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A B S T R A C T

Recognition memory improves with child development, but the neural mechanisms underlying such improve
ment and the developmental variation remain poorly understood. Herein, we investigated how the neural rep
resentations during the encoding and retrieval phases of recognition memory change with age, using 
representational similarity analysis in a sample of children aged 6–13 years (n = 137). Our results indicated that 
the encoding and retrieval phases have distinct neural patterns of development. Similarly, using a model-free 
approach, we confirmed that there is a key developmental stage (about 9–10 years old) for the neural repre
sentation during the encoding phase, whereas the neural representation during the retrieval phase tends to be 
stable with child development. Additionally, we identified that the neural similarity between the encoding and 
retrieval phases in children is primarily located in the left parietal-occipital region. Overall, these findings refine 
the developmental process underlying memory representation and enhance our understanding of the neural 
mechanisms of recognition memory.

1. Introduction

Recognition memory is an essential component of episodic memory 
(Bird, 2017), and is widely employed in studies of children’s memory 
capacities. Recognition memory for vividly recalled scenes improves 
with age (Ofen et al., 2007), generally during childhood (Cycowicz 
et al., 2001) and further during adolescence and young adulthood 
(Sprondel et al., 2011; Ofen et al., 2012). This improvement may be 
associated with continued neurological evolution throughout childhood 
and adolescence (Golarai et al., 2007; Ghetti et al., 2010). However, how 
the neural system develops and the developmental variation across 
memory phases remain poorly understood (Haese and Czernochowski, 
2016; Koenig et al., 2020). Investigating the neural mechanisms un
derlying the development of recognition memory can help us better 
understand the mechanisms of memory formation.

The development of recognition memory is associated with neural 
similarity during two crucial memory phases: encoding and retrieval. 

Numerous studies have demonstrated that the neural activity triggered 
in response to an event is partially reactivated during recognition 
(Wheeler et al., 2000; Polyn et al., 2005; Danker and Anderson, 2010). 
Further research has demonstrated that the reactivation of representa
tions of previously remembered content facilitates successful memory 
encoding (Kuhl et al., 2010; Koen and Rugg, 2016). Researchers have 
also identified a connection between neural representations and subse
quent memory, demonstrating that items showing greater neural pattern 
similarity between encoding and retrieval were associated with better 
subsequent memory performance (Xue et al., 2010). This variation in 
neural similarity between the encoding and retrieval processes supports 
the development of recognition memory in children.

The development of recognition memory is also related to the neural 
representation stability during the encoding or retrieval phase (i.e., the 
individual-group representation pattern). The robustness of memory 
encoding is associated with the response reliability evoked by repeated 
stimuli (Yao et al., 2007), which translates into cross-individual 
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response reliability (Hasson et al., 2009; Byrge et al., 2015). It has 
previously been confirmed that neural responses are more strongly 
associated, and neural patterns are more similar between individuals 
during successful memory encoding (Hasson et al., 2008; Koch et al., 
2020). Memory representations can further be shared across individuals 
to create group memory representations (Xiao et al., 2020). Meanwhile, 
the similarity of neural representation and activity between individuals 
and groups contributes to memory capacity (Sheng et al., 2023). Spe
cifically, group-averaged neural activity and representations are 
believed to reflect typical stimulus processing, whereas 
individual-group similarity may indicate overall attentional engagement 
and fidelity of the stimulus representations, thus underlying the memory 
capacity of individuals (Cohen and Parra, 2016). As such, the develop
ment of recognition memory in children may also depend on the neural 
representation similarity between individuals and groups.

Furthermore, intersubject variability may potentially affect the 
recognition memory. It has been found that individuals’ neural trans
formation of learning materials during the encoding or retrieval phase 
affects subsequent memory (Favila et al., 2020; Liu et al., 2021; Xue, 
2022). As memory involves effective interaction between the existing 
long-term knowledge of each individual and the learning materials (Xue, 
2018), each individual performs his or her own unique neural trans
formations to stimuli, resulting in unique memory content. For example, 
individuals’ unique semantic representations predicted their false 
memories better than the group memory representations (Chadwick 
et al., 2016). Since intersubject variations in representation patterns 
may not be well captured by individual-group similarities. For instance, 
representation patterns may diverge throughout development, resulting 
in children with closer maturity having more similar patterns. There
fore, we also used intersubject similarity analysis to verify the feasibility 
of different developmental models.

The aim of this study was to reveal the neural mechanisms under
lying the development of recognition memory through representational 
similarity analysis on high-temporal resolution data recorded by elec
troencephalography (EEG). We investigated variations of individual- 
group neural representations during two memory phases, encoding 
and retrieval. We further systematically compared the neural repre
sentations of encoding and retrieval specific items to examine the 
representational features and temporal dynamics of distinct memory 
phases. In addition, intersubject variations in neurological development 
were confirmed by intersubject similarity analysis. Overall, our findings 
revealed the time course and functional relevance of representational 
changes during memory processing, contributing to a further under
standing of the generative and constructive nature of recognition 
memory.

2. Materials and methods

2.1. Participants

This study recruited 137 healthy children (57 females; age range: 
6–13; Mean ± SD = 9.24 ± 1.80) from local schools (detailed in 
Table S1). The normality test (Shapiro-Wilk) indicated no significant 
deviation in the normality of children’s ages (p = 0.392). All participants 
had an IQ score ≥ 80 according to the Wechsler Intelligence Scale for 
Chinese Children-Revised (WISCC-R). All participants were right- 
handed, had normal or corrected-to-normal vision, and had no history 
of neurological or psychiatric problems. Informed consent was obtained 
from children and their parents prior to the experiment, in accordance 
with the protocols approved by the local ethics committee.

2.2. Stimuli

The stimuli material comprised 80 images extracted from the 
Snodgrass and Vanderwart image set (Snodgrass and Vanderwart, 
1980), which included two categories: animal and non-animal. These 

original images were preprocessed for transformation into white-line 
drawings on a black background. Additionally, the physical properties, 
including size, background, contrast, and brightness were normalized to 
each other.

2.3. Procedure

During the EEG recording, the participants viewed the stimulus im
ages continuously displayed on the screen. The stimuli were presented 
using the E-Prime 2.0 software (Psychological Software Tools, Pitts
burgh, PA, USA), with all images presented on a black background. The 
participants viewed all images from a seat placed 90 cm from the screen 
at a viewing angle of 3.18◦ × 3.18◦. The experimental task comprised an 
encoding phase and a retrieval phase with a 1-minute interval. The 
formal experiment lasted approximately 10 min in total. To ensure 
comprehension, participants underwent a practice before the formal 
experiment.

The encoding phase (Fig. 1A) comprised 60 trials, half consisting of 
animal images and the other half consisting of non-animal images. Each 
trial began with the presentation of stimulus images for 1000 ms, fol
lowed by a black screen with an interstimulus interval (ISI) of 1500 ms. 
Participants were instructed to discriminate whether the image pre
sented was of an animal (right-hand-pressed key) or a non-animal (left- 
hand-pressed key), responding as quickly and accurately as possible 
using their index fingers. The retrieval phase (Fig. 1B) comprised 80 
trials, including 40 with images appeared in the encoding phase (termed 
old items) and 40 with images did not appear (termed new items). 
Considering the recording time for children (Brooker et al., 2020) and 
performing representational similarity analysis between the encoding 
and retrieval phases, the 40 old items were selected from the 60 images 
in the encoding phase and remained constant across all participants, but 
the presentation sequence was randomized. Each trial was initiated with 
the presentation of a white fixation cross in the center of the screen for 
250 ms, followed by a black screen for 500 ms. Subsequently, the 
stimulus image was presented for 500 ms, followed by a black-screen ISI 
of 3000 ms. Participants were instructed to determine whether the 
image presentation was old (right-handed key) or new (left-handed 
key), responding quickly and accurately using their index fingers. To 
mitigate artifacts from blinking and eye movements, the participants 
were instructed to fixate on the white cross on the screen throughout the 
experiment and to blink in response to key presses.

2.4. EEG recording and preprocessing

EEG data were recorded continuously using a 21-channel amplifier, 
following the standard 10–20 system (Stellate System Inc., CA, USA). 
Sampling was conducted at 500 Hz, with online referencing at the CPz 
electrode, and all inter-electrode impedance maintained below 5 kΩ. 
The EEG data were preprocessed using EEGLAB (Delorme and Makeig, 
2004) in MATLAB 2018b (MathWorks, MA, USA). Initially, bandpass 
filtering (Hamming-windowed sinc FIR filter) was applied between 0.1 
and 30 Hz, with subsequent attenuation of the remaining electrical line 
noise at 50 Hz performed using the CleanLine plugin (https://www. 
nitrc.org/projects/cleanline). Off-line re-referencing was subsequently 
performed using the global average (Bentin et al., 1996). The criteria for 
identifying and removing bad channels were as follows: 1. Continuously 
flat for more than 5 s; 2. More than four standard deviations of line noise 
(relative to their signal); 3. Correlation of less than 0.8 with the esti
mates of nearby channels. Artifact subspace reconstruction (ASR) was 
implemented to eliminate data segments containing artifacts (Mullen 
et al., 2015). Additional data segments were excised if more than 25 % 
of the channels displayed a power exceeding seven standard deviations. 
Independent component analysis (ICA; Jung et al., 2000) was further 
applied to correct eye or muscle artifacts within the continuous data. 
The ICA matrix was applied to the full-length data prior to the removal 
of artifactual segments by ASR. The ICLabel plugin (Pion-Tonachini 
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et al., 2019) was used to remove components with a probability for eye 
or muscular artifacts greater than 0.6. Subsequently, epochs of 
− 200–1000 ms were created from each image, and the same time length 
was used for all trials. Epochs were eliminated using the TBT plugin 
(Ben-Shachar, 2018) if at least 10 channels met the following criteria: 1. 
Amplitudes exceeding ± 100 μV; 2. The joint probability of the local/
global thresholds exceeded three standard deviations. If fewer than 10 
channels matched the rejection criteria, the epoch was retained; how
ever, only the channels at that epoch were interpolated. Finally, the 
previously-removed channels were interpolated using a spherical spline 
and a baseline correction was performed. Ultimately, 99.17 % ± 0.99 % 
of the trials were retained for subsequent data analysis.

2.5. Data analysis

2.5.1. Behavioral data analysis
According to signal detection theory, the sensitivity index d’ (hit rate 

of old items minus false alarm rate of new items) and the mean response 
time (RT) in correctly responded trials (comprising hits of old items and 
correct rejections of new items) in the retrieval phase were calculated. 
Extreme values exceeding ± 2.5 standard deviations of the mean RT, 
accounting for 2.67 % of all correct trials, were excluded. To explore the 
relationship between behavioral performance (d’, RT) and age (Fig. 1C 
and Fig. 1D), we conducted a correlation analysis between these two 
factors using SPSS 25.0 (SPSS Inc., Chicago, IL, USA). Correlations were 
considered significant when the p-value was less than 0.05. To further 
explore the major contributors of sensitivity index d’, we calculated the 
correlation between hits of old items and false alarms of new items in the 

retrieval phase with age, respectively. Additionally, behavioral perfor
mance during the encoding phase was also calculated.

2.5.2. Individual-group representational similarity analysis
To explore the neural similarity between the encoding and retrieval 

phases, we performed a representational similarity analysis (RSA; 
Kriegeskorte et al., 2008) of the images presented in both phases (i.e. 40 
old items). Potential differences in the scalp among participants may 
have affected the direct calculation of representational similarity for 
each item between participants (i.e. first-level pattern similarity). 
Therefore, we calculated the similarity of representational patterns 
when participants processed the same set of stimuli (i.e. second-level 
pattern similarity; Chen et al., 2017; Sheng et al., 2023). We initially 
averaged all trials across all participants to obtain group-averaged trials 
(Fig. 2A). Subsequently, for each participant, the removed trials were 
interpolated using the corresponding group-averaged trials, and no 
difference between ages in the number of interpolated trials (encoding 
phase: p = 0.552; retrieval phase: p = 0.873). The cross-trial pattern 
similarity was subsequently calculated for each participant, resulting in 
a representational similarity matrix (RSM) of size 40 × 40 (i.e. repre
sentational space). Similarly, RSA was conducted on group-averaged 
trials to produce a 40 × 40 canonical representation matrix (group-
averaged RSM). Finally, individual-group representational similarity 
was calculated using the Spearman correlation between each in
dividual’s RSM and the group-averaged RSM. Similarly, the represen
tational similarity between the different phases was obtained by 
correlating each individual’s RSM from the encoding phase with that 
extracted from the retrieval phase (Fig. 2B).

Fig. 1. Experimental paradigms and the development of behavioral performance. (A) Encoding phase. Participants performed a task to discriminate animal or non- 
animal while viewing 60 images. (B) Retrieval phase. Participants recognized whether an image was new or old while viewing 80 images. (C) Correlation between 
participant age and sensitivity index d’ in the retrieval phase. (D) Correlation between participant age and response time in the retrieval phase.
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To mitigate the interference of the low-level features of the stimulus 
images with the RSA results, we further constructed a low-level feature 
RSM using the Hierarchical Model and X (HMAX) model (Serre et al., 
2005). Specifically, the features extracted from each of the 40 images 
were computed in the C2 layer, and their Euclidean distances were 
calculated. The similarity between the HMAX units in each image was 
quantified by subtracting the Euclidean distance from 1. After excluding 
the low-level feature RSM, we computed the Spearman partial correla
tion for different RSMs. This partial correlation analysis can eliminate all 
sources of variance shared between specific and low-level feature RSMs 
(Giordano et al., 2013).

2.5.3. Intersubject representational similarity analysis
Model fitting for individual-group similarity may not completely 

capture intersubject variations of memory representations, such as the 
possibility that children with more similar maturity have more similar 
memory representations. Therefore, we also employed a model-free 
approach to identify intersubject differences associated with memory 
representations (Finn et al., 2020; Camacho et al., 2023). To accomplish 
this, we calculated the intersubject correlation (ISC) separately for each 
individual’s RSM pair to obtain intersubject pattern similarity (Fig. 2C). 
Then, we tested whether the intersubject pattern similarity corre
sponded to one of the four developmental models (Fig. 2D). All four 

models used the chronological age of the participants as the metric of 
maturity (Camacho et al., 2023). There were four methods of calculating 
maturity similarity, each of which examined different hypotheses about 
how memory representations change with age:

1. Nearest Neighbor: children with similar maturity have similar 
memory representation (metric: sample maximum minus pair absolute 
difference). 2. Convergence: memory representation was more similar in 
older children, representing convergence on shared memory represen
tations (metric: pair average). 3. Divergence: memory representation 
was more similar in younger children, with developmental variations 
representing the effects of individual differences in experience (metric: 
sample maximum minus pair average). 4. Key stage: children have more 
similar memory representation as their maturity nearer to the key stage, 
representing the effect of the key stage in child development (metric: 
sample maximum minus the absolute difference between the pair and 
the key age, with key age ranging from median chronological age ± 1 
year and steps in 0.1 years).

We calculated the Spearman correlation between the intersubject 
pattern similarity and the four models separately. For the key stage 
model, we defined the key age by the model with the highest correlation 
coefficient. Finally, the model with the highest-ranked correlation co
efficient among the four models was determined to be the best fitting. 
Furthermore, we also conducted a channel-by-channel searchlight 

Fig. 2. Schematic diagram of the representational similarity analysis. (A) Schematic for the RSM of individuals and group average. RSA was conducted for each 
participant to generate an individual’s RSM. Similarly, the RSA was conducted on the group-averaged data to generate a group-averaged RSM. (B) The similarities 
between the encoding and retrieval were calculated from the correlation between the individuals’ RSM in the encoding phase and the RSM in the retrieval phase 
(blue). The similarities between individuals and groups in different phases were obtained by calculating the correlation between the individuals’ RSM and the group- 
averaged RSM (encoding phase: green; retrieval phase: red). (C) Schematic for the intersubject pattern similarity. The intersubject pattern similarity was generated by 
calculating the correlation between each pair of individuals. (D) Four developmental models of memory representational similarity (nearest neighbor, convergence, 
divergence, and key stage) were constructed using individual maturity.
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analysis to explore the spatial sources (i.e., the contribution of different 
channels) underlying the best-fitting model.

2.5.4. Spatiotemporal pattern similarity analysis
To more precisely investigate the neural similarity between the 

encoding and retrieval phases, we constructed spatiotemporal features 
from the EEG data of these two phases and performed a spatiotemporal 
pattern similarity analysis (STPS; Lu et al., 2015). We further divided all 
scalp electrodes into six regions and used the scalp voltage from one of 
the six regions as a spatial feature. The temporal features were selected 
using a 100 ms sliding window (50 sampling points) with a step size of 
2 ms (one sampling point). We divided the 40 previously-presented 
items into the ‘remembered’ and ‘forgotten’ categories, based on 
memory performance during the retrieval phase. At each sliding win
dow, we separately calculated the correlation coefficients of each 
remembered item between the encoding and retrieval phases, repre
senting the cross-phase similarity. The same procedure was also per
formed for forgotten items (Fig. 5A).

The within-item STPS was obtained by calculating the similarity of 
the same item between two phases. In addition, to determine whether 
the similarity of within-items reflected the common cognitive processes 
or item-specific representations, we further calculated the similarity of 
between-item pairs matched with the within-item pairs. Specifically, for 
the between-item pairs, two of the items were different and showed the 
same memory performance as the within-item pairs. As differences in 
the number of items between the remembered and forgotten conditions 
may have influenced the reliability of similarity estimates, we excluded 
participants with fewer than six remembered or forgotten items (Sheng 
et al., 2023). For the remaining participants, the number of remembered 
and forgotten items was matched using 1000 bootstrapped sampling. 
The entire procedure was finally repeated for each participant and time 
point, thus yielding spatiotemporal estimates of cross-phase similarity.

2.6. Statistical inference

Regression models were constructed between all RSM correlation 
coefficients and age using SPSS 25.0. Fisher r-to-z transformations were 
performed on all of the RSM correlation coefficients prior to performing 
further statistical analysis, and the resulting z-scores represented the 
normalized differences in the representation patterns. We further sepa
rately evaluated the goodness of fit of the linear, quadratic, and cubic 
regression models (Ferguson et al., 2021). We then compared the values 
of Akaike’s Information Criterion (AIC) and Bayesian Information Cri
terion (BIC). Finally, the model with the smallest values was selected as 
the best-fitting model (Table S2). In addition, a multiple linear regres
sion analysis (Uyanık and Güler, 2013) was conducted to identify the 
RSM correlations that could act as predictors of memory performance.

The intersubject similarity analysis procedure was repeated 5000 
times and maturity was systematically shuffled to create the null dis
tribution. The p-values were estimated from this ranked distribution for 
the four independent models. In the spatiotemporal pattern similarity 
analysis, we performed t-tests and calculated p-values separately for 
each time window. These p-values were corrected for multiple com
parisons with a false discovery rate (FDR) of 0.05. Time windows with 
statistical values greater than the threshold (p < 0.05) were selected and 
grouped into connected clusters based on their temporal adjacency. For 
significant clusters, a two-way repeated-measures analysis of variance 
(ANOVA) with memory performance (remembered, forgotten) × item 
specificity (within-item, between-item) was conducted. Statistical ef
fects that violated the test of sphericity were corrected for p-values using 
the Greenhouse-Geisser correction. The Bonferroni correction method 
was applied for post-hoc comparisons, and a simple effects analysis was 
performed when the interaction effect was significant.

3. Results

3.1. Behavioral performance and development

To evaluate memory performance, we calculated the sensitivity 
index d’ and the mean RT of correctly responded trials in the retrieval 
phase according to signal detection theory. The results showed that 
participants were highly sensitive to image recognition (mean sensi
tivity index d’ ± SEM: 2.40 ± 0.06), and responded rapidly (mean RT 
± SEM: 1073 ± 19 ms after stimulus onset). Meanwhile, correlation 
analysis between memory performance and participant age revealed 
that the sensitivity index d’ in the retrieval phase was significantly 
correlated with age (r = 0.244, p = 0.004; Fig. 1C), as was the RT in the 
retrieval phase (r = − 0.445, p < 0.001; Fig. 1D). The development of d’ 
may be driven by both increased hit rates of old items (r = 0.186, 
p = 0.030; Fig. S1) and decreased false alarm rates of new items 
(r = − 0.236, p = 0.006). Moreover, age was also significantly correlated 
with response time in the encoding phase (r = − 0.500, p < 0.001), but 
not with accuracy (r = 0.054, p = 0.532). These behavioral results 
indicated a gradual improvement in recognition memory as children 
develop.

3.2. Individual-group similarity revealed by RSA

EEG was recorded during both the encoding and retrieval phases, 
and then we performed RSA to explore the neural similarity between 
these two phases. We first constructed a RSM for each individual and 
group respectively (Fig. 2A). Then we conducted RSA of the individuals’ 
RSM and the group-averaged RSM (Fig. 2B) in the encoding (E&Em) or 
retrieval (R&Rm) phases, as well as the individuals’ RSM in the encoding 
phase and the individuals’ RSM in the retrieval phase (E&R).

This analysis revealed that the neural representational similarity of 
E&R did not reach statistical significance (p = 0.134, one-sample t-test; 
Fig. 3A), nor did correlation between E&R and age (r = 0.108, 
p = 0.214; Fig. 3B). In contrast, the similarity of E&Em was significant 
(p < 0.001, one-sample t-test). The similarity of E&Em revealed a sig
nificant quadratic relationship with age (r = 0.229, p = 0.029; Fig. 3C). 
Specifically, the development trajectory of the correlation increased 
relatively flatly during ages 9–10, while a downward trend occurred 
after 10 years old. We further found that the similarity of R&Rm reached 
significance (p < 0.001, one-sample t-test) and was significantly and 
linearly increased with age (r = 0.201, p = 0.020; Fig. 3D). These results 
revealed that the individual’s pattern is similar to the group-averaged 
pattern in both phases, but that the encoding and retrieval phases 
have different neural patterns of development. To exclude the potential 
interference of the stimulus image features on the RSA results, we 
additionally constructed low-level feature RSM for these images. Similar 
results were obtained after eliminating the interference from low-level 
features of the stimulus images (Fig. S2).

However, when individuals’ RSMs and group-averaged RSMs were 
restricted to only remembered items in both phases, there was no age- 
related difference in similarity (ps ≥ 0.743; Fig. S3). These results sug
gested that the age-related increase in individual-group neural repre
sentation similarity may not only be driven by age-related increase in 
the proportion of remembered items. The individual-group neural rep
resentation similarity may depend on the combined role of remembered 
and forgotten items.

Furthermore, in order to identify which correlation coefficients were 
determinants of memory performance, we applied multiple linear 
regression analysis. The results revealed that the correlation of R&Rm 
was borderline significant (β = − 0.157, p = 0.071) in predicting the 
behavioral response time, whereas none of the other correlations were 
significant (ps ≥ 0.521). Similarly, none of these correlations were sig
nificant (ps ≥ 0.413) in predicting behavioral accuracy (Table S3). 
Together, these results indicated that the neural representational pat
terns of individuals in the retrieval phase tend to stabilize with age (i.e. 
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Fig. 3. Results of representational similarity analysis. (A) Correlation between the RSMs of different participants. Boxes indicate data from the 25th to the 75th 
percentiles, dots indicate individual participants, lines indicate medians, error bars indicate maximum and minimum non-outliers, dots outside the error bars indicate 
outliers, and asterisks above the boxes indicate significance (***p < 0.001, one-sample t-test). E&R refers to the correlation between the encoding phase and the 
retrieval phase of individuals, E&Em refers to the correlation between individuals and groups in the encoding phase, while R&Rm refers to the correlation between 
individuals and groups in the retrieval phase. (B–D) The relationship between different neural representational similarities and age. Dots indicate correlation co
efficients for individuals, colored lines/curves indicate the best fit using the regression model, and shaded areas indicate 95 % confidence intervals.

Fig. 4. Results of intersubject similarity analysis. (A) Model fitting of intersubject similarity in the encoding phase. (B) Model fitting of intersubject similarity in the 
retrieval phase. Gray bars indicate 5000 random distributions. Colored lines indicate real model fitting, in which the solid lines indicate the best-fitting model. N: 
Nearest neighbor; C: Convergence; D: Divergence; K: Key stage. Topographic maps show the topographic distribution of the best-fitting model, color scales indicate 
the correlations, and white dots in topographic maps indicate significant channels (p < 0.05, one-sided permutation test).
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closer to the group-averaged representational pattern) and this stability 
may be partially associated with better behavioral performance of in
dividuals. In contrast, the neural representation in the encoding phase 
presented a key developmental stage during the 9–10 years of children.

3.3. Intersubject similarity across development

To further confirm the variation of developmental patterns between 
memory encoding and retrieval phases, and also to capture the memory 
representation across individuals, we used a model-free approach in 
addition to individual-group similarity. Specifically, we calculated 
intersubject pattern similarity in the encoding and retrieval phases 
separately (Fig. 2C) and tested whether they corresponded to four 
different developmental models (nearest neighbor, convergence, diver
gence, and key stage; Fig. 2D). In addition, we performed a searchlight 
analysis to identify the spatial sources underlying the model fitting.

The results revealed that the intersubject similarity in the encoding 
phase best fitted the key stage model with a key stage range of 9–10 
years (key age = 9.8 years; r = 0.019, p = 0.107, one-sided permutation 
test; Fig. 4A) and that children with maturity closer to the key stage had 
more similar neural representation patterns. The searchlight analysis 
revealed high correlations for occipital electrodes, but none of them 
were significant (rs ≤ 0.043, ps ≥ 0.137, one-sided permutation test, 
FDR-corrected).

In contrast, in the retrieval phase, the intersubject similarity was 
only significantly correlated with the convergent model (r = 0.026, 
p = 0.044, one-sided permutation test; Fig. 4B) and not with any of the 
other developmental models (ps ≥ 0.277). The searchlight analysis 
showed that the frontal and right occipital-temporal regions were sig
nificant in the retrieval phase (rs ≥ 0.038, ps ≤ 0.049, one-sided per
mutation test, FDR-corrected). These results further indicated that older 
children have more similar neural representation patterns in the 
retrieval phase, and that frontal and occipital-temporal regions account 
for a higher contribution to this similarity.

3.4. Spatiotemporal representations revealed by STPS

To more precisely investigate the neural similarity between the 
encoding and retrieval phases, we performed STPS (Fig. 5A). Specif
ically, all the scalp electrodes were divided into six regions (left frontal, 
right frontal, left central, right central, left parietal-occipital, and right 
parietal-occipital), and sliding windows were employed to explore the 
time course of neural similarity in each region. As shown in Fig. S4, the 
time course of the neural representational similarity shows that the 
correlation between the encoding and retrieval phases increased rapidly 
following stimulus presentation. For example, in the left parietal- 
occipital region, the remembered item reached significance at 62 ms 
(t(136) = 2.086, p = 0.040, Cohen’s d = 0.356, one-sample t-test, FDR- 

Fig. 5. Schematic diagram and results of spatiotemporal pattern similarity analysis. (A) Schematic diagram of the STPS. (B) Repeated-measures ANOVA of mean 
STPS in the temporal cluster (150–450 ms, **p < 0.01). (C) STPS differences (remembered items minus forgotten items) of within-item and between-item on the left 
parietal-occipital region. The gray-shaded areas indicate temporal clusters with significant differences. (D) The relationship between age and STPS differences 
(within-item minus between-item) in the temporal cluster.
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corrected) and the correlation peaked for the first time at 130 ms, with a 
mean correlation of 15.85 %. In contrast, the forgotten item reached 
significance at 76 ms (t(136) = 2.232, p = 0.028, Cohen’s d = 0.381, one- 
sample t-test, FDR-corrected) and the correlations first peaked at 
124 ms, with a mean correlation of 13.30 %. These results indicated that 
the brain can distinguish between remembered and forgotten items very 
shortly after the stimulus appears, and this distinction persists for a long 
time.

Furthermore, to determine whether neural similarity can reflect 
item-specific representations or common cognitive processes, we sepa
rately calculated the similarities between the within- and between-item 
pairs (remembered items minus forgotten items). The results of this 
analysis indicated that the interaction between memory performance 
and item specificity was significant only for the temporal cluster 
(150–450 ms) on the left parietal-occipital region following stimulus 
appearance (F(1, 92) = 4.661, p = 0.033, ηp

2 = 0.048, Fig. 5C). Simple 
effects analysis further revealed that the within-item STPS was signifi
cantly higher for the remembered items than for forgotten items (F(1, 92) 
= 9.089, p = 0.003, ηp

2 = 0.090; Fig. 5B), whereas the difference in the 
between-item STPS was not significant (F(1, 92) = 3.245, p = 0.075, ηp

2 

= 0.034). For the remembered items, within-items were significantly 
more similar than between-items (F(1, 92) = 9.791, p = 0.002, ηp

2 

= 0.096), whereas no significant difference between within- and 
between-item similarity for forgotten items (F(1, 92) = 0.511, p = 0.476, 
ηp

2 = 0.006). None of the clusters revealed within- or between-item dif
ferences across the other five brain regions (Fig. S5). In addition, we 
identified a significant quadratic correlation between the STPS differ
ences (within-item minus between-item) and age (r = 0.297, p = 0.019; 
Fig. 5D). This indicated that the similarity between memory encoding 
and retrieval in children develops with age. Interestingly, the STPS 
differences also showed a key developmental stage during the 9–10 
years old, which may also reflect the interaction of memory encoding 
and retrieval process at the individual level.

4. Discussion

The present study revealed the development of memory represen
tation by performing RSA of recognition memory in children. First, we 
found there are different neural representation patterns in the encoding 
and retrieval phases of memory in children. Specifically, the neural 
representation in the retrieval phase gradually stabilized with the chil
dren’s age, and this stability was partially associated with improved 
memory performance. Whereas, the neural representation in the 
encoding phase presented a key developmental stage during 9–10 years 
old of children. Similarly, intersubject similarity analysis confirmed the 
distinct neural representation patterns of the encoding and retrieval 
phases. Finally, we determined that the neural similarity between the 
encoding and retrieval phases in children predominantly manifested in 
the left parietal-occipital region and changed with age. Overall, these 
findings provide significant insights into the representational features 
and temporal dynamics of different memory phases, thus contributing to 
a better understanding of the neural mechanisms underlying recognition 
memory development.

Each brain generates distinctive representational patterns when 
perceiving, remembering, and recognizing events (Xiao et al., 2020). 
Additionally, shared memory representations, known as group memory 
representation patterns, are formed (Vilarroya, 2017). These group 
memory representation patterns reflect shared memory patterns and 
play a role in transforming memory representations, resulting in the 
individuation of memory content (Sheng et al., 2023). Xue et al. (2010)
found that the similarity between individual and group representation 
patterns contributes to memory capacity. Based on this research, our 
results first provided neurophysiological evidence that the neural rep
resentations of memory during the retrieval phase gradually stabilize 
with increasing age, approaching the group representation pattern. In 
contrast, neural representations during the encoding phase tend to 

stabilize initially, with maximum at about 10 years old, but subse
quently gradually diverge over time.

The neural representation of memory during the encoding phase 
involves the constructive neural transformation of learning material 
through interactions with existing long-term knowledge (Nguyen et al., 
2019; Zhu et al., 2019; Bein et al., 2020), as well as incorporating the 
reliance of children’s memory processes on semantics (Gupta et al., 
2024). In the early stages of child development, they gradually estab
lished shared cognitive schemas, leading to the stabilization of neural 
representations. Subsequently, a knee point in language learning 
mechanisms occurred in late (9–10 years old) childhood 
(Ramos-Escobar et al., 2021), who performed adult-like semantic pro
cessing (Coch, 2015). Children at this age exhibit richer memory con
version and semantic encoding, achieving better success in forming 
unique memorable mental images of the joint image-word pairs 
(Sommer et al., 2019). Consequently, they exhibited divergent 
individual-group neural representations.

Conversely, neural representation in the retrieval phase relies on 
shared patterns evoked during the retrieval process, as well as the in
fluence of early encoding patterns (Chen et al., 2017). Previous studies 
have demonstrated that hippocampal representations are not solely 
driven by stimulus-specific features during encoding, but rather reflect 
an underlying shared pattern of encoded neural activity (Richter et al., 
2016). The dedifferentiation theory of cognitive aging proposes that the 
specificity of neural representations decreases with age (Abdulrahman 
et al., 2017). Comparatively, this shared pattern became incrementally 
similar during development, resulting in an apparent gradual stabiliza
tion of the neural representations in the retrieval phase appearing with 
age.

Identical to the individual-group similarity, intersubject similarity 
also confirmed these findings. Intersubject similarity reflects a shared 
reconstruction of the learning material by each participant pair 
(Chadwick et al., 2016), encompassing both typical representations 
shared by the group and unique representations specific to particular 
pairs (Sheng et al., 2023). This study confirmed the existence of a key 
stage of intersubject memory representation during the encoding phase, 
which initially converges and then gradually diverges. In contrast, older 
children exhibited a more similar neural representation pattern during 
the retrieval phase, predominantly involving the frontal and 
occipital-temporal regions. The involvement of occipital-temporal re
gions aligns with the known contribution of the visual cortex to memory 
representation. The decline in memory among older adults is attributed 
to the reduction in representational fidelity within the visual cortex 
(Zheng et al., 2018). Regarding the frontal regions, these may play a 
crucial role in the memory development of children. Activity in the 
frontal regions enhances pattern similarity in memory, leading to better 
subsequent memory performance (Xue et al., 2013).

Concerning the similarities between the encoding and retrieval 
phases of memory, no such patterns were observed at the whole-brain 
level. This discrepancy may arise from the possibility that neural rep
resentations during encoding undergo a switch during retrieval (Xiao 
et al., 2017). Specifically, the retrieval patterns of individuals are more 
similar to those of other individuals than their own encoding patterns 
(Koch et al., 2020). Through a fine-grained decomposition of spatio
temporal dynamics, we identified memory features distinguishing 
encoding successes and failures among individuals, and we subsequently 
explored whether these shared patterns contain episode-specific infor
mation, or were relevant to global encoding (Zhang et al., 2015; Koch 
et al., 2020). Overall, our findings show that the similarity in neural 
responses between the encoding and retrieval phases in children pri
marily occurs in the left parietal-occipital region and varies with age. 
However, previous adult studies have found that similarities in neural 
responses between the encoding and retrieval phases occur in the right 
frontal regions (Feng et al., 2019). This variation in brain regions may 
involve the strategy used by children to facilitate image memory 
through semantics (Gupta et al., 2024). Furthermore, it has also been 
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demonstrated that encoding-retrieval neural pattern similarity varies 
with age (Chamberlain et al., 2022). Memory processes supported by the 
medial temporal lobe (MTL) do not mature in early childhood and only 
begin to approach adult-like levels in middle or late childhood (Benear 
et al., 2022). Kazemi et al. (2022) have also demonstrated that hippo
campal patterns in older children are similar to those in adults. 
Together, these findings indicate a gradual switch in neural similarity 
between the encoding and retrieval phases during development, how
ever, further validation is warranted.

In the present study, simple images were used as experimental ma
terials instead of complex natural scenes. While complex natural scenes 
offer high ecological validity, their strong stimulating effects tend to 
diminish individual differences in memory performance and neural 
representation (Sheng et al., 2023). To mitigate these effects, we opted 
to use simple stimuli to reveal the significant individual differences in 
memory capacity and neural activation patterns. However, this study 
has some limitations. While we confirmed that neural similarity changes 
with age, this change has limited ability to predict individual behavior, 
particularly memory accuracy. This limitation may be attributed to the 
use of a binary classification for measuring remembering and forgetting, 
which may fail to provide a comprehensive description of memory 
(Weilbächer et al., 2021). Additionally, the limited trial number and the 
ceiling effect due to the overly simple encoding task may have also 
prevented a complete exploration of memory. The limited forgotten 
items in the task also restricted further exploration of the neural 
mechanisms of forgetting. Future studies could benefit from employing 
more complex task paradigms and larger sample sizes.

5. Conclusions

In summary, our study delved into the relationship between memory 
representation patterns and development, offering new perspectives to 
improve our understanding of memory formation. We investigated the 
neural mechanisms underlying memory development and confirmed 
that the encoding and retrieval phases of memory have distinct neural 
patterns of development. These findings contribute to expanding the 
developmental model of memory and provide strong support for the 
generative and constructive nature of memory.
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