarkers to predict
the efficacy of tacrolimus, which showed a high accuracy. The levels of the key metabolites
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had no difference among different pharmacodynamic groups at 1 month and 3 months
after dose adjustment, further validating that the pharmacodynamics approach is beneficial
for determining individualized dosages of tacrolimus.

It is worth mentioning that this is the first report that presents correlations between T
lymphocytes and endogenous molecules and provides a reference for renal transplantation
patients to adjust individualized dosages of tacrolimus, which may be extended to other
drugs with a high degree of intra-individual variation. However, the most promising
biomarkers chosen in this study should be further validated, and whether the results
from this study are very meaningful for other hospitals remains unclear and requires
further study.
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