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Stockwell transform 
and semi‑supervised feature 
selection from deep features 
for classification of BCI signals
Sahar Salimpour1, Hashem Kalbkhani2, Saeed Seyyedi3 & Vahid Solouk4*

Over the past few years, the processing of motor imagery (MI) electroencephalography (EEG) signals 
has been attracted for developing brain-computer interface (BCI) applications, since feature extraction 
and classification of these signals are extremely difficult due to the inherent complexity and tendency 
to artifact properties of them. The BCI systems can provide a direct interaction pathway/channel 
between the brain and a peripheral device, hence the MI EEG-based BCI systems seem crucial to 
control external devices for patients suffering from motor disabilities. The current study presents a 
semi-supervised model based on three-stage feature extraction and machine learning algorithms for 
MI EEG signal classification in order to improve the classification accuracy with smaller number of deep 
features for distinguishing right- and left-hand MI tasks. Stockwell transform is employed at the first 
phase of the proposed feature extraction method to generate two-dimensional time–frequency maps 
(TFMs) from one-dimensional EEG signals. Next, the convolutional neural network (CNN) is applied 
to find deep feature sets from TFMs. Then, the semi-supervised discriminant analysis (SDA) is utilized 
to minimize the number of descriptors. Finally, the performance of five classifiers, including support 
vector machine, discriminant analysis, k-nearest neighbor, decision tree, random forest, and the 
fusion of them are compared. The hyperparameters of SDA and mentioned classifiers are optimized 
by Bayesian optimization to maximize the accuracy. The presented model is validated using BCI 
competition II dataset III and BCI competition IV dataset 2b. The performance metrics of the proposed 
method indicate its efficiency for classifying MI EEG signals.

Brain–computer interface (BCI) is a powerful emerging technology that turns brain activity into helpful com-
puter codes to drive mechanical devices for severely disabled people and patients with movement disorders1. 
BCI systems can restore, complete, replace, or rehabilitate human functions by incorporating brain activity in a 
low-cost and low-risk way without any muscle interference. Aside from healthcare and medical applications, BCI 
systems have contributed to manifold domains such as intelligent environment, advertisement, computer games, 
and education2. Classification of movement imagination signals is among the most significant contributions of 
the BCI systems in neurological rehabilitation. Due to noninvasive, high time resolution, proportionately simple 
operation, and low-cost, electroencephalogram (EEG) signal recorded from the scalp has been widely used in 
the BCI system in the fields of rehabilitation and reinforcement tools3–5.

There are some widely used EEG signals in BCI applications like steady-state visual evoked potential (SSVEP)6, 
which are brain reactions to visual stimuli at some particular frequencies, and slow cortical potential (SCP)7, 
that are more associated with movement functions. Also, evoked potential P3008 signal that has been commonly 
used as spellers, and motor imagery (MI)9. Recently, there are several studies on the use of brain activity over the 
sensorimotor regions by MI EEG signals, in which users imagine specific limb movements without really mov-
ing that part of the body to control the system. Since MI EEG signals can be collected easily and inexpensively, 
it has been employed for various applications such as controlling quadcopters, robots, electric wheelchairs, and 
other external devices10,11. Hence, to control a mechanical device the chief requirement is classification of brain 
activity patterns and translating those patterns into commands. While BCI systems have greatly improved, it 
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is still challenging to accurately classify different MI states. Therefore, MI activity has been utilized for the BCI 
system in this work, with our goal to improve the classification performance with smaller number of features 
for MI tasks using three-step feature extraction technique.

Feature extraction and classification are the two salient factors in MI EEG signal processing. The analysis of 
the EEG signals begins with identifying their informative features. Typical spatial pattern (CSP) and CSP-based 
methods are popular feature extraction techniques in various MI studies12–14. Authors in Ref.15 have used the filter 
bank CSP (FBCSP) algorithm along with the principle component analysis (PCA) to select and reduce features 
from EEG signals which then are classified by the eXtreme gradient boosting (XGBoost) algorithm. Also, there 
have been several studies that use graph theory and functional connectivity to analyze EEG signals in MI tasks16. 
In another study, a frequency-based approach using CSP features from overlapping sub-bands was proposed 
for MI classification. Using all available channels, the method selects the most discriminating filter banks17. A 
number of studies have also examined the effectiveness of time-domain, frequency-domain, and the fusion of 
both information on the performance of MI EEG classification18. Recently, RNN-based metaheuristic algorithms, 
time-varying equations are applied to the control of robotic19, where an artificial dynamic system based on EMG 
signals and joint information was introduced to detect human motion intention in lower body parts. Also, neural 
network models have been used for and time-varying optimization problems20. Using a combination of RNN 
and CNN architectures, the work in Ref.21 classified a four-class MI on the BCI competition IV dataset 2a with 
the goal of having a model that could be applied to all participants. However, the performance of current studies 
in MI-EEG classification is still not comparable to other fields like image and speech recognition. The short-
time Fourier transform (STFT) and the wavelet transform are also popular time–frequency approaches, which 
have been developed to extract the various EEG frequency characteristics over time12,22,23. In another reported 
study24, the STFT features of the input signals were extracted and then classified using a network based on ResNet. 
However, the limited width of the window in STFT results in constant resolution in both time and frequency 
domains; hence, it cannot provide proper frequency resolution at low frequency and good time resolution at high 
frequency. Several studies indicated that continuous wavelet transform (CWT) with variant mother wavelets 
represents appropriate multi-scale analysis for extracting significant features in the time–frequency resolution 
over MI EEG signals in BCI tasks25–27. Various machine learning methods have been employed to classify MI 
EEG signals, such as support vector machine (SVM)28, linear discriminant analysis (LDA)29, k-nearest neighbor 
(kNN)30, and other methods23,31. Deep learning models such as convolutional neural networks (CNNs) have 
been recently used in the BCI studies32–34.

In Ref.27, the authors considered the CWT and a four-layer CNN for classification. They improved average 
classification accuracy using three mother wavelets compared to the STFT on BCI competition II dataset III and 
BCI competition IV dataset 2b. In Ref.33, different mother wavelets were presented for time–frequency mapping 
of the EEG signals. Then a two-layer CNN was developed to classify a combination of TFMs of C3, Cz, and C4 
channels into the left- and right-hand MI tasks. The accuracy rate of their work was 92.75% in dataset III from 
BCI competition II. Kant et al.34 converted the EEG signals into two-dimensional TFMs using the CWT. They 
used dataset III of BCI competition II in three different frequency spectrums and several transfer learning 
methods, including VGG19, AlexNet, VGG16, ResNet50, GoogleNet, and ResNet101, were applied to classify 
the MI data. They achieved maximum accuracy of 95.71% in full-band (8–30 Hz) by VGG19. Furthermore, 
time–frequency images obtained by Morlet wavelet transforms in Ref.35, were classified using an extended CNN 
with convolutional block attention modules (CBAM) with an accuracy of 90.7% on the BCI dataset III. The 
disadvantages of wavelet transform as the feature extraction method in these works are poor time resolution at 
low frequencies and finding an optimum window function before operation. Stockwell transform was presented 
to overcome the drawbacks of wavelet transform36,37. In Ref.38, Stockwell transform divided different MI signals 
into distinct frequency regions to prepare a distinguished feature vector combined with the CSP technique as 
a multi-step feature extraction method. The performances of three different classification techniques of least 
square-SVM (LS-SVM), random forest (RF), and artificial neural network (ANN) were compared. Accordingly, 
95.55% accuracy was achieved with the LS-SVM classifier on BCI competition III dataset IIIa.

MI tasks have been classified with several different techniques, but currently, there is no superior algorithm 
that provides better results for most applications. Instead of using an individual classifier, the ensembles of dif-
ferent base classifiers have shown promising results for BCI39,40. Clearly, the quality of an ensemble method can 
be defined by its accuracy and diversity41. In Ref.40, a comparative study of three ensemble architectures based on 
three base machine learning classifiers of kNN, SVM, and Naive Bayes (NB) were represented to classify differ-
ent feature sets extracted from MI data best performance was reported using Adaboost ensemble learning with 
multiple base classifiers. In Ref.42, a majority voting ensemble model of five individual classifiers [LDA, kNN, 
SVM, NB, and decision tree (DT)] showed a better average classification accuracy than every single classifier 
for multi-class motor imagery EEG signals. Although different ensemble learning methods can enhance the 
overall accuracy, they cannot consistently outperform the best individual classifier for some applications due to 
the different characteristics of the input datasets43.

BCI employs the brain activity for communication of paralyzed people with intact brain functions. However, 
the non-stationarity nature of brain activity and physiological artifacts contained in brain activity limit the per-
formance and reliability of BCI technologies. Hence, our aim in this is to enhance the performance of MI task 
classification. Due to the nonlinear characteristics of MI EEG signals, it is preferable to employ time–frequency 
transforms to analyze these signals. Considering the explanations provided in the literature review, our objective 
is to improve the classification performance of BCI tasks using a smaller number of deep features and fusion 
algorithms before deep feature extraction and in decision levels. This paper uses the Stockwell transform to obtain 
the TFMs of MI EEG signals. Then, CNN is considered to elicit the robust deep features from TFMs. Since too 
many features have been extracted, they should be reduced to alleviate the computational complexity. To this 
end, we consider the semi-supervised discriminant analysis (SDA), which maximizes the separation of classes 
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and estimates the basic geometric structure of the data. The selected CNN-based features are used as inputs for 
the five various machine learning classifiers. Finally, all these classifiers’ performances and their combination are 
compared to find the most efficient method based on kappa values and classification accuracy.

This paper continues as follows. “Materials and methods” explains the dataset information and proposed 
methodology. The results of the performance assessment are given in “Results and discussion”. Finally, “Conclu-
sion” concludes the paper.

Materials and methods
Here, we explain the proposed method for MI EEG signal classification. In Fig. 1, the proposed method is shown 
in block diagram form. The proposed method generally consists of four steps, including (1) time–frequency 
analysis, (2) feature extraction, (3) feature reduction, and (4) classification. In the following, each step will be 
explained in detail.

Dataset.  The EEG signals for this study was taken from two datasets namely BCI competition II dataset III44 
and BCI competition IV dataset 2b which respectivey refered as II–III and IV-2b45. Table 1 summarizes the detail 
of the datasets. In the following, a detailed description of each dataset will be presented.

The dataset II–III recorded the motor cortex’s channels C3, C4 and Cz for a normal subject (a 25-year-old 
woman). It consists of MI task experiments for the left- and right-hand motions. In total, 280 trials of 9 s length 
are in the dataset. 140 of them are for training, and 140 are for testing. Following the first two seconds of silence, 
an acoustic stimulus was given at t = 2 s, followed by the cross "+" display for one second. After that, a cue (left 
or right) was shown to the subject from t = 3–9 s, and the subject was instructed to perform the imagery task. 
Each of the trials follows the same pattern as shown in Fig. 2a. The sampling rate was 128 Hz, and the signals 
were filtered between 0.5 and 30 Hz. Figure 3 presents one recording from each task in different channels.

The three-channel (C3, Cz and C4) EEG signals composing dataset IV-2b were collected from nine subjects45 
under the sampling frequency of 250 Hz. To eliminate the signal noise, a band-pass filter in the range [0.5, 100] 
Hz is employed. Similar to the dataset II–III, imaginations of left hand movement and right hand movement were 
perfomred. EEG signals for each subjectwere recorded in five sessions, without feedback in the first two sessions, 
with feedback in the remaining three sessions. Each trail was recorded as shown in Fig. 2b–c.

Time–frequency analysis.  It should be mentioned that Motor movements, which are called ERS and ERD 
in brain activity, occur in the alpha (8–13 Hz) and beta (14–28 Hz) frequency bands, so we considered the output 
of Stockwell transform in the range 7–30 Hz. Hence, it is not required to remove the effect of the 50 Hz industrial 
frequency signal from raw EEG signal before computing Stockwell transform. Since EEG signals have nonlinear 
and non-stationarity characteristics, various time–frequency decomposition methods, such as STFT, wavelet 
transform, and Stockwell transform, have been conventionally used to analyze them. Due to the fixed window 

Figure 1.   Block diagram of the proposed method for MI EEG classification.

Table 1.   Summary of datasets used in this paper.

Dataset No. of subjects No. of categories No. of channels Sampling frequency (Hz)

II–III 1 2 3 128

IV-2b 9 2 3 250
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width in the STFT, the proper time and frequency resolution cannot be achieved simultaneously. The wavelet 
transform was proposed to overcome the problems related to Fourier transform by decomposing data into sev-
eral scales, and each scale represents a particular resolution of the signals. The drawbacks of wavelet transform 
are choosing the optimum mother wavelet and losing the absolute phase of the data.

The Stockwell transform presented by Stockwell et al.46 is an extension of CWT and STFT. As an effective 
and efficient time–frequency decomposition method, the Stockwell transform gives high-frequency resolution at 
low frequencies while obtaining high time resolution at high frequencies. Therefore, in this study, the Stockwell 
transform was applied to represent EEG signals in time–frequency. The Stockwell transform of a continuous 
time-domain signal x(t) is represented as:

where j =
√
−1 and

denotes the CWT of signal x(t) and ω(t, f ) defines the Gaussian mother wavelet as:

where the factor d represents the inverse of frequency f (d = 1/f ) . Hence, the expression of the Stockwell trans-
form of the continuous signal x(t) is given as46:

According to (3), the window width in Stockwell transform depends on the frequency f  . Thus, it becomes 
wider as the frequency decreases, and when the frequency increases, it becomes narrower47.

Let assume x(nT) , n = 0, 1, . . . ,N − 1 be a discrete-time signal Acquired by sampling the continuous signal 
x(t)  where T is the sampling period. The discrete Stockwell transform is derived from the discrete Fourier 
transform (DFT) of the input signal. The N-point DFT of the signal can be expressed by
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Figure 2.   Timing scheme for recording EEG signals in each trial. (a) dataset II–III, (b) first two sessions of 
dataset IV-2b, (c) last three sessions of dataset IV-2b.
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Stockwell transform is defined in discrete form as being the projection of a vector onto a spanning set46. 
Discretization of (4) results in the discrete Stockwell transform:

where G(n, k) = exp
(

− 2π2k2

n2

)

 represents a Gaussian function and n,m = 0, 1, . . . ,N − 1 . The amplitude of 
Stockwell transform is needed for feature extraction, which is calculated as:

It was demonstrated in Ref.33 that two electrodes placed in C3 and C4 are sufficient for classifying different 
imagery tasks. Hence, in this paper, the Stockwell transform was performed on signals obtained from C3 and C4 
channels, and the corresponding absolute TFMs are shown in Figs. 4 and 5 for the left- and right-hand motions, 
respectively. The performing or even the imagination of motor movements can arouse specific patterns called 
event-related synchronization (ERS) and event-related desynchronization (ERD) in the brain activity, which 
occurs in the alpha (8–13 Hz) and beta (14–28 Hz) frequency ranges48,49. Since these phenomena are important 
in classifying MI EEG signals, a band-pass filter was applied on the raw EEG signals in 7–30 Hz. The TFMs of 
C3 and C4 electrodes in the range 7–30 Hz are then stacked vertically as shown in Fig. 6. As observed that TFMs 
of the left-hand and right-hand task are different, we can use them to classify MI tasks.
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Figure 3.   EEG signals from dataset II–III recorded during different tasks. (a) C3 channel of left-hand motion, 
(b) C4 channel of left-hand motion, and (c) Cz channel of left-hand motion, (d) C3 channel of right-hand 
motion, (e) C4 channel of right-hand motion, (f) Cz channel of right-hand motion.
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Deep feature extraction by CNN.  CNN is a network of deep neural connections designed for features 
extraction, classification, recognition, and detection applications. In this study, we utilize a CNN to extract deep 
features from TFMs. Each layer of CNN comprises two main building blocks; convolutional and pooling layers. 
The input of the CNN is stacked TFMs, and its output is a deep feature vector. The convolution layer is the first 
layer in CNN to extract features from an input TFM by applying different filters (kernels) and passing results to 
the pooling layer. Limiting the number of layers and the relevant parameters according to the number of training 
samples is an appropriate solution to avoid over-fitting and reduce the complexity of the functions33.

A mini-batch normalization layer and an activation layer are added after each convolution layer. The main 
objective of using a batch normalization layer between the convolutional layers is to normalize the outputs of 
each layer to have zero mean and unit variance, which can accelerate and improve the performance of deep neural 
networks50. The nonlinear activation function introduces nonlinearity to the neural network. There are several 
kinds of activation functions, and the most used ones are sigmoid, tangent hyperbolic, and rectified linear unit 
(ReLu) function33. ReLu is the most effective and popular activation function, which is defined as:
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Figure 4.   Absolute of Stockwell TFM corresponding to the left-hand MI signal from dataset II–III. (a) C3 
channel, (b) C4 channel.
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Figure 5.   Absolute of Stockwell TFM corresponding to the right-hand MI signal from dataset II–III. (a) C3 
channel, and (b) C4 channel.
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Figure 6.   Demonstration of stacking TFMs from dataset II-III. (a) right-hand, and (b) left-hand.
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Hence, for negative input, the output is equal to 0, and for positive input, it is a linear function. The ReLu 
function is faster and more straightforward than the previous two. As well as due to considerable variation in 
the outputs for positive inputs, it prevents the vanishing gradient problem. Accordingly, the ReLu activation 
function is chosen as the activation layer for the CNN in this paper. The pooling layer is the next layer, which is 
also called the sub-sampling or down-sampling layer. Max pooling and average pooling are the general pooling 
functions reducing the dimensions of the data by taking the maximum and the average value in the sampling area.

In this research, CNN with two and three layers are considered to extract deep features from TFMs, where 
the first and second convolutional layers have eight and 16 kernels, respectively, and the last layer in three-layer 
CNN has 32 filters. The size of all filters is 3 × 3. The structure of the two-Layer CNN is depicted in Fig. 7.

Another approach to extract deeper features from images is using the pre-trained networks and adjusting 
their weights for new tasks. There are several pre-trained models for image recognition tasks, such as AlexNet, 
VGG16, VGG1951, Inception52, MobileNet53, and ResNet5054. In this paper, we extract features from the last 
pooling layer of the pre-trained AlexNet and the second fully connected layers of pre-trained VGG19 models 
and report their performance in our proposed model.

Feature reduction.  After deep feature extraction, the input TFM is represented by a vector with high-
dimension. The several features maybe not be informative and have a higher correlation with each other. To 
select the most significant features and decrease the dimension of the feature vector, SDA is employed. SDA 
considers both labeled and unlabeled samples55. The labeled data points maximize the separation between dif-
ferent classes, while the unknown data estimate the basic geometric structure. A smooth discriminant function 
is fitted to the distribution of data by SDA.

Suppose that x1, x2, . . . , xNǫRL denote the N training samples in L-dimensional space that correspond to c 
classes. The supervised version of SDA, i.e., linear discriminant analysis (LDA), only considers the labeled sample. 
LDA has the following objective function:

where Sw and Sb refer to the intra- and inter-class scatter matrices, successively, which are computed as follows:

where Nk denotes the number of training samples for kth class, µ is the total sample mean vector, µ(k) is the mean 
vector of class k, and x(k)i  is the sample i in class k . By defining the total scatter matrix St =

∑N
i=1(xi − µ)(xi − µ)T , 

we have St = Sb + Sw . Thus, the objective function equals:

If enough training samples are not available, overfitting may occur. Regularizers are typically used to prevent 
overfitting. In this case, the optimization problem is as follows:
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where J(a) determines the learning complexity of the hypothesis family, and the regulation coefficient β controls 
the balance between complexity of the model and the empirical loss. Considering natural regularizer, we have:

where S is the weight matrix defined as:

where Np(xi) stands for the set of p nearest neighbors of xi . D is a diagonal matrix; its entries are column (or 
row, since S is symmetric) sum of S, Dii =

∑

jSij and L = D − S is the Laplacian matrix. Hence, the objective 
function of SDA can be formulated as:

The objective function is maximized by the projective vector a which is defined by the maximum eigenvalue 
solution to the generalized eigenvalue problem:

Considering A = [a1, a2, . . . , ac] , where c is the number of non-zero eigenvalues, samples are embedded as:

As observed the performance of SDA depends on the regulation parameter β. In this paper, the Bayesian 
optimization is employed to find the optimum value of the parameter β which yields in the highest classifica-
tion accuracy.

Classification.  In this paper, five well-known machine learning classifiers were applied to classify two-class 
feature vectors, and their results are compared. Due to different behavior of classifiers in some cases, a fusion 
method was used to enhance the reliability of overall classification accuracy by combining the decisions of clas-
sifiers.

Support vector machine (SVM).  Vapnik56 introduced the SVM as the robust classifier. Due to its lower com-
putational complexity and easy processing of small datasets, it has been commonly employed in various BCI 
studies4,57–59. The optimal hyperplane in SVM maximizes the marginal distance between classes. In this paper, 
linear SVM was considered.

Discriminant analysis.  Low computation requirement and easy implementation make discriminant analysis 
one of ideal classifiers for EEG based-BCIs29,60. In the discriminant analysis method, the boundary among classes 
is defined based on maximizing the ratio of inter-class variance and minimizing intra-class variance. The dis-
criminant analysis classification technique uses Bayes’ Theorem to predict which class the test data belongs to61.

k‑Nearest neighbor (kNN).  The kNN approach is a famous statistical method in machine learning-based clas-
sification algorithms. The kNN is a simple classifier in MI tasks59,62 classifies each test data by considering the k 
distance metrics between the test data and those of the closest classes in the feature space. As a result, the param-
eter k is an essential key in the performance of the kNN.

Decision tree (DT).  DT is a supervised machine learning technique in which a dataset is continuously split into 
subsets based on a particular parameter. This classifier uses a tree-like structure that contains the root, internal 
decision, and terminal nodes. The root node is considered as the whole dataset sorted into branches. The inter-
mediate subsets are called decision nodes, and the terminal node shows the predicted classes63.

Random forest (RF).  The RF is a supervised machine learning classifier proposed by Leo Breiman in 200164. RF 
classifiers collect decisions of multiple DT classifiers where a random subset of the features is selected to train 
each DT classifier. This process increases the variation among the trees; hence it overcomes overfitting. Eventu-
ally, combining the results of all DTs determines the final decision on new data.
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Ensemble of classifiers.  The ensemble is the combination of two or more individual classification models to 
improve the overall performance. A robust ensemble model is based on two essential parameters: the accuracy 
and diversity of classifiers41. In this research, the majority voting ensemble, one of the most popular combination 
approaches for classification65, was used to combine the results of five classifiers for the final decision, as shown 
in Fig. 8. In this model, the final class prediction is the one that receives more than half of the votes among the 
base classifiers.

Computational complexity.  The proposed method consists of three main parts including feature extrac-
tion, feature reduction and classification. The time complexities of computing Stockwell transform and feature 
extraction using CNN are O(N) and O(Ns) , respectively, where N is the number of samples of EEG signal and 
Ns in the number of pixels in input TFM46,66. Similar to LDA, the computational complexity of SDA is O(Ntrd

2
i ) , 

where Ntr is the number of training samples and di is the dimension of input feature vector55. Finally, the com-
putational complexities of SVM67, kNN68, decision tree69, and random forest70 classifiers are O(N3

tr) , O(Ntrkdr) , 
O(drNtr log2Ntr) and O(TD) , respectively, where dr is the dimension of reduced feature vectors, T is the size of 
forest and D denotes the maximum depth.

Informed consent.  All methods were carried out in accordance with relevant guidelines and regulations 
and were approved department of medical informatics, institute for biomedical engineering, university of tech-
nology, Graz, Austria.

Results and discussion
This section reports the results of the conducted experiments. The performance of the proposed model was evalu-
ated through classification accuracy, kappa score, confusion matrix, precision, and sensitivity. The classification 
accuracy as the most widely used measure defined as34:

where TP (true positive) is the number of correctly classified feature sets, and TN (true negative) is the number 
of correctly rejected ones. FN (false negative) is the number of feature sets identified wrongly, and FP (false 
positive) is the number of wrongly rejected feature sets. The values for all these parameters are derived from the 
confusion matrix. Sensitivity, also known as recall, is the ability of the model to predict all the true positives of 
each specific class. It is obtained as71:

The precision reflects the proportion of accurate positive predictions out of the total number of samples 
classified as positive:

Besides, the kappa score was applied to measure the classification performance of the proposed model and 
eliminate the randomness effects72. It is calculated as follows:

where rAcc. denotes the random accuracy, which is defined as

(19)Acc. =
TP + TN

TP + FP + TN + FN
× 100,

(20)Sens. =
TP

TP + FN
× 100.

(21)Prec. =
TP

TP + FP
× 100.

(22)kappa =
(Acc − rAcc)

(1− rAcc)
,

Figure 8.   Ensemble of five classifiers (decision-level fusion) to classify the features ontained from SDA.
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where Nc is the number of the classes, which equals two in the considered dataset.

Data preparation.  Each raw EEG signal of dataset II–III has a duration of nine seconds. However, the last 
six seconds of the original EEG signal are considered for MI classification. We consider the six-second duration 
of the trial and multiple smaller segments within the trial. The objective of sliding time windows within the trial 
is to discover the most effective time duration in classification accuracy. In this work, three windows with the 
length of two, three, and four seconds were considered to extract EEG segments from both training and test 
datasets with a stride of 250 ms. The first segments start from the third second of the original signal, and the last 
ones finished at the trial end. As an example, segments with three seconds time duration are shown in Fig. 9. The 
50% of data was used for training and the remaining data was considered for test phase.

The first three sessions of dataset IV-2b were considered in this paper. The MI segment in this dataset has the 
length of three seconds. Hence, we only consider the two-second sliding windows with a stride of 250 ms. The 
50% of data was used for training and the remaining data was considered for test phase.

Feature reduction.  The CNN automatically extracts the high-dimensional deep features from each TFM. 
All extracted features are not informative, and most of them are redundant. As mentioned, SDA is considered for 
feature reduction. The size of input feature vector depends on the structure of CNN which equals to 48,400 for 
proposed two-layer CNN. According to characteristics of SDA, the size of the reduced feature vector equals to 
the number of classes which is equal to two in this paper. In simulations, 2/3 of training samples are considered 
labeled data, and the remaining ones are treated as unlabeled data. Simulations show that there are two non-zero 
eigenvalues; hence, SDA reduces the number of features to two, which reduces the computational complexity 
considerably. The scatter plot of the features generated by SDA for different lengths and locations of the sliding 
window is shown in Fig. 10. It is observed that the length of the sliding window and its location has a consider-
able effect on the distribution of features generated by SDA. Hence, classification accuracy is expected to vary by 
length and location of the prediction window, shown in the following.

Results of whole MI trials.  We considered the optimization procedure to find the hyperparameters of 
classifiers. For SVM classifier, the box constraint and kernel type, i.e., linear, quadratic, cubic, or gaussian, are 
found by Bayesian optimization. In addition, for gaussian kernel, its scale was also optimized. In the case of kNN 
classifier, number of neighbors, distance metric and distance weight were obtained by Bayesian optimization. 
Distance metric is chosen from Euclidean, Mahalanobis, cubic and cosine. The weighting scheme is also chosen 
from equal, inverse, and squared inverse. For decision tree, the maximum number of splits is found by Bayesian 
optimizer. Gini’s diversity index was considered as split criterion and a node in a tree is height-balanced if the 
heights of its subtrees differ by no more than one. The discriminant type of discriminant classifierwas found 
among linear, quadratic, diagonal linear, and diagonal quadratic by grid search. Finally, Bayesian optimizer finds 
the minimum leaf size and number of predictors to sample for random forest classifier.

A comparative study of the proposed model’s classification accuracy and kappa score in Tables 2, 3, 4 and 5 
for different classifiers. These tables compare the performance of five single classifiers and their fusion with the 
majority voting method based on deep features extracted by two- and three-layers CNN and pre-trained models, 
including AlexNet and VGG19. In order to evaluate the effectiveness of the Stockwell transform, the results of 
Stockwell TFM are compared with the Morlet wavelet transform and STFT, which showed relatively better results 
than other mother wavelets in recent studies27,33,73.

(23)rAcc. =
1

Nc
,

Figure 9.   Demonstration of three-second segments of dataset II–III with a stride of 250 ms.



11

Vol.:(0123456789)

Scientific Reports |        (2022) 12:11773  | https://doi.org/10.1038/s41598-022-15813-3

www.nature.com/scientificreports/

Table 4 shows that the Morlet wavelet transform has a better average classification accuracy than the Stockwell 
transform when the pre-trained AlexNet network is applied for extracting deep features. However, the maximum 
achieved accuracy is still less than the best achieved accuracy using Stockwell transform by other deep CNN 
models. Most classifiers have achieved comparatively better performance with proposed Stockwell-based features 
in the classification of EEG signals. The results indicate that in the proposed model, for the dataset II–III, the 
majority voting classifier has the highest classification accuracy of 97.14% and 86.05%, respectively on datasets 
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Figure 10.   Features obtained from SDA considering the different length and location for the sliding window. 
(a) second window of length two seconds, (b) seventh window of length two seconds, (c) 12th window of length 
two seconds (d) second window of length three seconds, (e) seventh window of length 3 s, (f) 12th window of 
length three seconds (g) second window of length three seconds, (h) sixth window of length three seconds, and 
(i) ninth window of length three seconds.

Table 2.   Classification accuracy and Kappa scores for different machine learning approaches considering two- 
and three-layer CNN for Stockwell transform, Morlet wavelet transform and STFT on the dataset II–III.

Classifier

Stockwell transform Morlet wavelet transform STFT

Accuracy (%) Kappa score Accuracy (%) Kappa score Accuracy (%) Kappa score

2-layer 3-layer 2-layer 3-layer 2-layer 3-layer 2-layer 3-layer 2-layer 3-layer 2-layer 3-layer

SVM 97.14 91.42 0.943 0.828 94.99 92.85 0.899 0.857 94.28 92.14 0.886 0.843

Discriminant 95.71 92.14 0.914 0.843 94.28 91.42 0.886 0.828 94.99 91.42 0.899 0.828

kNN 96.43 92.85 0.929 0.857 94.99 90.71 0.899 0.814 94.28 89.99 0.886 0.799

DT 89.28 89.99 0.786 0.799 89.99 90.71 0.799 0.814 90.71 89.28 0.814 0.786

RF 94.28 92.14 0.886 0.843 93.56 91.42 0.871 0.828 94.28 90.71 0.886 0.814

Majority voting 97.14 91.42 0.943 0.828 94.28 92.85 0.886 0.857 94.99 91.42 0.899 0.828
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II–III and IV-2b, with Stockwell transform using two-layer CNN. In general, two-layer CNN has the highest clas-
sification accuracy based on the Stockwell transform. The results show that, although the fusion model obtained 
better accuracies in most cases, it does not always give the best classification results. Regarding kappa scores, the 
proposed method has the maximum value of 0.943 and 0.721, respectively on datasets II–III and IV-2b, for using 
Stockwell transform, while Morlet wavelet transform and STFT resulted in lower kappa values.

Table 6 presents the confusion matrix, sensitivity, and precision for our proposed fusion model based on the 
Stockwell transform related to two-layer CNN. It demonstrates the correspondence between the predicted and 

Table 3.   Classification accuracy and Kappa scores for different machine learning approaches considering two- 
and three-layer CNN for Stockwell transform, Morlet wavelet transform and STFT on the dataset IV-2b.

Classifier

Stockwell transform Morlet wavelet transform STFT

Accuracy (%) Kappa score Accuracy (%) Kappa score Accuracy (%) Kappa score

2-layer 3-layer 2-layer 3-layer 2-layer 3-layer 2-layer 3-layer 2-layer 3-layer 2-layer 3-layer

SVM 85.05 78.73 0.701 0.574 79.32 75.77 0.586 0.515 77.87 74.73 0.557 0.495

Discriminant 77.68 75.09 0.554 0.502 74.50 72.86 0.490 0.457 73.95 73.45 0.479 0.469

kNN 78.32 73.27 0.566 0.465 73.73 70.68 0.475 0.414 69.46 68.96 0.389 0.379

DT 82.41 77.59 0.648 0.552 73.55 71.64 0.471 0.433 70.59 70.27 0.412 0.405

RF 82.27 75.82 0.645 0.516 78.77 74.91 0.575 0.498 76.59 74.73 0.532 0.495

Majority voting 86.05 81.36 0.721 0.627 79.77 75.95 0.595 0.519 76.86 74.81 0.537 0.496

Table 4.   Classification accuracy and Kappa scores for different machine learning approaches considering 
AlexNet and VGG19 networks for Stockwell transform, Morlet wavelet transform and STFT of dataset II–III.

Classifier

Stockwell transform Morlet wavelet transform STFT

Accuracy (%) Kappa score Accuracy (%) Kappa score Accuracy (%) Kappa score

Alex net VGG 19 Alex net VGG 19 Alex net VGG 19 Alex net VGG 19 Alex net VGG 19 Alex net VGG 19

SVM 91.42 92.85 0.828 0.857 94.99 90.71 0.899 0.814 91.42 89.99 0.828 0.799

Discriminant 90.71 91.42 0.814 0.828 94.28 89.28 0.886 0.786 89.99 89.28 0.799 0.786

kNN 92.14 92.14 0.843 0.843 94.28 90.01 0.886 0.800 91.43 88.57 0.8286 0.771

DT 89.99 84.23 0.799 0.685 93.56 89.29 0.871 0.786 89.99 89.29 0.799 0.786

RF 91.42 92.85 0.828 0.857 94.28 88.57 0.886 0.771 91.43 89.29 0.828 0.786

Majority voting 92.14 92.85 0.843 0.857 94.28 89.28 0.886 0.786 92.13 89.99 0.843 0.799

Table 5.   Classification accuracy and Kappa scores for different machine learning approaches considering 
AlexNet and VGG19 networks for Stockwell transform, Morlet wavelet transform and STFT of dataset IV-2b.

Classifier

Stockwell transform Morlet wavelet transform STFT

Accuracy (%) Kappa score Accuracy (%) Kappa score Accuracy (%) Kappa score

Alex net VGG 19 Alex net VGG 19 Alex net VGG 19 Alex net VGG 19 Alex net VGG 19 Alex net VGG 19

SVM 81.59 77.82 0.632 0.556 76.55 74.63 0.531 0.493 77.09 73.14 0.542 0.463

Discriminant 75.46 74.46 0.509 0.489 72.95 72.36 0.459 0.447 72.54 71.81 0.451 0.436

kNN 78.86 70.09 0.577 0.402 72.46 68.77 0.449 0.375 67.23 67.91 0.345 0.358

DT 74.18 77.14 0.484 0.543 71.37 70.78 0.427 0.416 69.41 70.22 0.388 0.404

RF 77.99 73.41 0.559 0.468 76.41 74.73 0.528 0.495 74.23 73.81 0.485 0.476

Majority voting 83.37 78.91 0.667 0.578 78.09 73.54 0.562 0.471 75.59 73.96 0.512 0.479

Table 6.   Confusion matrix for fusion model.

Predicted labels

Precision (%) Sensitivity (%)Left hand (%) Right hand (%)

Actual labels

II–III
Left hand 97.86 2.14 99.28 97.86

Right hand 0.71 99.29 97.89 99.29

IV-2b
Left hand 84.82 15.18 86.95 84.82

Right hand 12.73 87.27 87.27 87.27
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actual labels for each action class in the considered datasets. As observed, the model’s sensitivity for right-hand 
imagery movements achieved the better rate than that of the left hand.

Classification results of sliding window.  Here we discuss the location of the sliding windows on the 
accuracy of the proposed method. Tables 7, 8 and 9 present the performances of classification methods on three 
different segments size using CNN with two layers for dataset II-III. Regarding two-second segments, the best 
accuracy of 98.57% was obtained by kNN and majority voting in 3.75–5.75 s time duration, and the segments 
extracted from the last two seconds of the trial showed the lowest accuracy rate. Similarly, the results in Table 8 
indicate that the SVM, kNN, and majority voting classification algorithms have attained the highest accuracy 
and kappa value of 99.29% and 0.986, respectively, in the 3.25–6.25 s time duration. In contrast, the lowest accu-
racy has been mainly achieved for the last segment. Table 9 shows similar results for four-second segments with 
the highest classification accuracy of 98.57% by the SVM and majority voting classifiers, while the DT classifier 
reported the minimum amounts in all segments.

Since the length of MI segment in dataset IV-2b is three seconds, we only considered the windows with the 
length of two seconds. Table 10 summarizes the best, worst and mean accuracies for considered classifiers. It is 
observed that majority voting achieves the highest accuracy of 89.02% considering the window between 3.25 
and 5.25 s. The worst accuracy of 63.59 belongs to the DT and discriminant classifiers in the range 4–6 s. Also, 
majority voting classifier has the highest average accuracy as 80.78%.

Figure 11a depicts the classification accuracy of the classifiers on two-second segments. The results demon-
strate that all classification methods have performed comparatively better in classification accuracy and kappa 

Table 7.   Classification accuracy and kappa score results for two-second segments using Stockwell transform 
for datset II–III.

Classification 
method

Best Worst Mean

Accuracy (%) Kappa score Duration (s) Accuracy (%) Kappa score Duration (s) Accuracy (%) Kappa score

SVM 97.86 0.957 3.75–5.75 85.72 0.714 6.75–8.75 93.36 0.867

Discriminant 97.86 0.957 3.75–5.75 85.72 0.714 6.75–8.75 92.77 0.855

kNN 98.57 0.971 3.75–5.75 86.43 0.728 6.50–8.50 93.57 0.871

DT 96.43 0.929 4–6 84.99 0.699 7.00–9.00 91.01 0.821

RF 97.86 0.957 4–6 85.72 0.714 7.00–9.00 92.65 0.853

Majority voting 98.57 0.971 3.75–5.75 85.72 0.714 6.50–8.50 93.32 0.866

Table 8.   Classification accuracy and kappa score results for three-second segments using Stockwell transform 
for datset II–III.

Classification 
method

Best Worst Mean

Accuracy (%) Kappa score Duration (s) Accuracy (%) Kappa score Duration (s) Accuracy (%) Kappa score

SVM 99.29 0.986 3.25–6.25 89.29 0.786 6.00–9.00 93.96 0.879

Discriminant 98.57 0.971 3.25–6.25 88.57 0.771 6.00–9.00 93.68 0.874

kNN 99.29 0.986 3.25–6.25 89.29 0.786 6.00–9.00 93.68 0.874

DT 95.71 0.914 3–6 85.71 0.714 5.50–8.50 91.09 0.822

RF 98.57 0.971 3–6 89.29 0.786 6.00–9.00 92.97 0.859

Majority voting 99.29 0.986 3.25–6.25 90.71 0.814 6.00–9.00 93.68 0.874

Table 9.   Classification accuracy and kappa score results for four-second segments using Stockwell transform 
for datset II–III.

Classification 
method

Best Worst Mean

Accuracy (%) Kappa score Duration (s) Accuracy (%) Kappa score Duration (s) Accuracy (%) Kappa score

SVM 98.57 0.971 3.25–7.25 91.42 0.828 5.00–9.00 94.36 0.887

Discriminant 97.85 0.957 3.25–7.25 91.42 0.828 5.00–9.00 94.28 0.886

kNN 97.85 0.957 3.25–7.25 90.71 0.814 5.00–9.00 94.68 0.894

DT 95.01 0.901 3–7 87.14 0.743 5.00–9.00 91.27 0.825

RF 97.14 0.943 3–7 90.01 0.801 5.00–9.00 93.96 0.879

Majority voting 98.57 0.971 3.25–7.25 90.71 0.814 5.00–9.00 94.91 0.898
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Table 10.   Classification accuracy and kappa score results for two-second segments using Stockwell transform 
for datset IV-2b.

Classification 
method

Best Worst Mean

Accuracy (%) Kappa score Duration (s) Accuracy (%) Kappa score Duration (s) Accuracy (%) Kappa score

SVM 88.05 0.761 3.25–5.25 69.51 0.391 4–6 80.56 0.611

Discriminant 81.68 0.634 3–5 69.51 0.391 4–6 77.46 0.549

kNN 81.32 0.626 3–5 69.95 0.399 3.75–5.75 76.55 0.531

DT 87.55 0.751 3.25–5.25 63.59 0.272 4–6 75.59 0.512

RF 84.45 0.689 3.5–5.5 64.23 0.285 4–6 75.17 0.503

Majority voting 89.02 0.781 3.25–5.25 69.95 0.399 3.75–5.75 80.78 0.616
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Figure 11.   Effect of the location of sliding window on the classification accuracy. (a) two-second sliding 
window for dataset II–III (b) three-second sliding window for dataset II–III (c) four-second sliding window for 
dataset II–III, (d) two-second sliding window for dataset IV-2b.
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value in the beginning seconds of the MI task. Then, the overall classification accuracy is trending downward, 
where the lowest performance has been yielded in the last segments. A similar trend can be seen in Fig. 11b,c 
for three-second and four-second time duration segments, respectively. Also, Fig. 11d presents the accuracies of 
different two-second sliding windows for dataset IV-2b. Therefore, finding the most effective time duration of the 
signals depends on various factors such as the segment size, the delay in conducting the imagery task according 
to the cue, and the subject’s concentration during the trial.

Another finding of this study is that although the majority voting ensemble improves the classification perfor-
mance in some segments, a minor improvement was observed in the overall accuracy compared with individual 
classifiers, especially SVM. Therefore, it can be concluded that using a simple machine learning algorithm such as 
SVM as the final classification method in the proposed model is better than applying the fusion model in terms 
of accuracy, processing time, and computational complexity.

The confusion matrix of the best-achieved classification accuracy of 99.29% by SVM, kNN and majority vot-
ing classifier, which is for 3.25–6.25 s time duration, is given in Table 11. For the dataset IV-2b, the maximum 
accuracy of 89.02% in the duration of 3.25–5.25 is obtained by majority voting classifier. The overall results 
demonstrate the efficiency of the proposed model at classifying MI EEG signals.

Effect of feature reduction on accuracy.  Here, we evalute the effect of feature reduction on the accuracy 
of the proposed method. To this end, we compare the performance of the proposed method with other feature 
reduction schemes such as PCA, locality preserving projection (LPP)74, and neighborhood preserving embed-
ding (NPE)75. We also presented the accuracy considering the original feature vector. The results are given in 
Table 12. The results indicate that the SDA considerably enhances the accuracy of classification.

Performance comparison.  Various approaches have been proposed to classify MI signals. In order to 
compare the classification results of BCI competition II dataset III, the best result achieved in this study is com-
pared with other methods found in the existing studies in terms of accuracy (Table 13). The authors in Ref.76 
have proposed STFT-based TFM as input and considered a single layer CNN, stacked autoencoders (SAE), and a 
combination of them (CNN-SAE) to classify MI EEG signals. They reported classification accuracy of 90% using 
CNN-SAE on BCI competition II dataset III. In Ref.33, a two-layer CNN was developed to classify a combination 
of TFMs of C3, Cz and C4 channels using different mother wavelets. The best accuracy rate of their work for 
the current dataset was 92.75% based on the 3.25–6.25 s time duration. In Ref.77 extracted spatial–temporal fea-
tures using the multivariate empirical mode decomposition were classified with SVM and achieved 85.2%. Also, 
higher-order dynamic mode decomposition and multichannel singular spectrum decomposition hybridization 
were considered in Ref.78 for feature extraction. The authors in Ref.27 utilized three various mother wavelets, i.e., 
Morlet, Bump, and Mexican wavelets, to extract the TFMs. They achieved better classification accuracy using 
the Bump wavelet for combined mu and beta bands and a one-dimensional CNN as the classification method. 
In Ref.29, a flexible analytic wavelet transform (FAWT) was implemented to decompose MI EEG signals into 
multiple sub-bands. Then, the reduced statistical features by the multidimensional scaling (MDS) technique 
were classified using the LDA classifier. The model resulted in 94.29% classification accuracy on dataset II–III.

In Ref.73, the magnitude and phase information extracted from CWT images’ real and imaginary parts were 
fed to a one-layer CNN. The proposed method achieved the best 94.6% classification accuracy. The method 
described in Ref.34 explored various transfer learning models such as VGG19, AlexNet, VGG16, SqueezeNet, 
ResNet50, GoogleNet, DenseNet201, ResNet18, and ResNet101 to classify Morse wavelet-based TFMs. The 
method reached up to 95.71% classification accuracy in the case of VGG19. In Ref.24, a new dynamic multi-scale 
layer was added to the ResNet network to extract the multi-scale characteristics from the STFT features of the 
input signal. They have obtained an accuracy of 90.47%. The authors in Ref.35, employed two CBAMs in a two-
layer CNN for classification of the subtraction TFMs of two C3 and C4 channels. Huang and colleagues in Ref.18 

Table 11.   Confusion matrix, sensitivity, and precision for best accuracy.

Predicted labels

Precision (%) Sensitivity (%)Left hand (%) Right hand (%)

Actual labels

II–III
Left hand 98.57 1.43 100 98.57

Right hand 0 100 98.59 100

IV-2b
Left hand 88.28 11.82 89.74 88.28

Right hand 10.09 89.91 88.38 89.91

Table 12.   Accuracy of different feature reduction schemes.

Method Proposed method (%) Proposed method without feature reduction (%) PCA (%) LPP (%) NPE (%)

Accuracy
II–III 99.29 86.42 90.71 87.85 91.43

IV-2b 89.02 76.36 81.18 78.54 82.27
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developed a dual-stream convolutional neural network based on AlexNet and achieved the highest accuracy of 
90.71% by combining time and frequency information.

In the following, the some papers focused on dataset IV-2b are reviewed. Boltzman machines were employed 
in Ref.79 and reaches the accuracy of 84.2%. A combination of spectrogram and scalogram as input TFM given to 
CNN + LSTM structure was yielded the accuracy of 73.8%80. The combination of Hjorth parameters as extracted 
features, ANOVA for feature selection and SVM for classification reaches the accuracy of 82.58% in Ref.81. 
Dual-tree complex wavelet was used in Ref.82 to extract the time–frequency component of EEG signals. After 
selection of efficient features by NCA, the SVM classified the BCI MI EEG signals which yields the accuracy of 
84.02%. In Ref.83, parallel CNNs were used classify of TFM obtained from STFT and the accuracy of 83% was 
achieved. The results show that the proposed method with the accuracy of 89.02% outperforms the recently 
introduced methods.

Most of the mentioned works have incorporated wavelet transform-based approaches to extract the feature 
of the whole-time duration of the MI EEG signals. While, in the present study, finding the location and duration 
of the most exciting part of the signal has been investigated in detail, and better accuracy and kappa value have 
been yielded by the Stockwell transform-based features.

Conclusion
In this paper, a new approach based on Stockwell TFMs of EEG signals was proposed to enhance the classification 
accuracy and reduce the deep features to classify the left- and right-hand movement imagery. In this study, the 
Stockwell transform was to decompose the time–frequency content of EEG signals, since it provides better resolu-
tion than the others such as wavelet transform and STFT. We considered early fusion scheme and combined the 
Stockwell transform of different channels before deep feature extraction. Compared to other studies which mainly 
focused on one specific scheme for the classification stage, we examined different machine learning methods as 
well as their fusion to cover each other’s weaknesses. Four CNN models were used to extract high-dimensional 
deep features, where the TFMs of C3 and C4 channels in the frequency range of [10 30] Hz were concatenated 
and considered as input of CNN. Since there are a large number of features extracted by CNN, SDA was employed 
to reduce them to two. The classification accuracy of different optimized classifiers and a fusion of them by the 
majority voting method were compared. The whole MI EEG signals with six seconds length and multiple small 
segments of the signal with the lengths of two, three, and four seconds with different locations were considered 
for classification. Results indicate that the fusion model does not outperform the maximum individual classifier 
performance in most cases. The accuracy of 99.29% and 89.02% were obtained for datasets II–III and IV-2b, 
respectively, by two-layer CNN. The accuracy achieved in this study demonstrates the efficiency of our proposed 
method in comparison with previous studies on BCI competition II dataset III. Hence, the proposed method 
can be used in BCI systems to provide reliable communication between paralyzed people and external devices. 
Results also indicated that most information of EEG signals is at the beginning EEG samples of MI task, and 
there is less information at the last EEG samples of MI task.

Considering the single-modal, i.e., EEG, for feature extraction, can limit the performance of the proposed 
scheme when there are more than two classes. Also, training process of CNN takes long time which is dependent 
to the structure of CNN. In order to enhance the performance of classification, especially in the case multi-class 
scenarios, the multimodal scheme, such as combination of functional near-infrared spectroscopy (fNIRS) and 
EEG can be considered. Also, considering attention-based deep structures can further increase the classification 

Table 13.   Performance comparison of various studies.

Study Year Dataset Method Accuracy (%)

Tabar et al.76 2016

II–III

STFT with deep learning 90

Xu et al.33 2018 TFM of the wavelet transform, one layer CNN 92.75

Lee et al.27 2019 TFM of the wavelet transform, two-layer CNN 92.9

You et al.29 2020 Flexible analytic wavelet transform, LDA 94.29

Kim et al.73 2020 Magnitude and phase of TFM, CNN 94.6

Kant et al.34 2020 CWT filter-bank, Transfer learning 95.71

Zhand et al.24 2021 STFT, dynamic multi-scale ResNet 90.47

Chen et al.35 2021 Time–frequency image subtraction, CBAM-CNN 90.7

Huang et al.18 2021 Dual-stream CNN 90.71

Proposed model – CNN-based features from Stockwell TFM, feature selection by SDA, 
SVM 99.29

Lu et al.79 2016

IV-2b

Deep learning based on restricted boltzmann machines 84.2

Hernández-González et al.80 2021 Spectrograms + scalograms, CNN + LSTM 73.8

Degdevir et al.81 2021 Hjorth algorithm, ANOA, SVM 82.58

Malan et al. 82 2022 Dual-tree complex wavelet, NCA, SVM 84.02

Han et al.83 2022 STFT, parallel CNN 83.0

Proposed model – CNN-based features from Stockwell TFM, feature selection by SDA, 
SVM 89.02
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accuracy. In order to further reduce the complexity of the proposed scheme, the effect of each layer on the accu-
racy can be analyzed by employing explainable artificial intelligence.

Received: 7 August 2021; Accepted: 29 June 2022

References
	 1.	 Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G. & Vaughan, T. M. Brain–computer interfaces for communication 

and control. Clin. Neurophysiol. 113, 767–791 (2002).
	 2.	 Abdulkader, S. N., Atia, A. & Mostafa, M.-S.M. Brain computer interfacing: Applications and challenges. Egypt. Inform. J. 16, 

213–230 (2015).
	 3.	 Wang, H., Dong, X., Chen, Z. & Shi, B. E. In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and 

Biology Society (EMBC). 1476–1479 (IEEE).
	 4.	 Zhang, R. et al. Control of a wheelchair in an indoor environment based on a brain–computer interface and automated navigation. 

IEEE Trans. Neural Syst. Rehabil. Eng. 24, 128–139 (2015).
	 5.	 Birbaumer, N. Brain–computer-interface research: Coming of age. (2006).
	 6.	 Floriano, A., Diez, F. P. & Freire Bastos-Filho, T. Evaluating the influence of chromatic and luminance stimuli on SSVEPs from 

behind-the-ears and occipital areas. Sensors 18, 615 (2018).
	 7.	 Makary, M. M., Bu-Omer, H. M., Soliman, R. S., Park, K. & Kadah, Y. M. Spectral subtraction denoising preprocessing block to 

improve slow cortical potential based brain–computer interface. J. Med. Biol. Eng. 38, 87–98 (2018).
	 8.	 Kim, K. et al. Joint maximum likelihood time delay estimation of unknown event-related potential signals for EEG sensor signal 

quality enhancement. Sensors 16, 891 (2016).
	 9.	 Pfurtscheller, G., Neuper, C., Flotzinger, D. & Pregenzer, M. EEG-based discrimination between imagination of right and left hand 

movement. Electroencephalogr. Clin. Neurophysiol. 103, 642–651 (1997).
	10.	 LaFleur, K. et al. Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain–computer 

interface. J. Neural Eng. 10, 046003 (2013).
	11.	 Mokienko, O., Chernikova, L., Frolov, A. & Bobrov, P. Motor imagery and its practical application. Neurosci. Behav. Physiol. 44, 

483–489 (2014).
	12.	 Padfield, N., Zabalza, J., Zhao, H., Masero, V. & Ren, J. EEG-based brain–computer interfaces using motor-imagery: Techniques 

and challenges. Sensors 19, 1423 (2019).
	13.	 Zhang, R. et al. Using brain network features to increase the classification accuracy of MI-BCI inefficiency subject. IEEE Access 7, 

74490–74499 (2019).
	14.	 Tiwari, A. & Chaturvedi, A. Automatic EEG channel selection for multiclass brain-computer interface classification using multi-

objective improved firefly algorithm. Multimed. Tools Appl. 1–29 (2022).
	15.	 Tiwari, A. & Chaturvedi, A. In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 4169–4175 (IEEE).
	16.	 Stefano Filho, C. A., Attux, R. & Castellano, G. Can graph metrics be used for EEG-BCIs based on hand motor imagery?. Biomed. 

Signal Process. Control 40, 359–365 (2018).
	17.	 Kumar, S., Sharma, A. & Tsunoda, T. An improved discriminative filter bank selection approach for motor imagery EEG signal 

classification using mutual information. BMC Bioinform. 18, 125–137 (2017).
	18.	 Huang, E., Zheng, X., Fang, Y. & Zhang, Z. Classification of motor imagery EEG based on time-domain and frequency-domain 

dual-stream convolutional neural network. IRBM (2021).
	19.	 Jin, L., Li, J., Sun, Z., Lu, J. & Wang, F.-Y. Neural dynamics for computing perturbed nonlinear equations applied to ACP-based 

lower limb motion intention recognition. IEEE Trans. Syst. Man Cybern. Syst. (2021).
	20.	 Sun, Z. et al. Noise-suppressing zeroing neural network for online solving time-varying matrix square roots problems: A control-

theoretic approach. Expert Syst. Appl. 192, 116272 (2022).
	21.	 Selim, A. Deep Neural Networks for Real Time Motor-Imagery EEG Signal Classification (Anglia Ruskin University, 2021).
	22.	 Tian, G. & Liu, Y. Simple convolutional neural network for left-right hands motor imagery EEG signals classification. Int. J. Cogn. 

Inform. Nat. Intell. IJCINI 13, 36–49 (2019).
	23.	 Rashid, M. et al. Current status, challenges, and possible solutions of EEG-based brain–computer interface: A comprehensive 

review. Front. Neurorobot. 14 (2020).
	24.	 Zhang, G. et al. A dynamic multi-scale network for EEG signal classification. Front. Neurosci. https://​doi.​org/​10.​3389/​fnins.​2020.​

578255 (2021).
	25.	 Li, F. et al. A novel simplified convolutional neural network classification algorithm of motor imagery EEG signals based on deep 

learning. Appl. Sci. 10, 1605 (2020).
	26.	 Chaudhary, S., Taran, S., Bajaj, V. & Sengur, A. Convolutional neural network based approach towards motor imagery tasks EEG 

signals classification. IEEE Sens. J. 19, 4494–4500 (2019).
	27.	 Lee, H. K. & Choi, Y.-S. Application of continuous wavelet transform and convolutional neural network in decoding motor imagery 

brain–computer interface. Entropy 21, 1199 (2019).
	28.	 Jin, J. et al. Correlation-based channel selection and regularized feature optimization for MI-based BCI. Neural Netw. 118, 262–270 

(2019).
	29.	 You, Y., Chen, W. & Zhang, T. Motor imagery EEG classification based on flexible analytic wavelet transform. Biomed. Signal 

Process. Control 62, 102069 (2020).
	30.	 Bashar, S. K. & Bhuiyan, M. I. H. Classification of motor imagery movements using multivariate empirical mode decomposition 

and short time Fourier transform based hybrid method. Eng. Sci. Technol. Int. J. 19, 1457–1464 (2016).
	31.	 Rashid, M. et al. The classification of motor imagery response: An accuracy enhancement through the ensemble of random subspace 

k-NN. PeerJ Comput. Sci. 7, e374 (2021).
	32.	 Amin, S. U., Alsulaiman, M., Muhammad, G., Bencherif, M. A. & Hossain, M. S. Multilevel weighted feature fusion using convo-

lutional neural networks for EEG motor imagery classification. IEEE Access 7, 18940–18950 (2019).
	33.	 Xu, B. et al. Wavelet transform time-frequency image and convolutional network-based motor imagery EEG classification. IEEE 

Access 7, 6084–6093 (2018).
	34.	 Kant, P., Laskar, S. H., Hazarika, J. & Mahamune, R. CWT based transfer learning for motor imagery classification for brain 

computer interfaces. J. Neurosci. Methods 345, 108886 (2020).
	35.	 Chen, Z., Wang, Y. & Song, Z. Classification of motor imagery electroencephalography signals based on image processing method. 

Sensors 21, 4646 (2021).
	36.	 Sartipi, S., Kalbkhani, H., Ghasemzadeh, P. & Shayesteh, M. G. Stockwell transform of time-series of fMRI data for diagnoses of 

attention deficit hyperactive disorder. Appl. Soft Comput. 86, 105905 (2020).
	37.	 Kalbkhani, H. & Shayesteh, M. G. Stockwell transform for epileptic seizure detection from EEG signals. Biomed. Signal Process. 

Control 38, 108–118 (2017).

https://doi.org/10.3389/fnins.2020.578255
https://doi.org/10.3389/fnins.2020.578255


18

Vol:.(1234567890)

Scientific Reports |        (2022) 12:11773  | https://doi.org/10.1038/s41598-022-15813-3

www.nature.com/scientificreports/

	38.	 Sethi, S., Upadhyay, R. & Singh, H. S. Stockwell-common spatial pattern technique for motor imagery-based brain computer 
interface design. Comput. Electr. Eng. 71, 492–504 (2018).

	39.	 Ramos, A. C., Hernández, R. G., Vellasco, M. & Vellasco, P. In 2017 International Joint Conference on Neural Networks (IJCNN). 
2995–3002 (IEEE).

	40.	 Chatterjee, R., Datta, A. & Sanyal, D. K. In Machine Learning in Bio-Signal Analysis and Diagnostic Imaging 183–208 (Elsevier, 
2019).

	41.	 Hansen, L. K. & Salamon, P. Neural network ensembles. IEEE Trans. Pattern Anal. Mach. Intell. 12, 993–1001 (1990).
	42.	 Krishna, D. H., Pasha, I. & Savithri, T. S. Multiclass classification of motor imagery EEG signals using ensemble classifiers & cross-

correlation. Int. J. Eng. Technol. 7, 163–167 (2018).
	43.	 Rothe, S., Kudszus, B. & Söffker, D. Does classifier fusion improve the overall performance? Numerical analysis of data and fusion 

method characteristics influencing classifier fusion performance. Entropy 21, 866 (2019).
	44.	 Blankertz, B. et al. The BCI competition 2003: Progress and perspectives in detection and discrimination of EEG single trials. IEEE 

Trans. Biomed. Eng. 51, 1044–1051 (2004).
	45.	 Leeb, R., Brunner, C., Müller-Putz, G., Schlögl, A. & Pfurtscheller, G. BCI Competition 2008–Graz Data Set B. 1–6 (Graz University 

of Technology, 2008).
	46.	 Stockwell, R. G., Mansinha, L. & Lowe, R. Localization of the complex spectrum: The S transform. IEEE Trans. Signal Process. 44, 

998–1001 (1996).
	47.	 Rutkowski, G., Patan, K. & Leśniak, P. In Intelligent Systems in Technical and Medical Diagnostics 279–289 (Springer, 2014).
	48.	 Pfurtscheller, G. & Lopes da Silva, F. Functional meaning of event-related desynchronization (ERD) end synchronization (ERS). 

(1999).
	49.	 Pfurtscheller, G. EEG event-related desynchronization (ERD) and synchronization (ERS). Electroencephalogr. Clin. Neurophysiol. 

1, 26 (1997).
	50.	 Ioffe, S. & Szegedy, C. In International Conference on Machine Learning. 448–456 (PMLR).
	51.	 Yu, W. et al. In Proceedings of the 33 rd International Conference on Machine Learning.
	52.	 Xia, X., Xu, C. & Nan, B. In 2017 2nd International Conference on Image, Vision and Computing (ICIVC). 783–787 (IEEE).
	53.	 Wang, W. et al. A novel image classification approach via dense-MobileNet models. Mob. Inf. Syst. 2020 (2020).
	54.	 Rezende, E., Ruppert, G., Carvalho, T., Ramos, F. & De Geus, P. In 2017 16th IEEE International Conference on Machine Learning 

and Applications (ICMLA). 1011–1014 (IEEE).
	55.	 Cai, D., He, X. & Han, J. In 2007 IEEE 11th International Conference on Computer Vision. 1–7 (IEEE).
	56.	 Cortes, C. & Vapnik, V. Support-vector networks. Mach. Learn. 20, 273–297 (1995).
	57.	 Mebarkia, K. & Reffad, A. Multi optimized SVM classifiers for motor imagery left and right hand movement identification. Aus‑

tralas. Phys. Eng. Sci. Med. 42, 949–958 (2019).
	58.	 Quitadamo, L. et al. Support vector machines to detect physiological patterns for EEG and EMG-based human–computer interac-

tion: A review. J. Neural Eng. 14, 011001 (2017).
	59.	 Naseer, N., Qureshi, N. K., Noori, F. M. & Hong, K.-S. Analysis of different classification techniques for two-class functional near-

infrared spectroscopy-based brain–computer interface. Comput. Intell. Neurosci. 2016, 1–11 (2016).
	60.	 Kirar, J. S. & Agrawal, R. Relevant feature selection from a combination of spectral-temporal and spatial features for classification 

of motor imagery EEG. J. Med. Syst. 42, 1–15 (2018).
	61.	 Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. (Springer 

Science & Business Media, 2009).
	62.	 Tang, X., Wang, T., Du, Y. & Dai, Y. Motor imagery EEG recognition with KNN-based smooth auto-encoder. Artif. Intell. Med. 

101, 101747 (2019).
	63.	 Isa, N. M., Amir, A., Ilyas, M. & Razalli, M. Motor imagery classification in Brain computer interface (BCI) based on EEG signal 

by using machine learning technique. Bull. Electr. Eng. Inform. 8, 269–275 (2019).
	64.	 Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
	65.	 Ju, C., Bibaut, A. & van der Laan, M. The relative performance of ensemble methods with deep convolutional neural networks for 

image classification. J. Appl. Stat. 45, 2800–2818 (2018).
	66.	 Dumoulin, V. & Visin, F. A guide to convolution arithmetic for deep learning. arXiv preprint arXiv:1603.07285 (2016).
	67.	 Bottou, L. & Lin, C.-J. Support vector machine solvers. Large Scale Kernel Mach. 3, 301–320 (2007).
	68.	 Ray, S. Data Management, Analytics and Innovation 335–347 (Springer, 2021).
	69.	 Sani, H. M., Lei, C. & Neagu, D. In International Conference on Innovative Techniques and Applications of Artificial Intelligence. 

191–197 (Springer).
	70.	 Li, H. B., Wang, W., Ding, H. W. & Dong, J. In 2010 IEEE 7th International Conference on e-Business Engineering. 160–163 (IEEE).
	71.	 Ghasemzadeh, P., Kalbkhani, H., Sartipi, S. & Shayesteh, M. G. Classification of sleep stages based on LSTAR model. Appl. Soft 

Comput. 75, 523–536. https://​doi.​org/​10.​1016/j.​asoc.​2018.​11.​007 (2019).
	72.	 Fleiss, J. L. & Cohen, J. The equivalence of weighted kappa and the intraclass correlation coefficient as measures of reliability. Educ. 

Psychol. Meas. 33, 613–619 (1973).
	73.	 Kim, J., Park, Y. & Chung, W. In 2020 8th International Winter Conference on Brain–Computer Interface (BCI). 1–4 (IEEE).
	74.	 He, X. & Niyogi, P. Locality preserving projections. Adv. Neural Inf. Process. Syst. 16 (2003).
	75.	 He, X., Cai, D., Yan, S. & Zhang, H.-J. In Tenth IEEE International Conference on Computer Vision (ICCV’05) Volume 1. 1208–1213 

(IEEE).
	76.	 Tabar, Y. R. & Halici, U. A novel deep learning approach for classification of EEG motor imagery signals. J. Neural Eng. 14, 016003 

(2016).
	77.	 Tiwari, A. & Chaturvedi, A. A novel channel selection method for BCI classification using dynamic channel relevance. IEEE Access 

9, 126698–126716 (2021).
	78.	 Tiwari, A. & Mishra, S. In 2022 International Conference for Advancement in Technology (ICONAT). 1–6 (IEEE).
	79.	 Lu, N., Li, T., Ren, X. & Miao, H. A deep learning scheme for motor imagery classification based on restricted Boltzmann machines. 

IEEE Trans. Neural Syst. Rehabil. Eng. 25, 566–576 (2016).
	80.	 Hernández-González, E., Gómez-Gil, P., Bojorges-Valdez, E. & Ramírez-Cortés, M. In 2021 43rd Annual International Conference 

of the IEEE Engineering in Medicine & Biology Society (EMBC). 767–770 (IEEE).
	81.	 Dagdevir, E. & Tokmakci, M. Optimization of preprocessing stage in EEG based BCI systems in terms of accuracy and timing 

cost. Biomed. Signal Process. Control 67, 102548 (2021).
	82.	 Malan, N. & Sharma, S. Motor imagery EEG spectral-spatial feature optimization using dual-tree complex wavelet and neighbour-

hood component analysis. IRBM (2021).
	83.	 Han, Y., Wang, B., Luo, J., Li, L. & Li, X. A classification method for EEG motor imagery signals based on parallel convolutional 

neural network. Biomed. Signal Process. Control 71, 103190 (2022).

https://doi.org/10.1016/j.asoc.2018.11.007


19

Vol.:(0123456789)

Scientific Reports |        (2022) 12:11773  | https://doi.org/10.1038/s41598-022-15813-3

www.nature.com/scientificreports/

Author contributions
All authors made contributions to the study’s design and drafted the main manuscript; H.K. and V.S. supervised 
the project. S.S. performed administrative support. All authors discussed the results and contributed to the final 
manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to V.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Stockwell transform and semi-supervised feature selection from deep features for classification of BCI signals
	Materials and methods
	Dataset. 
	Time–frequency analysis. 
	Deep feature extraction by CNN. 
	Feature reduction. 
	Classification. 
	Support vector machine (SVM). 
	Discriminant analysis. 
	k-Nearest neighbor (kNN). 
	Decision tree (DT). 
	Random forest (RF). 
	Ensemble of classifiers. 

	Computational complexity. 
	Informed consent. 

	Results and discussion
	Data preparation. 
	Feature reduction. 
	Results of whole MI trials. 
	Classification results of sliding window. 
	Effect of feature reduction on accuracy. 
	Performance comparison. 

	Conclusion
	References


