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Abstract

Investigating the role and interplay between individual proteins in biological processes is

often performed by assessing the functional consequences of gene inactivation or removal.

Depending on the sensitivity of the assay used for determining phenotype, between 66%

(growth) and 53% (gene expression) of Saccharomyces cerevisiae gene deletion strains

show no defect when analyzed under a single condition. Although it is well known that this

non-responsive behavior is caused by different types of redundancy mechanisms or by

growth condition/cell type dependency, it is not known what the relative contribution of these

different causes is. Understanding the underlying causes of and their relative contribution to

non-responsive behavior upon genetic perturbation is extremely important for designing effi-

cient strategies aimed at elucidating gene function and unraveling complex cellular systems.

Here, we provide a systematic classification of the underlying causes of and their relative contri-

bution to non-responsive behavior upon gene deletion. The overall contribution of redundancy

to non-responsive behavior is estimated at 29%, of which approximately 17% is due to homol-

ogy-based redundancy and 12% is due to pathway-based redundancy. The major determinant

of non-responsiveness is condition dependency (71%). For approximately 14% of protein com-

plexes, just-in-time assembly can be put forward as a potential mechanistic explanation for

how proteins can be regulated in a condition dependent manner. Taken together, the results

underscore the large contribution of growth condition requirement to non-responsive behavior,

which needs to be taken into account for strategies aimed at determining gene function. The

classification provided here, can also be further harnessed in systematic analyses of complex

cellular systems.

Introduction

Understanding the interplay between individual proteins and their role in various biological

processes is critical for understanding cellular systems as well as understanding genotype to

phenotype relationships. The role of individual proteins is often investigated by assessing the

functional consequences of inactivation, often through genetic perturbation. With the advent
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of efficient gene editing techniques such as CRISPR-Cas9, such reverse genetics approaches

are now starting to be even more expansively applied [1]. Pioneering work by the yeast gene

deletion consortium using homologous recombination has in the past yielded an exhaustive

collection of gene deletion mutants for Saccharomyces cerevisiae [2]. Subsequent high-through-

put studies have enabled systematic investigation of the functional consequences of deleting

individual genes and have been conducted to investigate cellular systems in many different

ways [3–6]. However, a large number of deletion strains do not show detectable phenotypic

effects and the scale and cause of this non-responsive phenomenon has been the subject of

considerable interest [7–14]. In S. cerevisiae over 66% of deletion mutants have little or no

detectable effect on growth in a single rich medium [2,15]. Similar observations have been

made for other organisms [16,17]. Growth is not necessarily the most sensitive assay and as an

alternative, genome-wide gene expression can be used, also as a much more detailed pheno-

typic readout. A recent study investigating the consequences of almost 1,500 gene deletions

revealed that 53% of these mutants have a genome-wide expression profile that is essentially

the same as wildtype (WT) [3]. This confirms that a large proportion of gene deletions have no

phenotype when assayed under a single condition. Lack of a phenotype is due to either redun-

dancy mechanisms or due to growth condition dependency of the deleted gene. An important

question addressed insufficiently so far, is the degree to which these different mechanisms con-

tribute to non-responsiveness. Understanding the underlying causes and their relative contri-

bution is important for understanding complex cellular systems and for improving reverse

genetic strategies aimed at determining gene function.

There are at least two kinds of redundancy mechanisms that contribute to non-responsive

behavior upon genetic perturbation. One factor is the presence of closely related paralogs

(homology-based redundancy) [7,10,11,14]. Redundancy can also be achieved through the

presence of alternative pathways that can facilitate the same biological process (pathway-based

redundancy) [11,18]. Homology-based redundancy is attributed to gene duplicates or proteins

with similar functional domains. Even though most close paralog pairs have diverged during

evolution [19], there are still pairs that have retained the capability to compensate for each oth-

er’s loss [10,11,14,20]. Previous estimates indicate that as much as 23% to 29% of non-respon-

siveness can be ascribed to duplicated genes [7,10]. These estimates are however based on

growth-rate as the phenotypic read-out and involved analysis of only a single growth condi-

tion. It therefore remains to be seen whether these estimates are similar when applying a more

sensitive phenotypic read-out and taking into account multiple growth conditions. To what

degree pathway-based redundancy contributes to non-responsiveness is still unclear. This is

mainly due to the fact that the degree to which negative genetic interactions reflect buffering

between two genes in parallel pathways has remained unsolved. In addition to negative genetic

interactions between parallel pathways, many negative genetic interactions have been detected

between seemingly unrelated pathways [21–23]. It has also been suggested that most negative

genetic interaction scores are not due to simple redundancy between pathways, but rather

reflect network topology [24,25]. Providing clear estimates of the contribution of pathway-

based redundancy to non-responsiveness solely based on negative genetic interactions is there-

fore unsatisfactory. Additional sources of information likely need to be included in order to

provide reliable estimates of pathway-based redundancy.

Besides various redundancy mechanisms, condition dependency is another factor that con-

tributes to non-responsiveness upon genetic perturbation. Some genes are almost certainly

only required under specific growth conditions. It has been suggested that a large number of

seemingly non-responsive mutants have important fitness roles under specific environmental

conditions [8,18,26]. These estimates vary between 37% and 97%, using either focused subsets

of genes, different assays or a combination of heterozygous and homozygous deletion strains.

Underlying causes of non-responsiveness
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The degree to which these different approaches affect condition dependency estimates is

unclear. A uniform analysis, using a single resource of non-responsive deletion strains is there-

fore required for reliably estimating the contribution of condition dependency to non-respon-

siveness, also in combination with redundancy estimates.

In spite of much effort, the causes and mechanisms of non-responsiveness remains elusive

[7,11,18,26]. Most studies have either focused on a single explanation or have insufficiently

investigated the underlying mechanisms and their relative contributions. Here, using a sensi-

tive phenotypic readout (gene expression) as a starting point, we systematically investigate the

underlying causes of and their relative contribution to non-responsiveness upon gene deletion.

This reveals that condition dependency is the major determinant of non-responsiveness,

explaining approximately 71%. Homology-based and pathway-based redundancy contributes

17% and 12% respectively. For approximately 14% of protein complexes, just-in-time assembly

provides a potential mechanistic explanation for how protein complexes can be regulated in a

condition dependent manner. The classification of the relative contribution of underlying

causes provided here, can be harnessed for other systematic analyses of cellular systems.

Results

A collection of non-responsive mutants

To systematically investigate the underlying causes of and their relative contribution to non-

responsiveness observed upon gene deletion, we exploited the availability of a collection of

1,484 deletion mutants expression profiles in the yeast Saccharomyces cerevisiae [3]. To obtain

the list of responsive and non-responsive mutants, the same definitions were applied as in the

original study [3]. In short, a mutant is considered non-responsive (NR) if three or less tran-

scripts are changing significantly (FC > 1.7 & p-value< 0.05) as a consequence of deleting a

particular gene. A mutant is classified as responsive (R) if four or more transcripts are chang-

ing significantly upon gene deletion. Applying these thresholds, 784 mutants are classified as

NR (53%) and 700 mutants are classified as R (47%) as indicated before [3].

To ensure that non-responsiveness is not restricted to a particular class of proteins, the rela-

tive contribution of non-responsiveness to different functional classes was investigated [3]. As

expected, non-responsiveness is not limited to a specific functional class, but common to a wide

range of functional classes (Fig 1). There are differences however in the relative contribution of

non-responsiveness to various functional classes. Classes that have a central role in cellular sys-

tems such as chromatin factors, Pol II transcription and translation / ribosome biogenesis have

a relatively low number of NR mutants. Other functional classes such as cell cycle regulation

and meiosis have a high number of NR mutants. This indicates that there is a relationship

between the relative importance of different functional classes and degree of non-responsive-

ness, but also suggests that different causes such as condition dependency (meiosis) and robust-

ness (cell cycle regulation) may contribute to non-responsiveness.

Both redundancy and condition dependency contribute to non-

responsiveness

Exclusive requirement of a gene under a specific growth condition is expected to contribute to

the number of non-responsive mutations. As a starting point, differences in mRNA transcript

and protein levels between responsive and non-responsive mutants were investigated. As also

observed before [3], genes within the group of NR mutants have a slightly larger fraction of

genes with low transcript [3] and protein [27] levels (Fig 2A and 2B). This also reveals that

almost all genes within the group of NR mutants generally exhibit normal expression levels in

Underlying causes of non-responsiveness
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wildtype (WT), both for transcript as well as protein levels. Their removal however, has little

effect on gene expression and raises the question why so many genes are expressed while not

being required under the condition investigated.

Another likely cause of non-responsiveness is redundancy. This is confirmed by a strong

enrichment of close paralogs in NR mutants (Fig 2C). Interestingly, NR mutants exhibit

markedly less negative genetic interactions [22] (Fig 2D, left panel). Negative genetic interac-

tions do not necessarily reflect redundancy [10,11,24,28,29]. It is also suggested that redundant

gene pairs have few negative genetic interactions as they are only expected to show a defect

when both genes are absent [10], just as indicated here. NR mutants also have fewer physical

interactions [30] and show less growth defects when assayed across many different conditions

[8] (Fig 2D, middle and right panel). This is all confirmatory of more specialized, less centrally

required roles in cellular biology and that both redundancy and condition dependency are

contributing causes of non-responsiveness.

Close paralogs as a proxy for homology-based redundancy

To provide a reliable estimate of the relative contribution of complete redundancy to non-

responsiveness, close paralog pairs within the non-responsive mutants are used here. Close

paralog pairs are among the most recent evolutionary duplications and probably still have a

similar function [32,33]. Close paralog pairs that show non-responsive behavior are therefore

most likely the best starting point for estimating the relative contribution of redundancy to

non-responsiveness. If two genes form a complete redundancy pair, it is also expected that

removing either one of these genes does not result in any measurable defect, regardless of the

condition investigated. The dataset from Hillenmeyer et al. [8] measures the relative growth

defect of individual deletions in many different conditions. Pairs with a complete redundancy

relationship are expected to have low sensitivity to different environmental conditions as
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gene−specific transcription factor

DNA replication and repair
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small molecule metabolism
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Fig 1. Distribution of non-responsive behavior. Percentage of non-responsive (NR; light grey) and

responsive (R; dark grey) mutants within different functional categories, as well as the overall percentage. A

mutant is classified as NR if three or less transcripts are changing compared to WT. A mutant is classified as

R if four or more transcripts are changing. Functional categories as defined in the original study [3].

doi:10.1371/journal.pone.0173432.g001
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measured in this dataset (Materials and Methods). Indeed, close paralog pairs between non-

responsive mutants exhibit low sensitivity to different environmental conditions (Fig 3A, left

panel). On the other hand, close paralog pairs between non-responsive and responsive

mutants or between responsive mutants show a significant increase in sensitivity to different

conditions (Fig 3A, middle & right panel; Fig 3B). This effect is stronger when only consider-

ing negative genetic interactions within the pairs depicted in Fig 3A (Fig 3C and 3D),
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Fig 2. General characteristics of non-responsive and responsive mutants. (A) Frequency density distribution of wildtype (WT) mRNA

transcript levels (A) obtained from the average of 200 WT strains, adapted from Kemmeren et al. [3]. P-value indicates the difference between

transcript levels in the WT strains between NR and R mutants based on a two-sided Mann-Whitney test. (B) Frequency density distribution of the

number of proteins per WT cell [27] for NR and R mutants, adapted from Kemmeren et al. [3]. Only detectable proteins are depicted. P-value

indicates the difference between protein levels in NR and R mutants based on a two-sided Mann-Whitney test. (C) Number of NR and R mutants

with a close paralog (CP) that arose from whole-genome duplication (WGD) [31] or small scale duplications (SSD) [20]. (D) Box plots showing the

number of significant negative synthetic genetic interaction (SGI) scores [22](ε� -0.08, p� 0.05; left panel), number of protein-protein interactions

[30](PPI, middle panel) and sensitivity to different conditions [8] (percentage of conditions that deletion mutants show a relative growth defect;

growth defect > 0, p� 0.05; right panel) for NR and R mutants. P-values are based on a two-sided Mann-Whitney test.

doi:10.1371/journal.pone.0173432.g002
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confirming that negative genetic interactions provide useful additional information when

investigating redundancy.

Interestingly, a large difference in sensitivity between the various close paralog groups is

observed (Fig 3A and 3B), suggesting that there might be a disparity in sequence divergence

among the close paralog pairs. The number of non-synonymous substitutions per non-synon-

ymous site (Ka) is often considered an indicator of sequence divergence [14]. Although there

seems to be a slight difference in the Ka values for close paralog pairs between non-responsive

(NR-NR), between non-responsive and responsive (NR-R) or between responsive mutants

(R-R), this is not significant (S1A Fig). When considering percentage sequence identity, a sig-

nificant difference is only observed when using the domains shared between close paralog

pairs (Materials and Methods; S1B and S1C Fig). This effect is lost when using all pairs but

close paralog pairs (S1D Fig), suggesting that compensation capability is conserved between

pairs with the same ancestral gene.

To ensure that homology-based redundancy estimates are reliable, several sensitivity cutoffs

and their corresponding false-discovery rate (FDR) were investigated (Materials and Meth-

ods). Selecting close paralog pairs between non-responsive mutants with 5% or less sensitivity

leads to the lowest FDR (� 10%; S2 Fig). Based on this, the contribution of homology-based

redundancy to non-responsiveness is estimated at approximately 17% (Fig 3A, left panel; S1

A

C

B

D

Fig 3. Homolog-based redundancy estimates. (A) Scatter plots depicting the sensitivity of gene 1 and gene 2 for close paralog pairs between

non-responsive (NR-NR, left panel), between non-responsive and responsive (NR-R, middle panel) or between responsive (R-R, right panel)

mutants. (B) Boxplots of the average sensitivity of the same groups as in A. The difference between all three groups is statistically significant (p-

value (NR-NR vs. NR-R) = 3.14×10−9; p-value (NR-NR vs. R-R) = 1.02×10−8; p-value (NR-R vs. R-R) = 1.66x10-3) based on a one-sided Mann-Whitney test.

(C) Same as in A, except that only close paralog pairs with a significant negative SGI score are shown. (D) Boxplots of the average sensitivity of

the same groups as in C (p-value (NR-NR vs. NR-R) = 0.128, p-value (NR-NR vs. R-R) = 1.4x10-3, p-value (NR-R vs. R-R) = 3.27x10-3), statistical test as in B.

doi:10.1371/journal.pone.0173432.g003

Underlying causes of non-responsiveness

PLOS ONE | DOI:10.1371/journal.pone.0173432 March 3, 2017 6 / 18



Table). This encompasses 133 unique genes out of 784 NR mutants that are likely non-respon-

sive due to a complete redundancy relationship with another gene.

Negative genetic interactions indicate pathway-based redundancy

In addition to homology-based redundancy (Fig 3A and 3B), where two genes can directly

compensate for each other’s loss, two genes can also operate in two redundant pathways. Nega-

tive genetic interactions have in the past been associated with redundant pathways [34]. Pairs

of non-responsive mutants with negative genetic interactions show less sensitivity to different

conditions compared to pairs between non-responsive and responsive or between responsive

mutants (Fig 4A and 4B), as also observed before for close paralog pairs (Fig 3). However, tak-

ing into account the 5% sensitivity cutoff for estimating the contribution of pathway-based

redundancy, the FDR rate is much higher (approximately 70%) compared to homology-based

redundancy estimates. This clearly indicates that only using negative genetic interactions as a

proxy for pathway redundancy is insufficient for estimating the contribution of pathway-based

redundancy to non-responsiveness.

If two genes operate in a completely redundant manner, they should only exhibit a negative

genetic interaction score with each other and not with any other gene [10]. Since the removal

of a single gene can be completely compensated by the other gene, there should be no measur-

able phenotypic effect, except when both genes are deleted. The number of negative genetic

interactions is indeed significantly lower for pairs between non-responsive mutants compared

to responsive mutants (Fig 4C). Using a cutoff on the number of negative genetic interactions

(40), a similar degree of reliability (FDR� 10%) as obtained for homology-based redundancy

estimates can be obtained (Fig 4D and 4E; Materials and Methods). Pathway-based redun-

dancy estimates were therefore based on pairs between non-responsive mutants that fulfilled

four criteria. First, pairs are not close paralogs of each other. Second, pairs have a significant

negative genetic interaction. Third, pairs have 40 or less negative genetic interactions with

other genes. And last, pairs show, on average, 5% or less sensitivity in other conditions. In

total, 68 pairs, 97 unique genes, can be associated with pathway-based redundancy (Fig 4D,

left panel; S2 Table), indicating that approximately 12% (FDR� 8%) of non-responsiveness

can be attributed to pathway-based redundancy.

Relative contribution of redundancy and condition dependency to non-

responsiveness

By combining the estimates of homology-based redundancy (133 genes, 17%) and pathway-

based redundancy (97 genes, 12%), the overall contribution of redundancy to non-responsive-

ness is approximately 29% (Fig 5A). This number is a rough estimate and the exact percentage

also depends on the cutoffs used. Here, stringent cutoffs are used to avoid a high FDR, but

therefore potentially interesting pairs might be missed that do not fulfill the stringent criteria.

Nevertheless, the analysis indicates that the majority of non-responsiveness, as much as 71%,

is attributable to condition dependency (554 genes; Fig 5A; S3 Table). Interestingly, different

functional classes do show diverse behavior in the relative contribution of condition depen-

dency and redundancy (Fig 5B). Non-responsiveness for classes such as meiosis, DNA replica-

tion and repair have a relatively high contribution of condition dependency. A few classes

such as gene-specific transcription factors, protein kinases and protein phosphatases however,

show a much higher contribution of homology-based redundancy, indicating that the degree

of redundancy differs between different functional classes (Fig 5B).

Mechanistic explanations for homology-based as well as pathway-based redundancy have

been proposed before [28,29]. For homology-based redundancy, this is based on two proteins

Underlying causes of non-responsiveness
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that can completely replace each other’s function (Fig 5A). For instance, the redundant kinases

Ark1 and Prk1 that both phosphorylate the same consensus target amino acid sequence and

are involved in regulating endocytosis and actin skeleton [24,35]. Another example includes

Upc2 and Ecm22, two redundant gene-specific transcription factors that bind to the same set

of target genes and regulate ergosterol biosynthesis [36,37]. A final example involves Nhp6a

and Nhp6b, two highly homologous HMGB proteins involved in modulation of chromatin
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Fig 4. Pathway-based redundancy estimates. (A) Scatter plots depicting the sensitivity of gene 1 and gene 2 for pairs with a significant

negative genetic interaction score between non-responsive (NR-NR), between non-responsive and responsive (NR-R) or between responsive

(R-R) mutants. Close paralog pairs are excluded. (B) Boxplots of the average sensitivity of the same groups as in B, all three are significantly

different (p-value < 2.2x10-16). P-values are based on a one-sided Mann-Whitney test. (C) Boxplot showing the number of significant negative

genetic interactions for NR-NR and R-R pairs with 5% or less sensitivity. Close paralog pairs are excluded. The dashed line indicates the
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doi:10.1371/journal.pone.0173432.g004
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Fig 5. Relative contribution of redundancy and condition dependency and potential mechanisms. (A) Flowchart showing the relative

contribution of redundancy and condition dependency to non-responsiveness. Potential mechanisms are indicated for homology-based redundancy,

pathway-based redundancy and “just-in-time assembly”. (B) Relative contribution of redundancy and condition dependency to non-responsiveness

within each functional category. (C) Line plot showing the mRNA expression changes across 1,484 deletion mutants [3] for the Dcs1-Dcs2 heterodimer.

Individual lines indicate the Dcs1 and Dcs2 subunit. The highly regulated subunit is indicated in red. (D) Line plot as in C for the GID complex.

doi:10.1371/journal.pone.0173432.g005
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structure [38]. These examples are all indicative of more direct relationships for homology-

based redundancy pairs with proteins having the ability of taking over the exact same function.

For pathway-based redundancy, the concept is that two pathways or proteins can compen-

sate each other’s function in a more indirect fashion (Fig 5A). Although the exact relationship

between many of these pairs is still unclear, they are often found to be involved in the same

process and loss of both leads to significant unexpected defects. One example is the relation-

ship between Ecm1 and Pom34. Ecm1 is a pre-ribosomal factor involved in pre-60S particle

export and Pom34 is a subunit of the nuclear pore complex (NPC). In the absence of Pom34,

depletion of Ecm1 leads to defects in pre-60S particle export [39]. Another example includes

Kar5 and Prm3, which are both involved in nuclear membrane fusion during karyogamy and

loss of both genes leads to nuclear fusion defects [40]. Note that, as highlighted with these

cases, the underlying mechanism for pairs associated with pathway-based redundancy is often

unclear.

Potential mechanisms for condition dependent genes

The mechanistic explanations provided for redundancy are useful in understanding the inter-

play between different proteins and how this relates to cellular processes. For genes/proteins

required only under certain conditions, regulation can occur at many different levels, such as

regulation of mRNA and protein levels, post-translational modifications (PTMs) that change

aspects of protein-protein interactions and cellular localization. Many genes that are non-

responsive still have relatively high mRNA and protein expression levels (Fig 2A and 2B), sug-

gesting that these are constitutively expressed despite not being required under the given con-

dition. For cell-cycle related protein complexes, De Lichtenberg et al. [41] have proposed a

mechanism termed “just-in-time assembly” to indicate that most members of these protein

complexes are constitutively expressed and only a few key subunits need to be regulated in

order to control the activity of the entire protein complex. Many proteins are expressed under

the condition investigated here, but do not result in a detectable phenotypical defect when

removed. This therefore raises the question of whether “just-in-time assembly” may also apply

to condition dependency.

To investigate this, all proteins that are part of a protein complex were obtained using a pre-

defined definition of protein complexes [42]. Out of 554 genes attributed to condition depen-

dency 181 are part of 127 unique protein complexes (Fig 5A). To determine the degree of

differential regulation within each protein complex, highly regulated subunits were detected

based on the degree of variation in expression levels across different deletion mutants (Mate-

rial and Methods). Out of the 127 protein complexes, 18 complexes contain a highly regulated

subunit (�14%; Fig 5A; S3 Fig). To ensure that these results are not limited to the subset of

proteins analyzed here, the same analysis was also performed using all protein coding genes in

yeast. This revealed that 69 protein complexes out of 501 protein complexes [42] contain a

highly regulated subunit (�14%), confirming the results obtained when using the non-respon-

sive mutants attributed to condition dependency.

One example of a protein complex with a highly regulated subunit includes the Dcs1-Dcs2

heterodimer that removes capped mRNA fragments left over from mRNA decay [43]. Previous

reports indicated that Dcs2 is most sensitive to transcriptional induction and suppresses Dcs1

activity in response to nutrient stress [44,45]. Here, Dcs2 is identified as a highly regulated sub-

unit (Fig 5C), confirming its role as a modulator of the activity of the Dcs1-Dcs2 heterodimer.

Another example includes the GID complex, consisting of seven subunits [46–48]. The GID

complex targets the key enzyme fructose-1,6-biphosphatase (FBPase) for proteosomal degra-

dation during the switch from gluconeogenesis to glycolysis [48]. Vid24, the regulatory
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subunit of the GID complex, initiates FBPase polyubiquitination and subsequent degradation

[48]. Vid24 protein levels are undetectable under gluconeogenic conditions, but rapidly accu-

mulate when glucose is added and decrease together with FBPase [48]. Our analysis also

reveals Vid24 as a highly regulated subunit (Fig 5D), consistent with previous reports about

the role of Vid24 in regulating the activity of the GID complex [46,48]. Besides these known

examples, there are also putative protein complexes that have a highly regulated subunit (S3

Fig) that can be used as a starting point for further unraveling their function and potential reg-

ulatory mechanism. Taken together, approximately 14% of protein complexes are regulated

similar to the “just-in-time assembly” model, but in a condition-dependent manner.

Discussion

Redundancy estimates

The high proportion of gene deletions that fail to exhibit a detectable defect under a specific

condition has muddled efforts aimed at systematic phenotyping. Elucidating gene function

requires the ability to elicit a detectable phenotypical readout, such as a growth defect or gene

expression changes. Over 66% of deletion mutants in Saccharomyces cerevisiae have no detect-

able growth phenotype [15] and over 53% of non-essential gene deletions hardly show any

gene expression changes [3]. Understanding the underlying causes of this non-responsive

behavior will aid in elucidating gene function and understanding the complexity of cellular

systems. Here, we estimate that approximately 29% of non-responsiveness can be attributed to

either homology-based (17%) or pathway-based (12%) redundancy. Previous estimates have

indicated that between 23% and 29% of negative genetic interactions can be ascribed to dupli-

cated genes [7,10]. Our estimate of 17% is most likely lower because we require low sensitivity

under multiple conditions (Fig 3A) whereas previous estimates are based on growth under a

single condition. For complete redundancy pairs, deletion of a single gene should exhibit no

detectable phenotype under any given condition. It is therefore expected that the redundancy

pairs that we miss, but are included in previous estimates will fail to exhibit a redundancy rela-

tionship when investigated under different conditions.

Homology-based redundancy versus pathway-based redundancy

Estimates for the contribution of redundancy to non-responsiveness include both homology-

based as well as pathway-based redundancy. The known examples found for pathway-based

redundancy indicate a higher degree of uncertainty as they are found to be involved in the

same process and loss of both leads to significant defects. The exact mechanism however, is

often unknown. Since there is no direct sequence-based evidence for a redundancy relation-

ship between these pairs, it remains to be seen to what degree pathway-based redundancy rela-

tionships can fully compensate the loss of one gene, or whether this is only partial. One can

also question whether these should be considered as redundancy relationships, or whether

these most likely reflect pathway connectivity or combinatorial effects as already suggested

before [24,28]. The most likely candidate pairs providing redundancy are therefore those

based on homology (estimated at 17%), whereas most other negative genetic interactions

reflect pathway connectivity.

Partial redundancy

Partial redundancy is also expected to contribute to non-responsive behavior. Simplistically,

two different types can be differentiated. For the first type, only one of the two genes involved

elicits a response under the condition investigated. The other type consists of a pair whereby
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deletion of either gene does not result in a detectable phenotype under the condition investi-

gated. However, at least one of the genes would elicit a response when removed under a different

(environmental) condition. We deliberately did not include these pairs within our redundancy

estimates, as the purpose here is to investigate to what degree complete redundancy contributes

to non-responsive behavior. Pairs that can fully compensate for each other’s loss are expected to

do so given any circumstance. It is therefore much more likely that partial redundancy is either

an intrinsic property of pathway connectivity, just as for many pathway-based redundancy pairs,

or is a different way to achieve condition dependency. The relationship might then indicate a

manner to regulate condition dependency or ensure that genes with a similar function, but

required under different environmental conditions can behave in a switch-like fashion so that

the most efficient protein is available under the right circumstances.

Condition dependency and just-in-time assembly

While condition dependency can be regulated in many different ways, we focused here on a

mechanism shown previously for cell cycle related protein complexes [41]. The just-in-time

assembly mechanism may provide a mechanistic explanation how protein complexes can be

regulated in a condition-dependent manner. Regulation of approximately 14% of all protein

complexes can be explained in such a way. This still leaves many protein complexes unex-

plained and indicates that the just-in-time assembly is not such a widespread mechanism.

Interestingly, many of the protein complexes with a highly regulated subunit are involved in

metabolism. Almost 50% of these protein complexes are associated with metabolism and this

percentage is even higher for heterodimers. Metabolic flux analyses have shown that the activ-

ity of metabolic pathways can be regulated in different ways and through several regulatory

factors [49]. Although not necessarily the most predominant mode of action, transcriptional

regulation of key regulatory factors has been shown as one way to achieve condition- and tis-

sue-specific control of metabolic pathway activity [50]. The enrichment of heterodimers also

fits the idea of enzymatic protein complexes consisting of a regulatory and catalytic subunit.

The mechanism found here, might thus be more specific for metabolic pathways and protein

complexes involved in metabolism.

The term just-in-time assembly proposed by De Lichtenberg et al. [41] to describe the

dynamic formation of protein complexes during the cell cycle might not always be appropriate

for the highly regulated subunits found here. The term implies that the entire complex is

assembled just before it is needed. This doesn’t necessarily need to be the case. For instance,

most of the protein complex could already be pre-assembled and only the regulatory subunit

joins the partly pre-assembled protein complex when needed. Since it is impossible to assess

the exact mechanism by which a protein complex is activated using only gene expression data,

we propose to use “just-in-time activation” as a more general term. This also allows other types

of just-in-time activation to be included, such as protein phosphorylation or other post-trans-

lational modifications. Additional data exploring condition dependent protein expression or

post-translational modifications are needed to gain more detailed mechanistic insights.

Materials and methods

Gene expression data and functional categories

The list of deletion mutants and corresponding gene expression profiles were obtained from

Kemmeren et al [3]. Each gene expression profile consists of p-values and average mRNA tran-

script changes (M values; log2(fold-change)) relative to wildtype (WT). Genes are considered

significantly changed when fold-change (FC) > 1.7 and p-value< 0.05. Genes that were fre-

quently changing regardless of the deletion mutant (WT variable genes) were excluded as
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described in the original study [3]. The number of differentially expressed transcripts was used

to classify mutants either as responsive (R) or non-responsive (NR) as done previously [3].

Mutants with less than 4 transcript changes relative to WT are considered NR and mutants

with 4 or more changes are considered R. Mutants were grouped in different functional cate-

gories as before [3]. Both the overall ratio of NR and R mutants as well as for each individual

functional category (Fig 1) was calculated.

mRNA transcript levels in WT

A wild-type pool consisting of 200 WTs [3] was used to obtain average mRNA transcript levels

(A values; log2(R�G)) for all genes corresponding to the different deletion mutants. mRNA

transcript levels in WT were compared between NR and R mutants. P-values are calculated

using a Mann-Whitney two-sided test to evaluate differences in mRNA transcript levels

between NR and R mutants (Fig 2A).

Protein expression levels, protein-protein interactions and protein

complexes

The number of protein molecules per WT cell was obtained from Ghaemmaghami et al. [27].

Proteins with undetectable signals, low signals or experimental problems were excluded. Pro-

tein expression levels were compared between NR and R mutants. P-values are calculated

using a Mann-Whitney two-sided test to evaluate differences in protein levels between NR and

R mutants (Fig 2B). Protein-protein interactions were obtained from Collins et al. [30]. The

number of protein-protein interactions between NR and R mutants was compared. P-values

are calculated using a Mann-Whitney two-sided test (Fig 2D, middle panel). Protein com-

plexes (501) were obtained from the curated ‘‘consensus + GO” set from Benschop et al. [42].

Close paralog genes

For close paralog genes, both small scale duplications (SSD) as well as whole-genome duplica-

tions (WGD) are used. A list of SSD pairs was obtained from Guan et al. [20]. WGD (547

pairs) were obtained from Byrne and Wolf [31]. Global protein sequence alignment for each

close paralog pair was performed using the Needleman-Wunsch algorithm [51] as imple-

mented in Needle-EMBOSS version 6.6 [52] with default options. Only SSD pairs with 20% or

higher identity were kept (751 pairs). Combining both WGD and SSD resulted in a total of

1,298 close paralog pairs. Close paralog pairs for which both genes were profiled [3] were used

for further downstream analyses (205 pairs).

Genetic interaction data

Synthetic genetic interaction (SGI) scores were obtained from Costanzo et al. [22]. SGI scores

were acquired for all pairwise combinations of NR and R mutants for which a score was calcu-

lated (Figs 3 and 4). For determining significant negative genetic interactions, the same cutoff

was applied as used originally [22] (ε� -0.08, p� 0.05).

Condition sensitivity

Growth rate of yeast homozygous gene deletions compared against WT under multiple condi-

tions (418 experiments) was obtained from Hillenmeyer et al. [8]. A relative growth rate above

zero is an indication of a growth defect of a deletion mutant relative to WT in a particular con-

dition. A two-sided t-test was applied to assign p-values. Growth rates from duplicate condi-

tions were averaged, resulting in 278 unique conditions. Only significant growth defects were
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selected for downstream analysis (p� 0.05). The sensitivity of each gene is expressed as the

percentage of significant relative growth defects within the 278 unique conditions.

Sequence divergence

The number of non-synonymous substitutions per non-synonymous site (Ka) was calculated

based on a method introduced by Yang and Nielsen [53]. This method is implemented in the

GenomeHistory 2.0 tool, which was used to calculate Ka values [54]. Non-default parameters

chosen include: minimum translated ORF: 100; minimum number of aligned residues to

accept pair: 100; accepting all BLAST hits with e< = 1e-08 and minimum percentage identity

for analysis: 40% (S1A Fig). Protein sequence identity for close paralog pairs was calculated

either across the whole protein sequence or only for protein domains using the Needleman-

Wunsch algorithm [51] as implemented in Needle-EMBOSS version 6.6 [52] with default

options (S1B Fig). InterProscan version 5.10–50 [55] was used to obtain a list of shared

domains between genes. Only protein domains identified by Pfam [56] were included in

downstream analyses. Sequence identity was calculated between two shared Pfam domains

using the same tool as used for complete protein sequences. Gene pairs with at least one shared

Pfam domain were included in the downstream analysis. Sequence identity for Pfam domains

with the same identifier were averaged before averaging all distinct shared domains across two

proteins.

Averages of sequence identity between shared Pfam domains for gene pairs were compared

either for close paralog or non-paralog pairs. P-values are calculated using a Mann-Whitney

two-sided test (S1C and S1D Fig).

Contribution of redundancy and condition dependency to non-

responsiveness

Homology-based redundancy pairs had to fulfill the following criteria: the pair is a close para-

log pair (either WGD or SSD), both genes are NR and both genes have a condition sensitivity

of 5% or less. For calculating the false-discovery rate (FDR), NR-NR close paralog pairs below

the sensitivity cutoff were used as true positives and R-R close paralog pairs below the sensitiv-

ity cutoff were used as false positives. The lowest false-discovery rate (FDR) was achieved

when the applied cutoff was 5% sensitivity (S2 Fig). Pathway-based redundancy pairs had to

fulfill the following criteria: the pair has a significant negative genetic interaction score, both

genes are NR and both genes have a condition sensitivity of 5% or less. To obtain a similar

degree of reliability for pathway-based redundancy estimates, the maximum allowed FDR was

set to 10% (as obtained from the homology-based redundancy estimates). In addition to the

abovementioned criteria, pathway-based redundancy pairs also have to have less than 40 sig-

nificant negative genetic interaction scores with other genes in order to obtain a FDR lower

than 10%. A pair that isn’t classified as homology-based redundancy or pathway-based redun-

dancy is considered condition dependent.

Highly regulated genes

Highly regulated genes were determined within the collection of deletion mutants [3]. For

each transcript, the observed standard deviation across different deletion mutants or condi-

tions was compared against 1,000,000 permuted transcript profiles. The permuted transcript

profiles were generated by randomly selecting expression values within each column (deletion

mutant) a million times. P-values were calculated as the fraction of permuted profiles with

standard deviations equal or larger than the observed standard deviation. Transcripts with p-
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values< 0.05 after multiple testing correction (Benjamini & Hochberg) are considered highly

regulated. Wildtype variable genes [3] were excluded from the list of highly regulated genes.

Supporting information

S1 Fig. Sequence divergence in close paralog pairs. (A) Ka values as a measurement of

sequence divergence are depicted for NR-NR (75), NR-R (83) and R-R (35) pairs. (B) Boxplots

showing percentage sequence identity across the entire protein length for the same pairs as in

A. (C) Boxplots showing percentage sequence identity within shared domains for the same

pairs as in A. The difference between NR-NR and R-R pairs is statistically significant (p-

value = 0.008). (D) Boxplots showing percentage sequence identity within shared Pfam

domains (close paralogs excluded). No significant difference is observed between the three

groups. The number of investigated pairs is 96,141, 196,672 and 100,128 for NR-NR, NR-R,

and R-R mutants, respectively. Of these pairs, 455, 736 and 320 share at least one Pfam domain

and are included in this figure.

(PDF)

S2 Fig. Selected sensitivity cutoff for homology based redundancy. Line plot showing the

calculated FDR for different sensitivity cutoffs (Materials and Methods). The dashed line indi-

cates the 5% sensitivity cutoff used to identify the contribution of homology-based redundancy

to non-responsiveness (FDR� 10%). The same cutoff was also used to infer the contribution

of pathway-based redundancy.

(PDF)

S3 Fig. Highly regulated protein complex subunits. Line plots showing the mRNA expres-

sion changes across 1,484 deletion mutants for protein complexes with a highly regulated sub-

unit (18 in total). Each line shows the expression changes observed for the individual subunits.

Subunits highlighted in red have been identified as highly regulated.

(PDF)

S1 Table. List of homology-based redundant pairs.

(TXT)

S2 Table. List of pathway-based redundant pairs.

(TXT)

S3 Table. List of genes attributed to condition dependency.

(TXT)
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15. Giaever G, Chu AM, Ni L, Connelly C, Riles L, Véronneau S, et al. Functional profiling of the Saccharo-

myces cerevisiae genome. Nature. 2002; 418: 387–391. doi: 10.1038/nature00935 PMID: 12140549

16. Kamath RS, Fraser AG, Dong Y, Poulin G, Durbin R, Gotta M, et al. Systematic functional analysis of

the Caenorhabditis elegans genome using RNAi. Nature. 2003; 421: 231–237. doi: 10.1038/

nature01278 PMID: 12529635

17. Kobayashi K, Ehrlich SD, Albertini A, Amati G, Andersen KK, Arnaud M, et al. Essential Bacillus subtilis

genes. Proc Natl Acad Sci U S A. 2003; 100: 4678–4683. doi: 10.1073/pnas.0730515100 PMID:

12682299

18. Papp B, Pál C, Hurst LD. Metabolic network analysis of the causes and evolution of enzyme dispens-

ability in yeast. Nature. 2004; 429: 661–664. doi: 10.1038/nature02636 PMID: 15190353

19. Lynch M, Conery JS. The Evolutionary Fate and Consequences of Duplicate Genes. Science. 2000;

290: 1151–1155. PMID: 11073452

20. Guan Y, Dunham MJ, Troyanskaya OG. Functional Analysis of Gene Duplications in Saccharomyces

cerevisiae. Genetics. 2007; 175: 933–943. doi: 10.1534/genetics.106.064329 PMID: 17151249

Underlying causes of non-responsiveness

PLOS ONE | DOI:10.1371/journal.pone.0173432 March 3, 2017 16 / 18

http://dx.doi.org/10.1016/j.cell.2015.12.035
http://www.ncbi.nlm.nih.gov/pubmed/26771484
http://www.ncbi.nlm.nih.gov/pubmed/10436161
http://dx.doi.org/10.1016/j.cell.2014.02.054
http://www.ncbi.nlm.nih.gov/pubmed/24766815
http://dx.doi.org/10.1038/nrg3768
http://www.ncbi.nlm.nih.gov/pubmed/25446316
http://dx.doi.org/10.1534/genetics.114.161620
http://www.ncbi.nlm.nih.gov/pubmed/24939991
http://dx.doi.org/10.1016/j.tcb.2016.03.008
http://www.ncbi.nlm.nih.gov/pubmed/27118708
http://dx.doi.org/10.1038/nature01198
http://www.ncbi.nlm.nih.gov/pubmed/12511954
http://dx.doi.org/10.1126/science.1150021
http://dx.doi.org/10.1126/science.1150021
http://www.ncbi.nlm.nih.gov/pubmed/18420932
http://dx.doi.org/10.1371/journal.pgen.1000014
http://www.ncbi.nlm.nih.gov/pubmed/18369440
http://dx.doi.org/10.1038/msb4100127
http://www.ncbi.nlm.nih.gov/pubmed/17389874
http://dx.doi.org/10.1038/74174
http://www.ncbi.nlm.nih.gov/pubmed/10742097
http://dx.doi.org/10.1371/journal.pgen.1001187
http://www.ncbi.nlm.nih.gov/pubmed/21079672
http://dx.doi.org/10.1038/nature00935
http://www.ncbi.nlm.nih.gov/pubmed/12140549
http://dx.doi.org/10.1038/nature01278
http://dx.doi.org/10.1038/nature01278
http://www.ncbi.nlm.nih.gov/pubmed/12529635
http://dx.doi.org/10.1073/pnas.0730515100
http://www.ncbi.nlm.nih.gov/pubmed/12682299
http://dx.doi.org/10.1038/nature02636
http://www.ncbi.nlm.nih.gov/pubmed/15190353
http://www.ncbi.nlm.nih.gov/pubmed/11073452
http://dx.doi.org/10.1534/genetics.106.064329
http://www.ncbi.nlm.nih.gov/pubmed/17151249


21. Tong AHY, Lesage G, Bader GD, Ding H, Xu H, Xin X, et al. Global mapping of the yeast genetic inter-

action network. Science. 2004; 303: 808–813. doi: 10.1126/science.1091317 PMID: 14764870

22. Costanzo M, Baryshnikova A, Bellay J, Kim Y, Spear ED, Sevier CS, et al. The genetic landscape of a

cell. Science. 2010; 327: 425–431. doi: 10.1126/science.1180823 PMID: 20093466

23. Costanzo M, VanderSluis B, Koch EN, Baryshnikova A, Pons C, Tan G, et al. A global genetic interac-

tion network maps a wiring diagram of cellular function. Science. 2016; 353: aaf1420.

24. van Wageningen S, Kemmeren P, Lijnzaad P, Margaritis T, Benschop JJ, de Castro IJ, et al. Functional

Overlap and Regulatory Links Shape Genetic Interactions between Signaling Pathways. Cell. 2010;

143: 991–1004. doi: 10.1016/j.cell.2010.11.021 PMID: 21145464

25. Tischler J, Lehner B, Fraser AG. Evolutionary plasticity of genetic interaction networks. Nat Genet.

2008; 40: 390–391. doi: 10.1038/ng.114 PMID: 18362882

26. Harrison R, Papp B, Pál C, Oliver SG, Delneri D. Plasticity of genetic interactions in metabolic networks

of yeast. Proc Natl Acad Sci. 2007; 104: 2307–2312. doi: 10.1073/pnas.0607153104 PMID: 17284612

27. Ghaemmaghami S, Huh WK, Bower K, Howson RW, Belle A, Dephoure N, et al. Global analysis of pro-

tein expression in yeast. Nature. 2003; 425: 737–741. doi: 10.1038/nature02046 PMID: 14562106

28. Lehner B. Molecular mechanisms of epistasis within and between genes. Trends Genet. 2011; 27:

323–331. doi: 10.1016/j.tig.2011.05.007 PMID: 21684621

29. Boone C, Bussey H, Andrews BJ. Exploring genetic interactions and networks with yeast. Nat Rev

Genet. 2007; 8: 437–449. doi: 10.1038/nrg2085 PMID: 17510664

30. Collins SR, Kemmeren P, Zhao X-C, Greenblatt JF, Spencer F, Holstege FCP, et al. Toward a compre-

hensive atlas of the physical interactome of Saccharomyces cerevisiae. Mol Cell Proteomics MCP.

2007; 6: 439–50. doi: 10.1074/mcp.M600381-MCP200 PMID: 17200106

31. Byrne KP, Wolfe KH. The Yeast Gene Order Browser: combining curated homology and syntenic con-

text reveals gene fate in polyploid species. Genome Res. 2005; 15: 1456–1461. doi: 10.1101/gr.

3672305 PMID: 16169922

32. Dean EJ, Davis JC, Davis RW, Petrov DA. Pervasive and Persistent Redundancy among Duplicated

Genes in Yeast. PLoS Genet. 2008; 4: e1000113. doi: 10.1371/journal.pgen.1000113 PMID: 18604285

33. Musso G, Costanzo M, Huangfu M, Smith AM, Paw J, Luis B-JS, et al. The extensive and condition-

dependent nature of epistasis among whole-genome duplicates in yeast. Genome Res. 2008; 18:

1092–1099. doi: 10.1101/gr.076174.108 PMID: 18463300

34. Kelley R, Ideker T. Systematic interpretation of genetic interactions using protein networks. Nat Biotech-

nol. 2005; 23: 561–566. doi: 10.1038/nbt1096 PMID: 15877074

35. Cope MJ, Yang S, Shang C, Drubin DG. Novel protein kinases Ark1p and Prk1p associate with and reg-

ulate the cortical actin cytoskeleton in budding yeast. J Cell Biol. 1999; 144: 1203–1218. PMID:

10087264

36. Vik Å, Rine J. Upc2p and Ecm22p, Dual Regulators of Sterol Biosynthesis in Saccharomyces cerevi-

siae. Mol Cell Biol. 2001; 21: 6395–6405. doi: 10.1128/MCB.21.19.6395-6405.2001 PMID: 11533229

37. Sameith K, Amini S, Groot Koerkamp MJA, van Leenen D, Brok M, Brabers N, et al. A high-resolution

gene expression atlas of epistasis between gene-specific transcription factors exposes potential mech-

anisms for genetic interactions. BMC Biol. 2015; 13: 112. doi: 10.1186/s12915-015-0222-5 PMID:

26700642

38. Stillman DJ. Nhp6: A small but powerful effector of chromatin structure in Saccharomyces cerevisiae.

Biochim Biophys Acta BBA—Gene Regul Mech. 2010; 1799: 175–180.

39. Yao Y, Demoinet E, Saveanu C, Lenormand P, Jacquier A, Fromont-Racine M. Ecm1 is a new pre-ribo-

somal factor involved in pre-60S particle export. RNA N Y N. 2010; 16: 1007–1017.

40. Shen S, Tobery CE, Rose MD. Prm3p is a pheromone-induced peripheral nuclear envelope protein

required for yeast nuclear fusion. Mol Biol Cell. 2009; 20: 2438–2450. doi: 10.1091/mbc.E08-10-0987

PMID: 19297527

41. Lichtenberg U de Jensen LJ, Brunak S, Bork P. Dynamic Complex Formation During the Yeast Cell

Cycle. Science. 2005; 307: 724–727. doi: 10.1126/science.1105103 PMID: 15692050

42. Benschop JJ, Brabers N, van Leenen D, Bakker LV, van Deutekom HWM, van Berkum NL, et al. A con-

sensus of core protein complex compositions for Saccharomyces cerevisiae. Mol Cell. 2010; 38: 916–

928. doi: 10.1016/j.molcel.2010.06.002 PMID: 20620961

43. Liu H. The scavenger mRNA decapping enzyme DcpS is a member of the HIT family of pyrophospha-

tases. EMBO J. 2002; 21: 4699–4708. doi: 10.1093/emboj/cdf448 PMID: 12198172

44. Malys N, Carroll K, Miyan J, Tollervey D, McCarthy JEG. The “scavenger” m7GpppX pyrophosphatase

activity of Dcs1 modulates nutrient-induced responses in yeast. Nucleic Acids Res. 2004; 32: 3590–

3600. doi: 10.1093/nar/gkh687 PMID: 15240832

Underlying causes of non-responsiveness

PLOS ONE | DOI:10.1371/journal.pone.0173432 March 3, 2017 17 / 18

http://dx.doi.org/10.1126/science.1091317
http://www.ncbi.nlm.nih.gov/pubmed/14764870
http://dx.doi.org/10.1126/science.1180823
http://www.ncbi.nlm.nih.gov/pubmed/20093466
http://dx.doi.org/10.1016/j.cell.2010.11.021
http://www.ncbi.nlm.nih.gov/pubmed/21145464
http://dx.doi.org/10.1038/ng.114
http://www.ncbi.nlm.nih.gov/pubmed/18362882
http://dx.doi.org/10.1073/pnas.0607153104
http://www.ncbi.nlm.nih.gov/pubmed/17284612
http://dx.doi.org/10.1038/nature02046
http://www.ncbi.nlm.nih.gov/pubmed/14562106
http://dx.doi.org/10.1016/j.tig.2011.05.007
http://www.ncbi.nlm.nih.gov/pubmed/21684621
http://dx.doi.org/10.1038/nrg2085
http://www.ncbi.nlm.nih.gov/pubmed/17510664
http://dx.doi.org/10.1074/mcp.M600381-MCP200
http://www.ncbi.nlm.nih.gov/pubmed/17200106
http://dx.doi.org/10.1101/gr.3672305
http://dx.doi.org/10.1101/gr.3672305
http://www.ncbi.nlm.nih.gov/pubmed/16169922
http://dx.doi.org/10.1371/journal.pgen.1000113
http://www.ncbi.nlm.nih.gov/pubmed/18604285
http://dx.doi.org/10.1101/gr.076174.108
http://www.ncbi.nlm.nih.gov/pubmed/18463300
http://dx.doi.org/10.1038/nbt1096
http://www.ncbi.nlm.nih.gov/pubmed/15877074
http://www.ncbi.nlm.nih.gov/pubmed/10087264
http://dx.doi.org/10.1128/MCB.21.19.6395-6405.2001
http://www.ncbi.nlm.nih.gov/pubmed/11533229
http://dx.doi.org/10.1186/s12915-015-0222-5
http://www.ncbi.nlm.nih.gov/pubmed/26700642
http://dx.doi.org/10.1091/mbc.E08-10-0987
http://www.ncbi.nlm.nih.gov/pubmed/19297527
http://dx.doi.org/10.1126/science.1105103
http://www.ncbi.nlm.nih.gov/pubmed/15692050
http://dx.doi.org/10.1016/j.molcel.2010.06.002
http://www.ncbi.nlm.nih.gov/pubmed/20620961
http://dx.doi.org/10.1093/emboj/cdf448
http://www.ncbi.nlm.nih.gov/pubmed/12198172
http://dx.doi.org/10.1093/nar/gkh687
http://www.ncbi.nlm.nih.gov/pubmed/15240832


45. Malys N, McCarthy JEG. Dcs2, a Novel Stress-induced Modulator of m7GpppX Pyrophosphatase

Activity that Locates to P Bodies. J Mol Biol. 2006; 363: 370–382. doi: 10.1016/j.jmb.2006.08.015

PMID: 16963086
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