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ABSTRACT: This work combines a machine learning potential
energy function with a modular enhanced sampling scheme to
obtain statistically converged thermodynamical properties of
flexible medium-size organic molecules at high ab initio level. We
offer a modular environment in the python package MORESIM
that allows custom design of replica exchange simulations with any
level of theory including ML-based potentials. Our specific
combination of Hamiltonian and reservoir replica exchange is
shown to be a powerful technique to accelerate enhanced sampling
simulations and explore free energy landscapes with a quantum
chemical accuracy unattainable otherwise (e.g., DLPNO-CCSD-
(T)/CBS quality). This engine is used to demonstrate the
relevance of accessing the ab initio free energy landscapes of
molecules whose stability is determined by a subtle interplay between variations in the underlying potential energy and
conformational entropy (i.e., a bridged asymmetrically polarized dithiacyclophane and a widely used organocatalyst) both in the gas
phase and in solution (implicit solvent).

1. INTRODUCTION
Machine learning techniques are increasingly used to bypass
expensive quantum chemical computations. Typical examples
are machine learning-based potentials that are exploited to
propagate the dynamical evolution of molecular systems on ab
initio potentials at a fraction of the cost. The seminal work in
the field comes from Behler and Parrinello,1 who trained a
generalized Artificial Neural Network (ANN) capable of
predicting density functional theory-based energies and atomic
forces and demonstrated its capability on bulk silicon2 and
then on carbon3,4 and sodium.5 Behler and Marquetand then
applied the same approach to n-alkanes6 and alanine
tripeptides.7 Comparable capabilities were achieved by Csanyi
and co-workers, who used kernel-based method (i.e., the
Gaussian approximation potential)8 to propagate the density
functional theory (DFT)−molecular dynamics (MD) of bulk
crystal,9 amorphous carbon,10 and silicon.11 Kernel ridge
methods were also exploited for the “on-the-fly” propagation of
the dynamic in the electronic states, circumventing the need
for the explicit time dependent DFT or the CASSCF
computations.12 Roitberg et al. modified the Behler−Parrinello
symmetry functions and proposed a deep neural network
(ANAKIN-ME) to learn the potential of organic molecules
approaching the CCSD(T)/CBS accuracy.13−15 Such a high-
accuracy level was also achieved by Tkatchenko and co-
workers using gradient-domain machine learning
(GDML).16−18 The SchNet19−21 deep learning architecture
was also exploited to predict the potential energy surface and

other quantum chemical properties of molecules and materials.
Inspired by SchNet, Meuwly and Unke introduced the
PhysNet architecture22 for predicting energies, forces, or
dipole moment of small organic molecules and polyalanines.
Overall, machine learning potentials (neural network or

kernel-based) achieving post-Hartree−Fock or DFT accuracy
were essentially employed for the molecular dynamics of fairly
small and rigid systems (e.g., benzene, ethane and
malonadehyde, aspirin, uracil, naphthalene, salicylic acid, and
toluene)16,17,23 or alternatively for larger systems with limited
chemical diversity (e.g., peptides made of the same amino-acid
type).7 For these reasons, the associated (free) energy
landscapes were explored using standard ab initio molecular
dynamics without the need of making use of accelerated
sampling approaches. Describing more flexible organic
molecules (i.e., molecules that possess low-frequency (anhar-
monic) modes and multiple local minima close in energy) with
machine learning potentials sets additional challenges, which
influence both the accuracy of the ML potential and the
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convergence of the statistical sampling of complex potential
energy surfaces.
In 2016, one of us demonstrated24 the utility of coupling

temperature replica exchange25 (T-RE) molecular dynamic
with the most recent variant of density functional tight binding,
i.e., DFTB326−28 to map the free energy landscapes of fluxional
organic molecules in order to address organic chemistry
problems that are not solvable solely relying on static
electronic structure computations or standard molecular
dynamics, the latter being too short to capture the
interconversion between different possible states. A replica
exchange molecular dynamics (REMD) simulation overcomes
problems associated with running insufficiently long simu-
lations by performing a series of energetically independent
simulations (named replicas) of the same system in different
equilibrium conditions and allowing them to occasionally
exchange their configuration in a way that still ensures a
canonical sampling within each replica. Replica exchange is
especially appealing when relevant collective variables essential
to a metadynamic29 simulation are not easily identifiable24 (see
ref 30 for a recent example of metadynamics at the DFTB
level). The most common version is T-RE,25 where the replicas
differ by their temperature. The additional insights provided by
the coupling of REMD and DFTB3 (REMD@DFTB3)24 were
demonstrated on four examples including reaction energy
pathways and conformational free energy differences, charac-
teristic of organocatalysts, and flexible molecular rotors. While

REMD@DFTB3 permits thorough exploration of potential
energy surfaces at an affordable computational cost, the
accuracy of the electronic structure method was sacrificed to
ensure statistical convergence. In fact, the incompatibility
associated with obtaining both converged statistical sampling
and highly accurate energetics has traditionally prevented the
ability to improve the quantum chemical description of
moderately sized, yet highly flexible molecules that evolve on
complex potential energy surfaces,31−34 sometimes leading to
catastrophic results.35 In the present work, we achieve high-
level ab initio accuracy by correcting semiempirical potentials
with a machine learning model based on kernel ridge
regression36 combined with a more general enhanced sampling
scheme connecting Hamiltonian37 (H-RE) and reservoir38

(resRE) replica exchange (i.e., resH-RE). With the former, the
replicas evolve under a different Hamiltonian instead of a
different temperature like in Temperature Replica Exchange,
(i.e., T-RE). As for reservoir Replica Exchange, it was originally
developed to improve T-RE by replacing the highest-
temperature replica with a pool of structures (i.e., reservoir)
acting as any other replica but exchanging conformations taken
randomly from the pool. The proposed combination of
Hamiltonian and reservoir RE (resH-RE) dramatically
accelerates the exploration of ab initio free energy landscapes
of archetypes flexible medium-size organic molecules that are
dictated by a subtle energetic interplay originating from both
enthalpic contributions and conformational entropy. The

Figure 1. (a) Dithiacyclophane and the collective variables used to characterize its global structure: the distance between the center of masses of
each cyclic bulk and the angles between the average planes going through them. (b) Cinchona alkaloid organocatalyst and the two dihedral angles
used to characterize its global structure.

Figure 2. Mind-map and workflow illustrating the proposed methodology.
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illustrative systems considered herein (Figure 1) are motivated
by our previous work24,39,40 and are (1) the bridged
asymmetrically polarized dithiacyclophane, incorporating a
thieno[2,3-b],41 and (2) a prototypical cinchona alkaloid
organocatalyst.40,42,43 Specifically, the first molecule is chosen
because its relative conformational stability is governed by
subtle intramolecular noncovalent interactions that necessitates
an accurate ab initio treatment, while the large conformational
entropy effects can only be accounted for by using accelerated
sampling techniques. The free energy landscape of the
organocatalyst is a complementary example that depends on
individual energy contributions arising from rotational isomer-
ism.

2. METHODS AND COMPUTATIONAL DETAILS
Overview. The proposed protocol is schematically

illustrated in the workflow given in Figure 2, whereas all the
details on the quantum chemistry, machine learning models,
and enhanced sampling approaches are described in the
upcoming individual sections. In brief, a low-cost semi-
empirical approach is used as a quantum chemical baseline,
while the targeted free energies are achieved at an accurate ab
initio target level with machine-learned corrections that learn
the difference (Δ) between the baseline and the target (Δ-ML
correction).44 The semiempirical level is first used to generate
a canonical sampling using T-RE that serves two purposes: (a)
a subset of structures extracted from this T-RE simulation is
selected to build a training set of energies/structures to train
the Δ-ML model, and (b) the pool of structures associated
with the T-RE is used as a reservoir (vide inf ra). The thorough
exploration of the free energy landscapes, which is finally
performed using a potential corresponding to the semi-
empirical level + Δ-ML correction, combines two variants of
replica exchange that are Hamiltonian and reservoir RE (resH-
RE). The resH-RE simulations were performed with a modular
in-house python implementation of replica exchange uploaded
in git-hub45 in the form of a Python library under the name
Modular Replica Exchange Simulator (MORESIM).
2.1. Quantum Chemical Potentials: Targets and

Baseline. DFTB326 with the 3OB parameters27,28 and the
Slater−Kirkwood dispersion correction46 (DFTB-SK) using
the DFTB+47 software is the chosen baseline for the Δ-ML
model and for building the reservoir. The target potential is the
domain-based local pair natural orbital coupled-cluster with
perturbative triples (DLPNO-CCSD(T)/CBS)48,49 as imple-
mented in ORCA 4.0.50 Complete Basis Set (CBS)
extrapolations are performed following Neese’s scheme starting
from Dunning basis sets51,52 (i.e., cc-pVDZ and cc-pVTZ)
computations. PBE053-D354/(6-31G) is also used as target.
The TeraChem55,56 implementation serves to provide a
comparison with the direct (exact PBE0 as opposed to ML-
based) free energy computations at the PBE0-D3/(6-31G)
level. For the direct computation, we follow the work from
Martinez et al.56 and utilized an MPI interface between
AMBER and TeraChem GPU to accelerate single-point
computations performed during the PBE0-D3/(6-31G) and
AMBER57 T-RE simulations. At each step of the dynamics, the
converged density from the previous step was passed as the
initial point for the SCF computation. These PBE0 simulations
enable comparison between the explicit ab initio free energy
landscapes and the faster ML ansatz, a comparison that is not
possible at the DLPNO-CCSD(T) level. Details on the relative
computational cost are provided in Figure S1.

Solvent effects were included implicitly using the SMD58

model (with the dielectric constant of chloroform) at the
PBE0-D3/(6-31G) level, also in ORCA 4.0.

2.2. Machine Learning Models. The ML corrections
trained to learn the difference between the baseline and target
levels are based on Kernel Ridge Regression36 (KRR) and use
the Spectrum of London Axilrod−Teller−Muto (SLATM)59

molecular representation developed by von Lilienfeld and
Huang in the Quantum Machine Learning (QML) package.60

Among all the tested molecular representations (e.g., Coulomb
Matrix,61 Bag of bonds62), SLATM offered the best accuracy
for the class of problems investigated herein. The KRR space
was generated with a Gaussian kernel. The training set is built
on the basis of the most distinct structures extracted from the
DFTB-SK T-RE simulations and corresponds to 1500 and
1800 structures and energies for the bridged asymmetrically
polarized dithiacyclophane (a), and a prototypical cinchona
alkaloid organocatalyst (b), respectively. These sets were
divided into a training and a validation set (200 and 300
random structures) and were used for validation for each
system, respectively. Among the initial 1500 and 1800
structures/energies, a random subset of 500 was used to
optimize the hyper-parameters (i.e., the standard deviation of
the Gaussian kernel σ, and the regularization parameter λ)
optimized with a Nelder−Mead simplex algorithm.63 The
quality of the trained model is evaluated by the mean absolute
errors (MAE; see Figure S2) for the predictions on the test set.
Overall, the final Δ-ML models offer an accuracy reaching 1
kcal/mol for both the dithiacyclophane and the cinchona
alkaloid organocatalyst in comparison to the electronic energy
computed at the exact reference level (see learning curves in
Figure S2). Achieving such accuracy was a sufficient reason to
favor kernel methods over a neural network.

2.3. Hamiltonian-Reservoir Replica Exchange. Two
complementary sampling techniques are used for the
exploration of the free energy landscapes computed with the
Δ-ML models: Hamiltonian Replica Exchange37 (H-RE) and
reservoir Replica38 (resRE). Approaches based on replica
exchange typically use parallel simulations with modified
parameters (temperature, Hamiltonian, atomic masses, ...) to
facilitate the crossing of energy barriers and thus accelerate the
sampling of canonical probability distributions.25,64,65 Over the
course of the simulation, the original replica, operating at the
target conditions, exchange molecular conformations with the
modified replicas as a way to introduce significant jumps in the
phase-space. To ensure nonvanishing exchange probabilities, a
sufficient number of replicas connecting the original conditions
with the other extreme is introduced.
In H-RE, the transition between states is accelerated by

creating intermediate potentials (i.e., between the baseline and
target condition) using a modified Hamiltonian for each of the
replicas.64,66,67 In our implementation, H-RE exploits a
reservoir of DFTB-SK structures obtained from previous
simulations (vide inf ra). The replicas evolve at the same
temperature (300 K) and under a potential Vλ = (1 − λ)Vtarget
+ λVlow that transition from DFTB-SK (low) to DFTB-SK +
Δ-ML corresponding to targeted post-Hartree−Fock or DFT
accuracy. The replica with λ = 0 evolves with the pure accurate
potential V0 = Vtarget = DFTB-SK + Δ-ML, while the replica
with λ = 1 corresponds to the lower-level potential V1 = Vlow =
DFTB-SK. In practice, the “highest” replica (λ = 1) is replaced
by an available reservoir, generated with the low-level potential
(i.e., DFTB-SK at 300 K), in the spirit of reservoir Replica
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Exchange (resRE) (see scheme in Figure 3). Here, the
canonical DFTB-SK reservoirs (see Figures 4a and 5a) were
taken from previous T-RE simulations (300 K) within i-PI.68,69

The rationale behind the use of a reservoir is to reduce the
trajectory correlation time and thus the number of single point
computations needed to achieve convergence.38 Of course,
resRE is only adequate to compute ensemble averages if the
reservoir contains samples that follow a known physical
distribution (in our case canonical), as otherwise it is not
possible to derive a proper exchange probability with the other
replicas.
By coupling the reservoir with H-RE rather than T-RE, we

are able to explore the accurate ab initio level by accelerating
the sampling without increasing the temperature, which leads
to several advantages. In comparison to T-RE (achievable only
at the semiempirical level), for which the jumps between free
energy minima are generated by the exchange and acceptance
probability with replica evolving at different equilibrium
conditions (e.g., temperature), resH-RE exploits an existing
reservoir of structures covering the entire conformational space
that are accessible to the replica evolving at the target

condition. In other words, by taking advantage of an a priori
canonical sampling performed at an affordable semiempirical
level, resH-RE will more efficiently simulate rare events.
Additionally, fewer replicas (4/6 (H-RE) vs 16/48 (T-RE)
(for the two considered molecules) are necessary to achieve
optimal exchange probabilities, suggesting a larger overlap
between the potential energy distributions of the replica than
in T-RE.
In our context, another key advantage of exchanging with

the reservoir is that replicas only serve to induce local diffusion
in the phase-space, whereas the swaps between local minima in
the free energy landscape (i.e., between basins) and crossings
of energy barriers occur through the reservoir. The resH-RE
simulation is thus achievable with thermalized Molecular
Dynamics, but also with simple Monte Carlo (MC) moves
(e.g., random particle moves) that are otherwise largely
inefficient for systems with nonlinear potential energy surfaces
like those investigated herein.70

In fact, many of the existing ML-based potentials have not
yet been adapted to run molecular dynamics. With the kernel
based approaches, the forces can be obtained from deriving the

Figure 3. Schematic depiction of Hamiltonian reservoir Replica Exchange.

Figure 4. (a) Free energy landscape (DFTB-SK/3OB level) of dithiacyclophane at 300 K (T-RE) projected on the 2D space generated by the
collective variables visible in Figure 1a. (b) Projection of the data set made of 1500 dithiacyclophane structures extracted with farthest point
sampling from the 300 K canonical ensemble of 40 000 structures and color coded on the basis of the single-point energy difference ΔE = ((DFTB-
SK/3OB) − (DLPNO-CCSD(T)/CBS)). The continuous background is plotted using a Gaussian interpolation of the mean energy difference.
The smooth histograms were constructed with a Gaussian Kernel Density Estimator (Gaussian KDE) using the SciPy73 python library.
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expression of the KRR (and thus of the molecular
representation) with respect to the atomic coordinates,12 but
the task is not straightforward for the SLATM representation
used here. The alternative, the Gradient Domain ML scheme
developed by Müller et al.,16−18 consists of learning the forces
directly is considerably more expensive and only applicable to
small molecules.
This work uses resH-RE with MC moves not only because

of the unavailability of the forces but also to illustrate that the
broad applicability of the sampling scheme with any of the
existing ML potentials.
The convergence of free energy computations was evaluated

by analyzing the evolution of the estimated relative free
energies between basins (see section 4 in the Supporting
Information). Given that the crossing between basins
represents the slowest dynamical mode, the stabilization of
the estimated basin free energies represents a good indicator of
convergence. Statistical error boundaries on the estimated free
energies were evaluated using a block jackknife with a width of
one-tenth of simulation time.71

Note that the adopted approaches are applicable to any
molecule but is specially designed for situations when free
energy perturbation is not sufficient or suffers from
convergence problems. resH-RE is indeed not a simple
reweighting scheme; the reservoir in resH-RE is used to
accelerate jumps over the conformational space, but the data
generated by the replica that samples the canonical distribution
of the target potential correspond to an unbiased sampling of
the adequate probability distribution.
2.4. Technical Details. The 300 K free energy landscape

of dithiacyclophane was obtained with a resH-RE simulation

using four replicas (λ = 0, 0.33, 0.66, 1) exploiting a reservoir
of 40 000 structures taken from a previous DFTB-SK24

canonical distribution of structures obtained with T-RE at
300 K using the Langevin thermostat. The T-RE DFTB-SK
simulation corresponds to 16 replicas with temperatures
ranging from 300 to 1500 K in logarithmic intervals, and a
time-step of 0.25 fs ran for 2.5 × 106 MD steps. A subset with
the 1500 most distinct structures was extracted from the
reservoir with Farthest Point Sampling9 (FPS) (Figure 4b) and
used to train the Δ-ML corrections. Six replicas (λ = 0, 0.2, 0.6,
0.8, 1) were required for the resH-RE simulations of the
cinchona-based asymmetric organocatalyst, and the 1800 most
distinct structures (Figure 5b) extracted from a reservoir of
32 000 structures obtained as discussed above (i.e., T-RE
simulations) were used for the training. For both resH-RE
simulations, it was ensured that the exchange rate between
replicas reaches an optimal ∼30%.72 Exchange between
replicas was attempted every 20 MC steps consisting of a
Gaussian random displacement of all atoms (in Cartesian
coordinates) with standard deviation σ = 0.003 Å set to 50%
acceptance rate. The MC simulations correspond to a total of
106 steps for both systems.
The 300 K canonical sampling at the direct PBE0-D3/(6-

31G) level was also generated with a T-RE simulation using
TeraChem55,56 in combination with AMBER.57 The simu-
lation corresponds to 10 replicas with temperatures ranging
from 300 to 1500 K in logarithmic intervals, and a time-step of
0.75 fs ran for 1.5 × 106 MD steps.

Figure 5. (a) Free energy landscape (DFTB-SK/3OB level) of the cinchona alkaloid organocatalyst at 300 K projected on the 2D space generated
by the collective variables visible in Figure 1b. Constructed with canonical structures generated with T-RE simulations with DFTB-SK as potential
energy. (b) Projection of the 1800 data set structures obtained with FPS from a canonical ensemble of 32 000 structures at 300 K canonical
ensemble and color coded on the basis of the single point energy difference ΔE = ((DFTB-SK/3OB) − (DLPNO-CCSD(T)/CBS)). (c)
Structures representing each of the four conformational regions (i.e., basins).
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3. RESULTS
3.1. Dithiacyclophane. The three conformational regions

of dithiacyclophane, previously investigated by one of us,24 and
visible in Figure 4a, are controlled by very distinct enthalpic
and entropic contributions. The π-stacked “closed” conformer
is stabilized by long-range correlation effects and only captured
at the DFT level upon the addition of a London dispersion
correction.39,40,74 In sharp contrast, the open conformer is
highly flexible and driven by entropy and large anharmonic
effects. The third “disarticulated” conformer is rigid but less
sensitive to London dispersion forces in comparison to the
closed region. Our former T-RE DFTB simulations that
captured all the conformational entropy effects, highlighted the
limitation of the harmonic approximation for describing the
relative stability of the most floppy (i.e., open) conformer (see
Figure 4a).
The harmonic approximation fails to account for the full

conformational entropy contributions and the anharmonic
nature of the open state (2) (see ref 75 for relevant examples
of approximations for anharmonic free energies) and to a lesser
extent of the closed conformational region (1). The large
entropic contributions characterizing the open region (see
Figure 4a) makes it the lowest-energy conformer at the DFTB-
SK level at 300 K and temperatures above. Yet, the DFTB
relative free energies between the three conformers are very
small (within 1 kcal mol−1). Converging the statistical
sampling comes with a quantum chemical cost and the
affordable semiempirical level is not expected to capture all
these subtle energy differences accurately.
The ML correction to DFTB-SK offers access to converged

DLPNO-CCSD(T) free energy profiles at a fraction of the cost
(vide supra). Prior to obtaining the full free energy landscapes
with resH-RE, it is interesting to identify the trends emerging
from the Δ-ML correction added to the DFTB-SK energy of
the structures in the reservoir (Figure 6). The 0.79 regression

slope between DFTB-SK and ML-DLPNO-CCSD(T) is
indicative of the much flatter potential energy surface of the
former or, in other words, an underestimation of the energy
differences and barriers across the energy landscape (with
PBE0-D3/(6-31G) the slope is 0.74; see Figure S3).
The consequence of these energy discrepancies is clear when

comparing the full free energy landscapes and relative free
energies (upon integration within the free energy basins,24

Figure 7) obtained with resH-RE sampling at different
quantum chemical levels. Overall, the shape of the ML-
DLPNO-CCSD(T)/CBS and DFTB-SK profiles are very

similar but the disarticulated basin is strongly favored by
CCSD(T) at the detriment of the close conformer (>2 kcal
mol−1 higher). In contrast to the flat DFTB-SK free energy
profile, the ML-DLPNO-CCSD(T) landscape is clearly uneven
highlighting the difficulties of the tight-binding method to
reproduce the delicate interaction interplay characterizing the
conformational regions of this illustrative system. The PBE0
free energy landscapes are even less flat and favor the
disarticulated state even more with the closed structure being
around 3 kcal mol−1 higher. Yet, the excellent agreement
between PBE0-D3/(6-31G) and ML-PBE0-D3/(6-31G) is a
proof-of-principle demonstration that this trend is not an
artifact from the ML potentials (see Figure 7d,e).
Note that a direct approach using DLPNO-CCSD(T)/CBS

is not achievable, given the intrinsic computational cost of the
method. For this specific reason, a relatively small basis set was
chosen for the DFT profiles. While some of the deviations
between DFTB-SK and the higher-level approaches (i.e., much
smaller energy differences) are already apparent in the static
picture (see the harmonic free energies in Figure 7), the
deviations between methods are more pronounced when
accounting for thermal fluctuations. With PBE0-D3, the
approximated barriers between each conformational regions
are over 5 kcal mol−1, which is significantly higher than the
DFTB-SK (<2 kcal mol−1).
The Monte Carlo approaches used in this work are not

easily compatible with the inclusion of explicit solvent, but the
effect of the environment is, of course, essential to decipher the
true molecular behavior and its associated PES. As a
compromise, solvent effects were incorporated implicitly with
the SMD continuum model (with the chloroform dielectric
constant41) at the PBE0 level. The inclusion of these effects
severely affects the relative energetic stability and flatten the
entire profile looking much more similar to the gas phase
DFTB-SK profile. The limitation associated with the
continuum model could be overcome by using an additional
potential that models the interaction between the solute and
explicit solvent within a dynamic simulation, a possibility that
we will explore in future work.

3.2. Cinchona Alkaloid. The same methodology is applied
to a common cinchona-based asymmetric organocatalyst for
which we also generated the ab initio free energy landscape
(Figure 8).24 The 2D conformational map extracted from the
2016 T-RE simulations at the DFTB level revealed four easily
accessible conformational regions (1−4) and one that is much
less populated (2′). Unexpected from previous static
computations was the dihedral angle (open rather than
close) characteristic of the conformational state 3. Other
added values from the T-RE simulation were the demon-
stration of the pronounced entropic nature of 1 at 300 K
reversing the relative stability between 1 and 4 in comparison
with the static computation and the appearance of region 2′.
Yet, the 1 and 4 conformational regions were within 2 kcal
mol−1 stressing the importance of improving upon the DFTB
level.
With a slope much smaller than 1 (i.e., 0.76), Figure S6

confirms the general flatness of the DFTB-SK potential
compared to that of DLPNO-CCSD(T). Note that the
DFTB3 underestimation of the rotational barriers and of the
relative energy differences, which originates from the limited
amount of atomic overlap afforded by the use of a minimal
basis set, is reminiscent of other examples in the literature.27,76

Figure 6. Comparison between the DFTB-SK electronic energy and
the ML-DLPNO-CCSD(T)/CBS predictions (i.e., DFTB-SK + ΔML
correction) for the 40 000 structures in the reservoir.
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Figure 8 compares the full DFTB profile with those obtained
with ML-DLPNO-CCSD(T) and ML-PBE0-D3 accounting
for the implicit effect of the chloroform environment.77 The
general shape of the ML-DLPNO-CCSD(T)/CBS free energy
landscape of the organocatalyst is once again similar to the
DFTB-SK one but with significant differences. Specifically, 4 is
clearly enthalpically stabilized at the higher level, whereas the
flexibility of the conformational region 1 is enhanced (i.e.,
larger spread over the dihedral angle characteristic of the syn/
anti conformation). The metastable region 2′ is also more
populated at this level. Quantitatively, these trends translate
into 1 and 4 lying very close in energies (within 0.5 kcal
mol−1) with state 3 being nearly 3 kcal mol−1 higher and
disconnected from region 1 (i.e., a high barrier separating the
two regions). Akin to the dithiacyclophane, the PBE0 gas-
phase profile (Figure S8) is much closer to ML-DLPNO-
CCSD(T)/CBS than the implicit solvated (in chloroform)
profile but the flattening of the free energy landscape of the
cinchona derivatives upon implicit solvation is less pronounced
than for the dithiacyclophane (see Figure 8c and Figure S8).

Overall, the effect of the solvent on conformer 3 is negligible
but the metastable 2′ specie disappears, while 2/4 are more/
less populated.
These two complementary examples are associated with

different energetic driving forces that are the interplays
between pronounced intramolecular vdW interactions and
conformational entropy in the first case and the individual
contributions arising from rotational isomerism in the second.

4. CONCLUSIONS

In 2016, we highlighted the importance of thorough mappings
of the free energy landscapes for solving problems in
computational organic chemistry. In this subsequent step, we
demonstrate how to exploit a variant of Hamiltonian replica
exchange and kernel-based machine learning potentials to
achieve a remarkable accuracy/cost ratio and accelerate the
accurate predictions of relative free energies, which is one of
the most challenging goals in computational quantum
chemistry. Overall, our results stress the relevance of improving
the entropic and enthalpic description of flexible organic

Figure 7. Free energy landscapes at 300 K generated with the potential: (a) DFTB-SK; (b) ML-DLPNO-CCSD(T)/CBS; (c) ML-[PBE0-D3/(6-
31G)(SMD Chloroform)]; (d) PBE0-D3/(6-31G); (e) ML-PBE0-D3/(6-31G). (f) Relative free energies by integration within the local minima.24

The free energies are all given relative to the Disarticulated state except for the solvated system, where the open state is used as a reference. The
striped columns correspond to the static relative free energy using the harmonic approximation (for the solvated system the harmonic free energies
were computed with the true potential, and not with the machine learning version). All the free energies maps come from resH-RE expect for the
direct PBE0, which uses T-RE, as described in the methods section.
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molecules having complex free energy landscapes dictated by
subtle energetic interplays. In particular, based on comparisons
between the DFTB-SK baseline and the ML-DLPNO-CCSD-
(T) target, one concludes that the semiempirical method
generally leads to much flatter free energy landscapes.
Similarly, such systems are poorly described by the picture
arising from static free energies, which underestimate the
conformational entropy of the most flexible conformational
regions. For all these reasons, our original combination of
Hamiltonian and reservoir replica exchange and its imple-
mentation into a modular environment (the python package
MORESIM) represents a powerful solution capable of
accelerating enhanced sampling simulations involving any
machine learning-based or ab initio potential energies.
Subsequent objectives will consist of using the same

workflow but circumventing the reduced transferability
associated with the use of a global molecular machine learning
representation by deriving a differentiable kernel approach
based on local atomic environment that is also compatible with
molecular dynamic simulations.
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polytechnique fed́eŕale de Lausanne (EPFL), CH-1015
Lausanne, Switzerland

Alberto Fabrizio − Laboratory for Computational Molecular
Design, Institute of Chemical Sciences and Engineering and
National Centre for Computational Design and Discovery of
Novel Materials (MARVEL), École polytechnique fed́eŕale de
Lausanne (EPFL), CH-1015 Lausanne, Switzerland;
orcid.org/0000-0002-4440-3149

Benjamin Meyer − Laboratory for Computational Molecular
Design, Institute of Chemical Sciences and Engineering and
National Centre for Computational Design and Discovery of
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(2) Behler, J.; Marto crnnaḱ, R.; Donadio, D.; Parrinello, M.
Metadynamics Simulations of the High-Pressure Phases of Silicon
Employing a High-Dimensional Neural Network Potential. Phys. Rev.
Lett. 2008, 100 (18), 185501.
(3) Khaliullin, R. Z.; Eshet, H.; Kühne, T. D.; Behler, J.; Parrinello,
M. Graphite-Diamond Phase Coexistence Study Employing a Neural-
Network Mapping of the Ab Initio Potential Energy Surface. Phys.
Rev. B: Condens. Matter Mater. Phys. 2010, 81 (10), 100103.
(4) Khaliullin, R. Z.; Eshet, H.; Kühne, T. D.; Behler, J.; Parrinello,
M. Nucleation Mechanism for the Direct Graphite-to-Diamond Phase
Transition. Nat. Mater. 2011, 10 (9), 693.
(5) Eshet, H.; Khaliullin, R. Z.; Kühne, T. D.; Behler, J.; Parrinello,
M. Ab Initio Quality Neural-Network Potential for Sodium. Phys. Rev.
B: Condens. Matter Mater. Phys. 2010, 81 (18), 184107.
(6) Gastegger, M.; Kauffmann, C.; Behler, J.; Marquetand, P.
Comparing the Accuracy of High-Dimensional Neural Network
Potentials and the Systematic Molecular Fragmentation Method: A
Benchmark Study for All-Trans Alkanes. J. Chem. Phys. 2016, 144
(19), 194110.
(7) Gastegger, M.; Behler, J.; Marquetand, P. Machine Learning
Molecular Dynamics for the Simulation of Infrared Spectra. Chem. Sci.
2017, 8 (10), 6924−6935.
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