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Introduction
Thalassemia (TM) is a group of disorders caused 
by defective production of the globin chains of 
hemoglobin, resulting in chronic anemia with vary-
ing severity.1 TM has a worldwide distribution. In 
China, regions in the southwest and south have a 
high incidence of TM, and the Guangdong and 
Guangxi provinces have the highest incidence.2 
The TM carrier rate for Guangxi province is 
approximately 24%.3 TM is classified into five 
types, that is, α-, β-, γ-, δ-, and δβ-TM, according 
to genotyping,4 and β-TM is the most commonly 
seen TM in China.5 β-TM can be divided into 
minor, intermediate, and major subtypes according 
to the severity of anemia. Patients with minor β-
TM are usually asymptomatic.6 Patients with major 
β-TM have symptoms of severe anemia shortly 
after birth and have life-long dependence on blood 
transfusion and iron chelation.7 Currently, the 
main treatment strategies for the major β-TM 
include blood transfusion, iron chelation therapy, 
splenectomy, allogeneic hematopoietic stem cell 
transplantation, and gene activation therapy.8

Long-term blood transfusion, ineffective erythro-
poiesis, and increased intestinal iron absorption 
increase the iron load in the body. When the 

body’s iron metabolism capacity is exceeded, iron 
overload may occur in multiple organs, resulting 
in complications such as cardiomyopathy and 
liver sclerosis, which are well recognized in clini-
cal practice.8,9 However, the effects of β-TM-
related iron overload on the central nervous 
system are not well known. A landmark 2019 arti-
cle in the British Journal of Haematology recom-
mended that all physicians take cognitive 
impairment into account when treating transfu-
sion-dependent TM.10 Other studies have shown 
that patients with β-TM have brain iron overload, 
and have proposed a link of brain iron to neuro-
cognitive function.11–13 However, there is limited 
knowledge about the neuroanatomical correlates 
of brain iron deposition, the extent of iron distri-
bution, and its potential association with cogni-
tive impairment. More work needs to be done to 
identify the neuroimaging biomarkers for cogni-
tive function and to alleviate the neurotoxicity of 
brain iron overload in patients with β-TM.

Here, we reviewed the magnetic resonance imaging 
(MRI) methods for brain iron quantification and 
the measurements for cognitive function in patients 
with β-TM. We aimed to identify the neural corre-
lates of cognitive impairment, which should help to 
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evaluate therapies for improving cognition and 
quality of life in patients with β-TM.

Brain iron metabolism
Iron is the most abundant metal in the brain,14 
and it plays a role in pleiotropic functions includ-
ing oxidative metabolism, myelin production, 
neurotransmitter synthesis and other biophysio-
logical processes in the central nervous system.15 
Iron travels from the peripheral blood circulation 
into the brain mainly by crossing the blood–brain 
barrier, which consists of brain microvascular 
endothelial cells (BMVECs), pericytes, and base-
ment membrane.16 Serum ferritin level is not 
equivalent to brain ferritin level. Specifically, 
iron binds the transferrin (Tf-Fe) in the blood, 
and Tf-Fe binds to the transferrin receptor 1 
(TFRC, also known as TfR1) in BMVECs. The 
BMVECs then form endosomes after endocyto-
sis of Tf-TFRC.17 When the endosomal pH is 
decreased to 5.5~6.5, ferric iron (Fe3+) is reverted 
to ferrous iron (Fe2+), which releases from the 
endosomes into the endothelial cytoplasm with 
the help of the solute carrier family 11, member 
2 protein (SLC11A2, also known as DMT1).18 
Intracellular Fe2+ is exported from the BMVECs 

by ferroportin (SLC40A1, also known as FPN1) 
and is oxidized to Fe3+ with the help of cerulo-
plasmin (CP) or hephaestin (HEPH).19 After 
iron enters the brain interstitial fluid, it is taken 
up by multiple types of cells in various brain 
regions.18 Neurons can take up Tf-Fe via TFRC 
due to the widespread distribution of TFRC.20 
There is also a SLC11A2-dependent transport 
mechanism for Fe2+ in neurons, astrocytes, and 
oligodendrocytes.21 Recent studies show that oli-
godendrocytes can acquire iron via the hepatitis 
A virus cellular receptor 1 (HAVCR1, also known 
as TIM-1) protein, a ferritin receptor expressed 
in oligodendrocytes, which binds H-ferritin.19,20,22 
The process of brain iron transport and metabo-
lism process is presented in Figure 1.

MRI methods for brain iron quantification
MRI can quantitatively assess the location and 
composition of brain iron deposits in vivo. 
Brain iron is primarily stored as non-heme iron, 
such as ferritin and hemosiderin, and is distrib-
uted unevenly in the brain, with higher concen-
trations in the basal ganglia, substantia nigra, 
and red nucleus; lower concentrations in the gray 
matter regions; and the lowest concentration in 

Figure 1.  Brain iron transport and metabolism.
CP, ceruloplasmin; HAVCR1=TIM-1, hepatitis A virus cellular receptor 1; HEPH, hephaestin; H-FT, H-ferritin; 
SLC11A2=DMT1, the solute carrier family 11, member 2 protein; SLC40A1=FPN1 ferroportin 1; Tf, transferrin; TFRC, 
transferrin receptor 1.
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the white matter.23–25 MRI quantifies the ferri-
tin and hemosiderin signal, thus reflecting the 
brain iron deposition. Several MRI techniques 
have been used to quantify iron levels, includ-
ing the transverse relaxation rate (R2, R2′, 

R2*), susceptibility-weighted imaging (SWI) 
and quantitative susceptibility mapping (QSM), 
as presented in Table 1. The strengths and lim-
itations of each technique will be described in 
the following sections.

Table 1.  Quantitative magnetic resonance imaging methods for brain iron measurement.

Methods References Subjects Regions with brain iron overload

R2 Barbosa et al.26 20 patients with Parkinson disease, 30 
healthy controls

Substantia nigra, red nucleus, caudate nucleus, 
globus pallidus, putamen, thalamus

  Uddin et al.27 17 healthy adults Globus pallidus, substantia nigra, red nucleus, 
putamen, thalamus, caudate nucleus, cortical gray 
matter

R2′ Sedlacik et al.28 66 healthy adults Globus pallidus, putamen, caudate nucleus, 
hippocampus, amygdala, motor cortex

  Balasubramanian 
et al.29

18 healthy adults Globus pallidus, thalamus, putamen

  Larsen et al.30 146 adolescents and young adults Caudate nucleus, putamen, nucleus accumbens

R2* Cler et al.31 41 adults who stutter;
32 adults who are typically fluent

Left putamen, left frontal operculum and insula

  Elalfy et al.32 32 patients with sickle cell disease;
15 patients with β-TM;
11 healthy controls

Thalamus, caudate nucleus

  Raab et al.24 74 healthy children Globus pallidus, caudate nucleus, putamen

SWI Park et al.33 127 patients with Alzheimer disease;
127 healthy controls

Motor cortex, sensory cortex, medial frontal cortex

  Xiong et al.34 17 patients with Parkinson disease;
10 healthy controls

Substantia nigra, red nucleus, globus pallidus, 
thalamus, putamen, caudate nucleus, dentate 
nucleus

  Khattar et al.35 92 healthy adults Globus pallidus, red nucleus, putamen, caudate 
nucleus, amygdala, hippocampus, insula, substantia 
nigra

QSM Thomas et al.36 100 patients with Parkinson disease;
37 healthy controls

Prefrontal cortex, putamen, hippocampus, thalamus, 
caudate nucleus, substantia nigra

  Li et al.37 23 patients with type 2 diabetes;
25 healthy controls

Right caudate nucleus, putamen, globus pallidus, 
frontal inferior triangular gyrus, and precentral 
gyrus

  Howard et al.38 67 healthy adults Right inferior temporal gyrus, bilateral putamen, 
posterior cingulate gyrus, motor, and premotor 
cortices

  Chen et al.39 150 cognitively normal older adults Hippocampus, putamen, globus pallidus, caudate 
nucleus, entorhinal cortex, frontal cortex, temporal 
cortex

β-TM, beta-thalassemia; QSM, quantitative susceptibility mapping; SWI, susceptibility-weighted imaging.
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Transverse relaxation rate (R2, R2′, R2*)
As a paramagnetic substance, ferritin creates 
inhomogeneity in a local magnetic field, which 
shortens the transverse relaxation time of protons 
(T2) and increases the transverse relaxation rate 
(R2 = 1/T2).40 Prior studies have shown that the 
R2 values of deep gray matter nuclei such as the 
globus pallidus, putamen, caudate nucleus, and 
thalamus are positively correlated with iron con-
tent in healthy adults.27 A postmortem study 
showed a strong linear correlation between R2 
values and brain iron concentrations, with the 
highest iron concentrations noted in the globus 
pallidus, followed by the putamen, caudate 
nucleus, and thalamus.41 However, the water 
content of brain tissue could increase the R2 
value, which could affect the determination of 
gray matter iron content.40 Consequently, the R2 
method is not specific for iron quantification in 
the gray matter.

The reversible transverse relaxation rate (R2′ = 1/
T2′) reflects the reversible signal losses associated 
with local magnetic field inhomogeneity, which 
can eliminate the confounding effects of water 
content in brain tissue.40 A study of young, mid-
dle-aged, and older people showed that the iron 
concentrations in the globus pallidus and puta-
men, measured as R2′, positively correlate with 
age.42 Despite its specificity for measuring the 
deep gray matter iron content,27,28 R2′ has limita-
tions due to low image resolution and cumber-
some calculation, which requires the removal of 
background fields to achieve local field 
inhomogeneity.42

According to MRI relaxation theory, the effective 
transverse relaxation rate R2* = R2 + R2′, where 
R2* = 1/T2*, R2 = 1/T2, and R2′ = 1/T2′.42 The 
R2* value is obtained using a single exponential 
to fit multi-echo amplitude signals in the gradient 
echo sequence, which can quantitatively analyze 
the iron content in the tissue.43 A prior study 
demonstrated that the R2* value of the left puta-
men, left frontal operculum, and insula in indi-
viduals who stutter is higher than in those who are 
typically fluent, and the higher R2* values in 
these brain regions indicates higher brain iron lev-
els.31 However, R2* can detect a spurious signal 
at the junctions of tissues with large differences in 
susceptibility, which reflects an overall change in 
magnetic sensitivity. Also, it does not precisely 
detect the concentration of brain iron because 

ongoing myelination in the brain can increase the 
R2* value.24

Susceptibility-weighted imaging
SWI is an innovative MRI technique that takes 
advantage of differential magnetic sensitivity in 
tissue to enhance imaging contrast. SWI can also 
enhance susceptibility contrast using the phase 
values obtained in gradient echo imaging.44 
Ferritin as a highly paramagnetic substance can 
induce changes in local magnetic field, cause pro-
ton dephasing, and result in low signal on the 
phase images.45 A study using SWI to assess brain 
iron levels in healthy adults ranging from 21 to 
94 years of age showed that brain iron content 
was linearly correlated with age and had a nega-
tive association with myelin content.35 Although 
the phase value measured on SWI can indirectly 
reflect the iron content, the phase images gener-
ated from SWI depend on the orientation of 
structures relative to the applied magnetic field. 
In addition, SWI cannot measure the susceptibil-
ity of each voxel locally,25 which may affect the 
accuracy of the phase value which reflects the 
brain iron content.

Quantitative susceptibility mapping
The susceptibility of a substance to an external 
magnetic field is a unique characteristic. QSM 
provides quantitative estimates of local magnetic 
susceptibility at a voxel level by solving a complex 
field-to-source inversion issue and this method 
quantifies in vivo brain iron levels accurately.46 
One study of brain iron content in mouse iron 
overload models showed that QSM provided 
more accurate and sensitive detection of brain 
iron deposition than R2*.43 A study of Parkinson 
disease (PD) demonstrated that a QSM-derived 
measure of brain iron content increased in the 
hippocampus, thalamus, and caudate nucleus in 
patients with PD, compared with controls with-
out PD, and QSM-derived brain iron content was 
negatively correlated with cognitive function.36 
QSM is a sensitive technique for detecting brain 
iron content, but it is susceptible to interference 
from the white matter myelin, and increased sus-
ceptibility can be caused by increased iron, 
decreased myelin (demyelination), or both.47 
Therefore, combining R2* and QSM may opti-
mize evaluation of iron and myelination-induced 
susceptibility changes.46
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Among the commonly used MRI methods for 
brain iron quantification, QSM is currently the 
most accurate method for determining brain iron 
content in vivo. Since R2 has a low specificity and 
cannot fully eliminate the confounding effect of 
water in the brain tissue, it has been used less fre-
quently to measure brain iron content. On the 
contrary, R2′ can eliminate these confounding 
effects, and it has high specificity for iron content 
in deep gray matter. Nevertheless, considering 
the complexity in data processing, cumbersome 
calculations, and low image resolution, it is not 
used frequently either. The method with R2* 
reflects both brain iron and myelin content, 
meaning that changes in the myelin content of the 
brain in addition to iron would also increase the 
R2* value. Therefore, more studies combine R2* 
and QSM to quantitate brain iron content,24,47–49 
since these two methods provide complementary 
information, that is, iron increases both R2* and 
QSM, while myelin elevates R2* but decreases 
QSM.

Cognitive function in patients with β-TM
With the advancement of therapies such as iron 
chelation therapy, the life expectancy of patients 
with β-TM has increased significantly.50 Iron 
chelation improves cognitive function in TM 
patients because it prevents and treats complica-
tions such as cardiac and liver sclerosis by remov-
ing excess iron, thus improving quality of life in 
patients with TM.51 A recent study showed that a 
lack of iron chelation therapy was an independent 
factor associated with cognitive impairment in 
patients with TM.52 The increase in life expec-
tancy has motivated the medical community to 
focus more on improving the cognitive function 
and quality of life of patients with β-TM. As a 
result, the neurological complications of β-TM 
are gradually being recognized. Most of these neu-
rological complications are subclinical and are 
detected only in neuropsychological tests, neuro-
electrophysiological tests, or neuroimaging.53,54 It 
is noteworthy that patients with β-TM who require 
medical attention are mainly of school-age, and 
cognitive impairments such as learning and mem-
ory issues are major concerns for this population.

Neuropsychological findings
Patients with β-TM show various cognitive defi-
cits. For instance, Economou et al.55 showed that 

36.36% of patients with β-TM have an abnormal 
total intelligence quotient (IQ) score compared 
with healthy children, as assessed by the Weschler 
Intelligence Scale for Children–Third Edition. 
Another study found that the β-TM group had 
lower full-scale, performance, and verbal IQ 
scores when compared with the healthy control 
group, using the Turkish version of the Wechsler 
Intelligence Scale for Children-Revised.56 
Additional studies have identified lower full-scale 
and/or performance IQ scores in patients with β-
TM compared with controls.13,57,58 In terms of 
memory and attention, Monastero et al.11 found 
significant differences in verbal memory and 
attention between patients and controls using the 
Wechsler Adult Intelligence Scale (WAIS) Digit 
Span and Trail Making Test. In addition, using 
the California Verbal Learning Test and WAIS 
Digit Span test, Daar et al.59 showed that short-
term memory capacity, as well as verbal and audi-
tory attention, was impaired in patients with 
β-TM compared with controls. Regarding execu-
tive function, Elalfy et al.60 found the percentage 
of perseverative errors on the Wisconsin Card 
Sorting Test was higher in β-TM patients com-
pared with controls, implicating executive dys-
function in these patients. Furthermore, Daar 
et al.59 showed that patients with β-TM had lower 
verbal fluency scores as compared with healthy 
controls when assessed with the Controlled Oral 
Word Association Test. Studies have shown more 
cognitive impairment in patients with transfu-
sion-dependent TM compared with patients who 
were not transfusion-dependent.52,61 Several fac-
tors may contribute to impaired cognition in 
patients with transfusion dependence, including 
brain iron overload due to long-term transfusion, 
chronic hypoxia caused by severe anemia, and 
toxicity associated with iron chelation drugs.54

A study by Ahmadpanah et al.62 showed no sig-
nificant differences in executive function, atten-
tion, and working memory in patients with β-TM 
compared with controls. Their result might be 
partially explained by the small sample size and 
inclusion of subjects with β-TM minor who did 
not need blood transfusion therapy or iron chela-
tion and hence had a lower risk for cognitive 
impairment. Also, although neuropsychological 
testing is the gold standard for evaluating cogni-
tive function in patients with β-TM, there are 
various neuropsychological testing batteries with 
different sensitivities and are validated with 
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different measures. These testing batteries could 
be affected by the education and cultural back-
ground of the patients and subjective factors of 
the people who performed the assessment.63 
Therefore, other methods are needed to assess 
the extent of cognitive impairment objectively in 
patients with β-TM. Furthermore, a link between 
brain iron and cognition has not been clearly 
identified in patients with β-TM. Other factors 
such as missed days at school, time spent in the 
hospital, recurrent anemia, diminished quality of 
life and decreased life expectancy may have an 
impact on cognition in patients with β-TM.

Neuro-electrophysiological findings
Event-related potentials (ERPs) provide a non-
invasive neuro-electrophysiological method for 
evaluating the central nervous system with 
excellent temporal resolution. ERPs can be 
divided into various components according to 
the waveform.64 For instance, the P300 wave 
reflects the speed of neuronal events during 
stimulus processing and can be used to assess 
the information processing function of the 
brain.65 Nevruz et al.66 examined P300 waves 
during an auditory discrimination task in chil-
dren with β-TM minor and healthy controls. 
They found that patients had a prolonged 
latency and reduced amplitude of P300 waves 
compared with the controls. Interestingly, 
Shehata et al.67 and Elalfy et al.60 also observed 
prolonged latency and reduced amplitude of 
P300 waves in patients with β-TM major. In 
another ERP study of patients with β-TM, Raz 
et al.68 found a longer response time compared 
with controls. Moreover, they showed that 
hemoglobin levels were negatively correlated 
with the amplitudes of the ERP components, as 
the lower the hemoglobin levels, the greater the 
amplitudes of the P2, N1, N2, and P300 waves. 
The main advantage of the ERP method is to 
allow various cognitive components to be 
extracted at each stage of cognitive processing.69 
However, there are limitations to the ERP 
method, including the low spatial resolution of 
ERPs70 and the variability in indicators, such as 
latency and amplitude, among subjects.71 It is 
therefore prudent to use ERP in combination 
with other methods to improve its specificity. 
For instance, the neuropsychological testing 
and MRI methods are commonly paired with 
ERP.60,65

Neuroimaging findings
Cognitive impairment in β-TM patients has been 
attributed to various factors, such as iron over-
load, chronic hypoxia, and deferoxamine neuro-
toxicity.64,65,72 More recently, it has been shown 
that brain iron overload can induce oxidative 
stress via the Fenton reaction, which results in 
irreversible brain damage through ferroptosis of 
neurons and neuroglial cells. This process may be 
an important mechanism underlying cognitive 
impairment in β-TM patients.73 Animal studies 
have shown an association between cognitive dys-
function and brain iron overload in the mouse 
model of Alzheimer disease.74,75 An iron overload 
model of nursing piglets showed an association 
between hippocampus iron overload and impaired 
social novelty recognition.76 In addition, human 
studies in patients with non- β-TM and cognitive 
impairment have demonstrated that brain iron 
deposition is correlated with cognitive impair-
ment.77–79 Currently, MRI is the most commonly 
used neuroimaging method for quantification of 
brain iron content in vivo, making it a crucial 
technique for evaluating brain iron overload in 
patients with β-TM. The key neuroimaging find-
ings of brain iron accumulation in patients with 
β-TM with or without cognitive assessment are 
presented in Table 2.

The studies by Tartaglione et al.61 and Manara 
et al.82 on the same study group showed cognitive 
impairment in patients with β-TM when com-
pared with controls. However, their studies 
showed no iron overload in the brain tissue but in 
the choroid plexuses, and there was no correla-
tion between cognitive impairment and brain iron 
overload in patients with β-TM. A potential 
explanation might be due to their using R2* to 
measure brain iron and a high R2* value may not 
be specific to increase in iron since R2* reflects 
both iron and myelin content.

To date, there is no consensus on the specific 
brain regions where iron accumulates in patients 
with β-TM. Prior studies by Qiu et al.,81 Manara 
et al.,82 and Witzleben et al.83 indicated that brain 
iron accumulated almost exclusively in the cho-
roid plexus in patients with β-TM. The study by 
Qiu et al.81 also showed iron increase in the red 
nucleus in addition to choroid plexus. However, 
no studies have found any association between 
iron overload and cognitive impairment. 
Therefore, it remains largely unknown whether 
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brain iron overload is directly linked to cognitive 
functioning in patients with β-TM. Furthermore, 
few studies of brain iron content are conducted in 
children with β-TM, which has made it challeng-
ing to assess for possible association between 
brain iron overload and cognitive impairment in 
this vulnerable population.

Conclusion
MRI methods can be used to study the potential 
association of brain iron deposition and cognitive 
function in patients with β-TM. QSM provides a 
novel, noninvasive, and quantitative method to 
analyze brain iron. Going forward, it will be 
important to determine to what extent and how 

brain iron overload affects cognitive function in 
patients with β-TM by combing MRI techniques, 
neuropsychological tests, and neuro-electrophysi-
ological methods. More research is needed to elu-
cidate the mechanism underlying the cognitive 
impairment and thus to mitigate the neurotoxic-
ity of brain iron overload in patients with β-TM.
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Table 2.  Neuroimaging findings of brain iron overload in patients with beta-thalassemia.

References Subjects MRI method Regions of brain 
iron overload

Assessment of cognitive 
function

Correlation 
of brain iron 
and cognitive 
function

Metafratzi 
et al.12

41 patients with β-TM;
58 healthy controls

R2 (1.5TMRI) Putamen, caudate 
nucleus, motor 
cortex, temporal 
cortex

None  

Akhlaghpoor 
et al.80

53 patients with β-TM;
40 healthy controls

T2* (1.5TMRI) Basal ganglia 
(striatum), thalamus

None  

Qiu et al.81 31 patients with β-TM;
33 healthy controls

QSM (3TMRI) Choroid plexus, red 
nucleus

None  

Tartaglione 
et al.61

74 patients with β-TM;
45 healthy controls

R2* (3TMRI) Hippocampal 
formations and 
around the Luschka 
foramina, choroid 
plexusesa

WAIS-4th Edition, lower 
values of full-scale IQ and 
VCI, PRI, WMI domain in 
β-TM patients compared 
with controls; BPRS, higher 
score in β-TM patients 
compared with controls

No correlation 
between brain 
iron and WAIS 
score

Manara 
et al.82

70 patients with β-TM;
57 healthy controls

R2* (3TMRI) Hippocampal 
formations and 
around the Luschka 
foramina, choroid 
plexuses

WAIS-4th Edition, lower 
IQ values in β-TM patients 
compared with controls

No correlation 
between brain 
iron and WAIS 
score.

Elalfy et al.32 32 patients with sickle 
cell disease;
15 patients with β-TM

R2* (1.5TMRI) Left thalamus None  

1.5TMRI, 1.5 Tesla MRI; 3TMRI, 3 Tesla MRI; BPRS, Brief Psychiatric Rating Scale; IQ, intelligence quotient; MRI, magnetic resonance imaging; PRI, 
perceptual reasoning index; QSM, quantitative susceptibility mapping; SWI, susceptibility-weighted imaging; VCI, verbal comprehension index; 
WAIS, Wechsler Adult Intelligence Scale; WMI, working memory index; β-TM, beta-thalassemia.
aThe two studies of Tartaglione et al.61 and Manara et al.82 from the same study group.
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