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Abstract
Background: High-throughput genotyping microarrays assess both total DNA copy number and allelic composition, 
which makes them a tool of choice for copy number studies in cancer, including total copy number and loss of 
heterozygosity (LOH) analyses. Even after state of the art preprocessing methods, allelic signal estimates from 
genotyping arrays still suffer from systematic effects that make them difficult to use effectively for such downstream 
analyses.

Results: We propose a method, TumorBoost, for normalizing allelic estimates of one tumor sample based on estimates 
from a single matched normal. The method applies to any paired tumor-normal estimates from any microarray-based 
technology, combined with any preprocessing method. We demonstrate that it increases the signal-to-noise ratio of 
allelic signals, making it significantly easier to detect allelic imbalances.

Conclusions: TumorBoost increases the power to detect somatic copy-number events (including copy-neutral LOH) in 
the tumor from allelic signals of Affymetrix or Illumina origin. We also conclude that high-precision allelic estimates can 
be obtained from a single pair of tumor-normal hybridizations, if TumorBoost is combined with single-array 
preprocessing methods such as (allele-specific) CRMA v2 for Affymetrix or BeadStudio's (proprietary) XY-normalization 
method for Illumina. A bounded-memory implementation is available in the open-source and cross-platform R 
package aroma.cn, which is part of the Aroma Project (http://www.aroma-project.org/).

Background
The development of microarray technologies to assess
DNA copy number (CN) changes was triggered by the
fact that genomic alterations are hallmarks of gene dereg-
ulation and genome instability in cancers [1,2]. Among
these technologies, genotyping microarrays [3-5] quan-
tify not only total copy numbers (TCNs) but also contri-
butions of each allele to TCN. Besides providing
additional evidence for changes in TCN, allelic signal
estimates can help pinpoint regions of allelic imbalance
(AI) that cannot be identified from TCN alone, such as
regions of copy-neutral loss of heterozygosity (LOH), or
regions that are hard to detect from TCN.

In this paper we present the TumorBoost method for
normalizing raw allelic signals of a tumor tissue given raw

allelic signals of a matched normal tissue or blood extract.
By "raw" we mean after preprocessing, but before detec-
tion of copy number events.

The result of applying TumorBoost is shown in Figure 1
for two chromosomes in the same individual from a pair
of matched tumor-normal samples. The top row displays
observed TCNs (C), that is, ratios of total (summarized)
signal intensities in the tumor relative to the normal. The
other three rows display allelic signals as allele B fractions
(β), that is, the proportion of total signal that comes from
allele B. This quantity has been used in cancer studies to
detect AI [5-7]. Both C and β are formally defined in Sec-
tion 'Observed summarized allele-specific signals'. The
second and third rows display raw values of β for the nor-
mal and the tumor, while the last row displays Tumor-
Boost-normalized values of β for the tumor. The copy
number changes observed in this figure will be inter-
preted in terms of normal, gained, deleted, and copy neu-
tral LOH regions in Section 'Notation and motivation'
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and in Section 'Change points and regions of interest'.
Already from a visual comparison it is clear that the sig-
nal-to-noise ratio (SNR) is greatly improved after nor-
malization, which makes it easier to identify and locate
CN events using existing detection methods [7-13].

The outline of this paper is as follows. In Section 'Meth-
ods', after providing the necessary notation, we describe
the TumorBoost method and its algorithm and imple-
mentation. We then describe the data sets used and pro-
pose methods to evaluate the performance of
TumorBoost. In Section 'Results' we formally demon-
strate that CN events are detected with a greater sensitiv-
ity and specificity when allele B fractions are normalized
using TumorBoost. At the end, in Section 'Discussion', we
mention a dual interpretation of our method, connect it
to related works, discuss possible extensions, and give
future research directions, before concluding the study in

Section 'Conclusions'. The acronyms used in the paper
are summarized in Section 'List of abbreviations'.

Methods
Notation and motivation
Parental and total copy numbers
We define the (true) parental copy number (PCN) as the
number of copies of each of the two parental chromo-
somes (without specifying the phase). Formally, we
denote the unphased PCN, or PCN for short, for sample i
� {1, ..., I} at locus j � {1, ..., J} by (Cij1, Cij2), with Cij1 ≤ Cij2.
Cij1 and Cij2 are called minor and major CNs, respectively.
The true TCN is then Cij1 + Cij2.

In a region with no chromosomal aberrations, the true
PCN is constant (the same for all loci). Consider a non-
contaminated homogeneous tumor. In a chromosomal
region that is diploid ("normal"), the true PCN is (1, 1); it

Figure 1 Genomic signals from genotyping microarrays in two chromosomal regions. Total (relative) copy numbers (a, e) and allele B fractions 
for the normal (b, f), the tumor (c, g) and the normalized tumor (d, h) for all SNPs on chromosome 2 (left) and chromosome 10 (right) in sample TCGA-
23-1027. Homozygous SNPs (SNPs genotyped as AA or BB) are in gray, and heterozygous SNPs (AB) in black. Data are from the Affymetrix platform.

(a) Total copy numbers

(b) Raw allele B fractions of the normal

(c) Raw allele B fractions of the tumor

(d) Normalized allele B fractions of the tumor

Chromosome 2 (in Mb)

(e) Total copy numbers

(f) Raw allele B fractions of the normal

(g) Raw allele B fractions of the tumor

(h) Normalized allele B fractions of the tumor

Chromosome 10 (in Mb)
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is (0, 1) for a hemizygous deletion, (0, 0) for a homozy-
gous deletion, (1, 2) for a single gain, and (0, 2) for a copy-
neutral LOH.

We wish to emphasize that this paper is not about esti-
mating the true PCN levels or proposing a new copy
number change point detection method, but about
improving preprocessing in order to enhance the power
to detect changes in underlying PCN states using existing
change point detection methodologies.
Observed summarized allele-specific signals
In practice we do not observe regions but individual
probes, and for these probes we cannot observe PCNs but
only total or allele-specific signals. Specifically, genotyp-
ing microarrays target a large number of single nucleotide
polymorphisms (SNPs), currently of the order of 106 for
the latest generation of the two most popular assays,
Affymetrix's oligo-nucleotide arrays and Illumina's bead
arrays.
Allele-specific SNP signals We assume that normaliza-
tion and preprocessing of probe-level data have already
been done using one of several existing methods [5,14-
19]. For hybridization i and SNP j, we then have summa-
rized allele-specific SNP intensity estimates (θijA, θijB).
Total intensities and allele B fractions A convenient
alternative representation of these signals is (θij, βij), with

where θij is referred to as the total (non-polymorphic)
SNP signal [16] and βij as the allele B fraction. The latter is
also known as the allele B frequency (AF or BAF) [5,7]
(which should not be mistaken for a frequency in a popu-
lation) and as the allele ratio (AR) [6]. A closely related
quantity is the relative allele score (RAS) [20]. In [9], the
authors defined the raw allele A proportion (RAP), which
is 1 - β. The above transform from (θijA, θijB) to (θij, βij) is
bijective, except for the rare case when θij = 0.

It is interesting to note that the total SNP signals {θij} in
Equation (1) are comparable to the signals obtained by
non-polymorphic markers, which exist on the recent
Affymetrix and Illumina arrays, and for which allele B
fractions are not defined.
Total and allele-specific copy numbers As Affymetrix
and Illumina are single-sample technologies and there
exist large locus-to-locus variation in total SNP signals, it
is not feasible to infer CNs from a single hybridization.
Therefore, the observed TCN Cij for sample i and SNP j is
calculated relative to the total SNP signal of a reference R,
as

where θRj is the total SNP signal in reference R, with the
true TCN assumed to be two for a diploid SNP.

Allele-specific copy numbers (ASCNs), (CijA, CijB), can
be calculated analogously:

while the observed TCN is Cij = CijA + CijB.
Paired tumor-normal designs
In this paper, we focus on the experimental design where
both a normal and a tumor sample are available for a
given individual. From the corresponding two hybridiza-
tions, we obtain the total copy number in the tumor rela-
tive to the normal (CTj), and allele B fractions for the
tumor (βTj) and the normal (βNj) as

In a region of no copy number alteration, the true TCN
is 2 and the true allele B fraction, denoted by μ, is either 0,
1/2 or 1, where 0 and 1 correspond to homozygous geno-
types AA and BB, and 1/2 corresponds to the heterozy-
gous genotype AB. This is why allele B fractions in a
normal sample (βN) are expected to have three bands, as
observed in the second row of Figure 1.

Because of copy-number changes, the true allele B frac-
tions (μT) of a tumor can take different values in [0, 1],
not only {0, 1/2, 1}. We next illustrate this point by giving
an interpretation of the chromosome 2 regions observed
in Figure 1. The region from 0 to 124 Mb on chromosome
2 is normal, that is, the true PCN is (1, 1) yielding that the
true TCN is 2 and true allele B fractions are in {0, 1/2, 1}.
The region from 124 Mb to 141 Mb has gained one or
more copies. Assuming a single-copy gain, so that the
true PCN is (1, 2), then the true TCN is 3 and there exist
four possible ASCN states corresponding to the two pos-
sible allocations of each parental allele: {AAA, AAB, ABB,
BBB}. The corresponding true allele B fractions are there-
fore {0, 1/3, 2/3, 1}. The region from 141 Mb to the end of
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chromosome 2 is a region of copy neutral LOH, where
the true PCN is (0, 2) yielding true TCN is 2 and true
allele B fractions in {0,1}.

Importantly, because of normal contamination, that is,
the presence of normal cells in what is called the "tumor
sample", we observe an unknown mixture of CN signals
from tumor and normal cells, which reveals itself both in
the observed TCNs and the observed allele B fractions.
As further described in Section 'Normal contamination
and its impacts', as well as in [5-7], this explains why we
observe four bands for βT instead of two in a region of
LOH. Among other things, normal contamination also
explains why the mean levels of the observed bands devi-
ate from the expected levels of a pure tumor. See also [21-
25] for discussions on normal contamination.
Distinction between genotypes and ASCNs In this
paper we will use the terms genotype, homozygous and
heterozygous only when referring to SNPs in a normal
sample. In a tumor sample, which may be contaminated
by normal cells or other types of tumor cells, the true
allele B fractions (μT) are not necessarily in {0, 1/2, 1}.
Because of this, we instead use the term true allele-spe-
cific copy number (ASCN) for tumors (and not the term
genotype).
A systematic genotype-specific SNP effect
From Figure 1, there is considerable variation along the
genome in both βT and βN, even for a normal sample
where the true allele B fractions are either 0, 1/2 or 1. Fig-
ure 2 provides another representation of this data, show-
ing scatter plots of raw allele B fractions in the tumor
against the normal sample. Each point corresponds to a
SNP, and each panel corresponds to a region with con-
stant CN level (no change points) in Figure 1. SNPs called

homozygous (  � {0, 1}) are in gray.
The fact that the observed values differ from the true

ones - 0, 1/2 or 1 in a region of no copy number alteration
in the tumor (left panels) - is an indication of a SNP effect
δ, which is not taken care of by preprocessing. We for-
mally define this SNP effect for SNP j in sample i as the
deviation

between the observed and true allele B fractions. The
fact that the observed values extend along the diagonal
provides evidence that this SNP effect is reproducible
between the normal and the tumor, that is, δTj and δNj are
positively correlated.

In a region of copy number alteration in the tumor
(middle and right panels), the true allele B fractions are
still 0 and 1 for homozygous SNPs, but they deviate from
1/2 for heterozygous SNPs, as explained above. For exam-

ple, in a region where one copy has been gained (top mid-
dle panel), a SNP which is AB in the normal will be AAB
or ABB in the tumor, so that the true allele B fractions are
either 1/3 or 2/3 for heterozygous SNPs in absence of
contamination by normal cells. This explains why we are
observing two clouds of heterozygous SNPs instead of
one. However, due to the presence of normal cells in the
tumor sample, the observed clouds of points are shrunk
toward 1/2, which is the true allele B fraction in the nor-
mal.

Normalization of allele B fractions
Figure 2 illustrates a strong, genotype-specific, positive
correlation between βT and βN. The essence of Tumor-
Boost normalization is to take advantage of the normal
sample, for which true allele B fractions (genotypes) are
not difficult to infer, in order to estimate SNP effects and
remove them from the tumor, without having to detect or
control for CN changes in the tumor.

For any given SNP j, we can estimate the SNP effect (5)
in the normal sample as

where  is the estimated normal genotype of SNP j,
that is, either 0, 1/2 or 1. Genotype calling is discussed in
Section 'Calling normal genotypes'. We define Tumor-
Boost-normalized allele B fractions in the tumor as

where  is an estimate of the SNP effect in the tumor
sample, depending on the (normal) genotype, as follows.

For homozygous SNPs (  � {0, 1}), the observed
allele B fractions extend along the diagonal βT = βN,
regardless of the underlying CN state. Therefore, a natu-

ral estimate of the SNP effect in the tumor is ,
which yields the following expression for normalized
allele B fractions:

For heterozygous SNPs (  = 1/2), estimating δTj as

 would lead to overcorrecting allele B fractions.
Indeed, the slopes of the regression lines for the heterozy-
gous clusters in Figure 2 are less than one in regions of
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copy number alteration, as illustrated by the comparison
with the gray diagonal lines. Therefore, we estimate the

SNP effect in the tumor as , where 0 ≤ ηj≤ 1
is a scale factor set to βTj/βNj if βTj ≤ βNj, and symmetri-
cally as (1 - βTj)/(1 - βNj) if βTj >βNj. As a result, we normal-
ize allele B fractions for heterozygous SNPs as

Note that normalizing the normal sample using these

equations, if done, would lead to , which means
that the SNP effect would be removed completely from
the normal. Note also that the TumorBoost method
(Equations (8) & (9)) is applied, not only to each tumor-
normal pair independently, but to each SNP indepen-
dently, which also explains the choice of ηj. In particular,

it does not require prior knowledge about CN change
points and CN regions.

Total CN signals are not normalized
By design, the proposed method does not adjust non-
polymorphic signals ({θij}) or total CNs ({Cij}), neither for
SNPs nor for non-polymorphic CN loci - it corrects only
for systematic effects in the tumor allele B fractions
({βTj}), which by definition exist only for SNPs. This
means that change point detection methods operating
solely on TCNs, will identify the same CN regions regard-
less of TumorBoost. Only methods utilizing also allele B
fractions that will gain from TumorBoost correction.

Calling normal genotypes
TumorBoost normalization relies on normal genotypes in
order to call a SNP homozygous or heterozygous. Several
methods [17,19,26-29] already exist that provide high-
quality genotype calls. These are multi-sample (popula-
tion-based) methods that leverage the accuracy of the
calls by using a large pool of reference samples and/or
prior parameter estimates. In case such calls are not avail-
able, but also in order to make our method applicable to a

d h d
∧ ∧

=Tj j Nj

�b

b

b
b b

b

b

Tj

Tj Nj
Tj

Nj

Tj

Nj

=

⋅ <

− ⋅
−
−

⎧

⎨

⎪
⎪

⎩

⎪
⎪

1
2

1
1
2

1

1

if 

otherwise

. (9)

�b mN N=
∧

Figure 2 Raw paired allele B fractions. Paired observed allele B fractions, (βN, βT), of tumor TCGA-23-1027 versus its matched normal in six regions 
of constant PCN for the tumor. Top panels: normal (left), gained (middle), and copy-neutral LOH (right) regions from chromosome 2. Bottom panels: 
normal (left), deleted (middle), and copy-neutral LOH (right) regions from chromosome 10. SNPs called homozygous (AA and BB) are in gray. Linear 
models were robustly fitted to the heterozygous SNPs above and below the diagonal (black lines). Black discs mark the center of each cloud.
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single tumor-normal pair, we introduce the following
"naive" genotyping algorithm. For each autosomal chro-
mosome in a given normal hybridization, we define geno-
type classes by thresholding βNj at the two local minima of
the empirical density of {βNj}. We estimate this density
using a Gaussian kernel estimator. Examples of such den-
sity distributions for diploid SNPs can be seen in the left
panels of Figure 3 (dashed curves). For sex chromosomes
that are not diploid, the number of genotype classes and
thresholds are adjusted accordingly. All SNPs are geno-
typed using the same thresholds.

A pipeline for a single tumor-normal pair
By using an allele-specific version of the single-array
CRMA v2 [18] preprocessing method for Affymetrix SNP
& CN arrays in combination with the TumorBoost
method and the above naive genotyping algorithm, the
complete pipeline is applicable to a single pair of tumor-
normal hybridizations. To emphasize this, note that the
Affymetrix-based signals in all figures of this paper are
based on two hybridization (CEL files) only, without uti-
lizing external references or prior parameter estimates.

Analogously to CRMA v2 for Affymetrix, the (proprie-
tary) "XY normalization" method available in the Bead-
Studio software [19] can be used to process individual
Illumina hybridizations.

Figure 3 Paired allele B fractions after TumorBoost normalization. Paired allele B fractions, (βN, ), and empirical densities of the raw (βT; 

dashed) and the normalized ( ; solid) allele B fractions for sample TCGA-23-1027. The same regions, SNPs and annotation as in Figure 2 are used.
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Being able to process a single tumor-normal pair at the
time, independently of others, has several implications:
(i) each tumor-normal pair can be analyzed immediately
without needing reference samples, (ii) lab and/or batch
effects are less of a concern as long as the tumor and nor-
mal samples are processed in the same batch, (iii) samples
from different individuals can be processed in parallel on
different hosts/processors making it possible to decrease
the processing time of large data sets, and (iv) contrary to
multi-sample methods, there is no need to reprocess the
samples from a given individual when new samples are
produced, which further saves time and computational
resources. Furthermore, (v) the decision to filter out poor
quality samples can be postponed, because such samples
will not affect the processing of other samples. More
importantly, a method applicable to a single tumor-nor-
mal pair is (vi) more practical for applied medical diag-
nostics, because each patient can be analyzed at once,
even when they come singly rather than in batches. This
may otherwise be a limiting factor in projects with a large
number of samples, or, conversely, in projects with a very
small number of samples.

Algorithm and implementation
The TumorBoost normalization method is available in
the aroma.cn package and CRMA v2 is part of the
aroma.affymetrix package [30], implemented in R [31]
running on any operating system. Both are open source
and available via the Aroma Project (http://www.aroma-
project.org/), where further documentation exists. The
method can be inserted as a normalization step in most
preprocessing pipelines, and both low-level and high-
level implementations are available. The algorithm is
designed to have bounded-memory usage, regardless of
the number of samples/arrays processed. Furthermore,
the complexity of the algorithm is O(J), i.e. linear in the
number of SNPs. The tumor-normal pairs can be normal-
ized in parallel on multiple hosts/processors. Both
TumorBoost and the naive genotyping method apply to
estimates obtained by any genotyping microarray tech-
nology.

Data sets
We used data from The Cancer Genome Atlas (TCGA)
project [32,33], a collaborative initiative to better under-
stand several types of cancers using existing large-scale
whole-genome technologies. From the Data Coordinat-
ing Center (http://tcga-data.nci.nih.gov/), we down-
loaded (May 2009) data for a set of ovarian (serous
cystadenocarcinoma, OV) and a set of brain (glioblas-
toma multiforme, GBM) tumor-normal pairs. For
Affymetrix GenomeWideSNP_6, we downloaded the raw
data (CEL files), and estimated (θA, θB) using an allele-
specific version of CRMA v2 [18], where the probe sum-

marization step is done for each allele separately instead
for the total signal. For this platform, we also downloaded
data summarized by the RMA/median-polish pipeline
(ismpolish.data.txt files) to illustrate the results of using
TumorBoost with other preprocessing methods (Addi-
tional Files 1 and 2). To assess the impact of naive geno-
typing on TumorBoost normalization, we downloaded
the Birdseed [17] genotype calls.

For Illumina, we downloaded the XY-normalized and
summarized data (XandYintensity.txt files) containing
(θA, θB) as calculated by the Illumina BeadStudio software
[19,34]. In addition, in order to compare the results from
using truly single-sample ASCN estimates with those
using optimized population-based estimates [5] (also
implemented in BeadStudio), we downloaded the allele B
frequency data (BAF.txt files) for the ovarian data set.

Evaluation methods
Change points and regions of interest
We have evaluated the TumorBoost method on a large
number of the downloaded samples as well as on other
data sets (not shown). However, for the purpose of illus-
trating our method, we will focus on chromosomes 2 and
10 of OV sample TCGA-23-1027 based on Affymetrix
GenomeWideSNP_6 data (Figure 1). Results based on
Illumina Human1M-Duo data and other preprocessing
methods are available in the Additional Files 3, 4, 5, 6, 7,
8.

For completeness, in order to illustrate the perfor-
mance of TumorBoost on a different tumor type and dif-
ferent platform, the results of an evaluation of
TumorBoost sample TCGA-02-0001 are given in Addi-
tional Files 9, 10, 11, 12. This is a GBM tumor which has
been assayed by Affymetrix GenomeWideSNP_6 and
Illumina HumanHap550.

The evaluation is done at four different allele B fraction
change points corresponding to four common PCN-state
transitions, and at one region with no change point (neg-
ative control) as summarized in Table 1. It is worth noting
that the general conclusions of this study will be the same
whether the true underlying PCN states are known or
not. However, in order to simplify the discussion we
choose to label the states and propose the following bio-
logical interpretation.

For chromosome 2, we believe that the tumor has (i)
gained a region from 124 Mb to the end of the chromo-
some, and (ii) lost the other parental chromosome from
141 Mb to the end of the chromosome. As a result, we
observe a region with two PCN change points: N/G
between the (1, 1) normal region and the (1, 2) gain, and
G/L between the (1, 2) gain and the (0, 2) copy-neutral
LOH region. For chromosome 10, a possible scenario is
that the tumor has (i) lost a region from 94 Mb to the end

http://www.aroma-project.org/
http://www.aroma-project.org/
http://tcga-data.nci.nih.gov/
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of the chromosome, and then (ii) gained the other paren-
tal chromosome from 110 Mb to 114 Mb. As a result, we
observe a chromosomal region with two PCN change
points: N/D between the (1, 1) normal region and the (0,
1) deletion, and D/L between the (0, 1) deletion and the
(0, 2) copy-neutral LOH region.
Detecting CN events from allelic signals
Mirrored allele B fractions Detecting PCN changes
using {βij} is not straightforward because its distribution
has up to four modes in a given ASCN region (Figure 1
and Figure 3). However, as the distribution of {βij} is
expected to be symmetric around the heterozygous band,
it is convenient to work with mirrored allele B fractions:
|βij - 1/2| as defined in [7]. Note that this quantity is also
related to the folded BAF in [24] and to the observed
major copy proportion (MCP) defined by [9]. The
TumorBoost-normalized version of this quantity is given

by | |.
Decrease in Heterozygosity Although TumorBoost cor-
rects allele B fractions for all SNPs, it is typically only
heterozygous SNPs that are used for downstream PCN
analyses, as they carry all the information regarding AI
[5,7,10,24]. We define the Decrease in Heterozygosity
(DH) in the tumor sample for a heterozygous SNP j as

DH is close to zero when there is balance between the
alleles and parental chromosomes (C1 = C2), and deviates
from zero when there is AI, e.g. DH is close to one in a
region of LOH if it is a pure tumor. The TumorBoost-nor-
malized version of DH is defined (for a heterozygous SNP
j) by

by Equation (9). Note that in this setup the essence of
TumorBoost lies in the difference |βTj - βNj| with a correc-
tion factor. In [5], the authors briefly mention (in the cap-
tion of Figure 7) that "the allele frequency difference
between normal and tumor genotypes is very distinct",
unfortunately without further discussion. Independently,
we have found that a normalization that leaves out this
correction factor also improves the power to detect PCN
change points with respect to raw DH, but is suboptimal
because it overcorrects allele B fractions for heterozygous
SNPs, as explained in Section 'Normalization of allele B
fractions' above. In a region of constant PCN, the distri-
bution of decrease-in-heterozygosity signals (DHs) has at
most two modes, and at most one if only heterozygous
SNPs are considered. The latter property makes it possi-
ble to use existing segmentation methods originally pro-
posed for total CN analysis [35-37] to detect PCN
changes [5,7,10,24].

Inspired by how these segmentation methods work, we
propose an evaluation framework that quantifies the
power to detect a PCN change point from {ρTj} and { }.
Analogously to [18,38], we assume that we know the loca-
tion of a PCN change point with high precision and that
there exist no other change points nearby. To protect our-
selves against errors in the location, we add a safety mar-
gin on each side such that the true location is within the
safety region with high confidence (see also Table 1). Fur-
thermore, we assume that the change point, together with
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Table 1: Change points and genomic regions studied. 

Label Chr. Region Change point Safety region PCN1 PCN2

N/G 2 108.0-140.0 124.0 1.00 normal (1,1) gain (1,2)

G/L 2 125.0-157.0 141.0 1.00 gain (1,2) copy-neutral LOH (0,2)

N/D 10 80.0-109.0 94.0 1.00 normal (1,1) deletion (0,1)

D/L 10 106.5-113.5 110.0 1.00 deletion (0,1) copy-neutral LOH (0,2)

N/N 2 55.0-75.0 60.0 1.00 normal (1,1) normal (1,1)

Each change point, covered by a 1.00 Mb safety region, separates two unique PCN regions (PCN1 and PCN2). The change points on the same 
chromosome share parts of the same PCN region. All lengths are in units of mega base pairs (Mb).
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the safety region, separates two flanking regions with
constant parental copy numbers PCN1 and PCN2. We
know that the true decrease in heterozygosity differs
between regions but not within regions. Differences
observed within a region are assumed to be due to ran-
dom errors. By comparing the DHs for heterozygous
SNPs in the two regions, we can assess if they differ and if
so, by how much.
Testing for equal mean levels The simplest way to test
whether {ρTj} for the two regions originates from the
same class of PCNs or not is to use Student's t-test to test
if the means of the heterozygous SNPs are equal. This is
also the most common test used by existing segmentation
methods. We calculate the t statistic for each change
point in Table 1, where a false change point (N/N) has
been added as a negative control. We also calculate the t
statistic based on the total CNs for the same heterozy-
gous SNPs as are used for the allele B fractions. Non-
polymorphic loci are not considered as they are not
affected by the TumorBoost method.

As the t statistic depends on sample size, and as differ-
ent regions have different sizes, the test statistics may not
be comparable across regions and methods. We therefore
sampled a fixed number of heterozygous SNPs for each
method and each region (J' = 250). Because the observed t
statistic depends on the sampled data points, we use
bootstrap techniques (resampling B = 100 times) to esti-
mate the mean and standard deviation of each test statis-
tic.
ROC curve analysis An alternative is to assess how well
the two regions on each side of the change point separate.
For each change point, heterozygous data points (exclud-
ing those in the safety region) are annotated as belonging
to either of the two CN states. In order to control for
sample-size effects, we balance the number of true posi-
tives and true negatives, by sampling so that both regions
have the same number of data points. In order to control
for the fact that different genotyping methods yield dif-
ferent numbers of SNPs called heterozygous, we also con-
strain the number of data points sampled to be the same
when comparing results involving different genotyping
methods. Next, we use receiver operating characteristic
(ROC) analysis to assess how well raw and normalized
DHs discriminate the two states studied. This evaluation
is done on full-resolution (H = 1) as well as smoothed sig-
nals, where DHs are averaged (non-robust) in non-over-
lapping bins of H = 2 and H = 4 data points per bin. We
will return to the smoothed CNs in Section 'Influence of
genotype calls on normalization' when discussing sensi-
tivity to genotyping errors. For each comparison, we
define the "positive" state as the state with TCN different
from two. A similar approach was used in [18,38] for
assessing total CN separation.

Robustness against genotyping errors
As genotypes are used for TumorBoost normalization,
the performance of our method depends on genotype
quality. To assess TumorBoost's sensitivity to errors in
genotype calls, we also use genotype calls from popula-
tion-based methods: Birdseed [17] for Affymetrix data,
and BeadStudio [19] for Illumina data. Like most avail-
able methods for detecting CN changes using DH, our
evaluation itself focuses on heterozygous SNPs, which
makes it depend on the genotyping algorithm. For consis-
tency, TumorBoost-normalized DHs are evaluated based
on the same genotyping method as was used for normal-
ization. The evaluation of raw DHs is done using the best
genotyping method. Genotyping errors are discussed fur-
ther in Section 'Influence of genotype calls on normaliza-
tion' and Section 'Influence of genotyping errors'.
Normal contamination and its impacts
As with many tumor samples, tumor TCGA-23-1027 is
also contaminated with normal (and possibly also other)
cells. As a result, we do not observe only two but four
homozygous allele B fraction bands in LOH regions (Fig-
ures 1 &2).

For simplicity, assume that the tumor sample contains
one type of tumor cells contaminated with normal cells so
that the proportion of tumor cells is κ ∈ [0, 1] ("tumor
purity") and the proportion of normal cells is 1 - κ ("nor-
mal contamination"). We also assume that the average
tumor ploidy is two (see Section 'Directions for future
research' for a discussion on this point). Then, in a tumor
region where the true PCN is given by (C1, C2), the true
decrease in heterozygosity for heterozygous SNPs [7] is

If we assume that the variance of DH is independent of
its mean level, then the power to detect a change point in
DHs, using a t statistic, is a linear function of the absolute
change in its true value,

which is a function of tumor purity (κ), parametrized by
the true PCNs (PCN1 and PCN2) of the two flanking
regions. In Figure 4, this difference is plotted as a func-
tion of tumor purity for each of the four change points in
Table 1. Interestingly, although it is in most cases easier to
detect a PCN event the more pure the tumor is, this is not
the case when the remaining parental chromosome in a
deleted region is duplicated (change point D/L). In that
case, the difference is greatest at κ = 0.59 (= 2 - ) and
decreases to zero toward κ = 1 and κ = 0. Note that Equa-
tions (12)-(13) hold provided that there are no additional
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biases in the allele B fractions. However, because of
incomplete offset correction [6,39], differences in plat-
forms [38], and differences in preprocessing methods, the
mean levels of the allele B fractions are almost certainly
biased, even after normalization. Thus, we only claim that
TumorBoost removes systematic effects across SNPs but
we do not claim to control for the mean levels. This is
why we use the term "normalization" rather than "calibra-
tion" [40]. However, as we will see later, although there
may still be a global bias in the allele B fractions, the rela-
tive ordering suggested by Equations (12)-(13) is still pre-
served. We also want to emphasize that this paper is
neither about estimating the true PCN levels nor about
estimating tumor purity. The main objective is to
improve the signal-to-noise ratios such that change
points are better detected.

Results
Improvements from applying TumorBoost
Figure 3 displays plots of βN versus TumorBoost-normal-
ized βT. From a direct comparison with the correspond-
ing raw estimates (Figure 2), it is clear that βT and βN are
much less correlated after normalization (when stratified
on genotype). This implies that most of the SNP effects
have been removed: the regression lines are close to hori-
zontal after normalization. This in turn results in greater
SNRs, because the modes of allele B fractions are sharper
and more distinct after TumorBoost normalization, as
seen from the density curves in Figure 3.

The improvement in SNR is also illustrated by the com-
parison between allele B fractions before and after nor-
malization along chromosomes 2 and 10 in Figure 1
(bottom two rows). However, we note in this Figure that
TumorBoost does introduce a few outliers in regions of
decreased heterozygosity in the tumor: after 140 Mb in
chromosome 2 and after 95 Mb in chromosome 10.
These outliers are due to genotyping errors. They are dis-
cussed in detail in Section 'Influence of genotype calls on
normalization', where we show that they are of second
order when compared to the gain achieved by Tumor-
Boost, and in Section 'Influence of genotype calls on nor-
malization', where we demonstrate how they can be
avoided by existing downstream change-point detection
methods.

Because the SNR increases for each PCN region, it is
possible to argue that the SNR for the difference between
DHs in regions flanking a change point also increases
making it easier to detect this change point. Figure 5 and
Figure 6, in which DHs before and after normalization are
plotted for each change point investigated, confirm that
this is the case, at least for the change points N/G, G/L
and N/D. To quantify this, we applied a t-test for each
change point with the null hypothesis that the mean DH
levels are equal in the two flanking regions, as described
in Section 'Detecting CN events from allelic signals'. The
t statistics in Table 2 demonstrate that TumorBoost nor-
malization greatly improves the power to detect PCN
events using DHs. The test statistics are larger after nor-
malization than before, both when naive and Birdseed
genotype calls are used. We also find that the changes are
within the error limits for the negative control. These
conclusions also hold for data from the Affymetrix plat-
form summarized using the RMA/median-polish pipe-
line, and for data from the Illumina Human1M-Duo
platform (Additional Files 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12:
Supplemental Table S2).

These findings are further confirmed by the ROC anal-
yses of the four change points at the full and the
smoothed resolutions, as summarized by the ROC curves
in Figure 5 and Figure 6. Specific points raised by these
results are addressed in the following sections.

Influence of genotype calls on normalization
In general, the influence of the genotyping method is of
second order: the results obtained when using naive
genotyping are almost as good as when using more elabo-
rate (population-based) genotype calls. This result holds
regardless of the normalization and summarization
method (see Additional Files 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12). For Affymetrix data preprocessed using CRMA v2,
this can be seen by comparing the corresponding ROC
curves in Figure 5 and Figure 6 and by comparing the
rows of Table 2. However, we note that for the G/L

Figure 4 Differences in (true) decrease in heterozygosity. Differ-
ences in (true) decrease in heterozygosity (for heterozygous SNPs) be-
tween different pairs of flanking PCN regions as a function of tumor 
purity (κ).
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change point, normalization based on the former does
worse than not normalizing if the false-positive (FP) rate
of an average SNP is required to be small enough, i.e. here
FP rate � [0, 0.05]. The reason for this is that there exists a
set of false positives ("outliers") that are due to genotyping
errors - truly homozygous SNPs are incorrectly identified
as heterozygous by the naive genotyping method. These
outliers can be spotted in the non-normalized DH track
in Figure 5.

However, as these false positives are individual SNP
scattered along the genome, we argue that this is not a
serious problem for downstream copy number change
point detection methods (in particular segmentation
methods), because their objectives are not to call individ-
ual SNPs, but to infer segments of several consecutive
SNPs with the same PCN. Furthermore, segmentation
methods usually require more than one data point in
order to calculate the test statistic. When allowing for
two or more data points per CN region, the false-positive
rate goes down substantially while remaining a signifi-
cantly improved true-positive rates. This is confirmed by
the ROC analysis of (H = 2, 4) smoothed signals (Figure 5
and Figure 6), and the t statistics (Table 2).

In Section 'Influence of genotyping errors' we discuss
further options for decreasing the number of genotyping
errors, and suggest how segmentation methods can be
made more robust against them.

Power to detect PCN change points
The above comparison of the results obtained using nor-
malized DHs across change points implies an ordering in
the power to detect these change points, which can be
seen from ranking either the test statistics in Table 2 or
the ROC curves in Figure 5 and Figure 6. These results
suggest that it is much easier to detect a change point
between a gain and copy-neutral LOH region (G/L) or
between a loss and a normal region (N/D), than it is to
detect a change point between a gain and a normal region
(N/G). The hardest change point to detect is the one
between a deletion and a copy-neutral LOH region (D/L).
Note that this is consistent with the differences in true
DHs (Equations (12)-(13)), which are depicted in Figure
4. We expect to have little power to detect a D/L change
point using DH.

From this it also follows that, although the power to
detect either of the two change points of a gain, or a loss,

Figure 5 ROC evaluation (Chr 2). (a) Left panels: The region 108.0-140.0 Mb on Chr 2 in tumor-normal sample TCGA-23-1027 has a change point 
at approximately 124.0 Mb, which separates a normal diploid state from a gain. 1,171 loci in each of these two states are used for the evaluation. All 
79 loci in the safety region have been excluded. (b) Right panels: The region 125.0-157.0 Mb on Chr 2 in tumor-normal sample TCGA-23-1027 has a 
change point at approximately 141.0 Mb, which separates a normal diploid state from a gain. 986 loci in each of these two states are used for the 

evaluation. All 64 loci in the safety region have been excluded. The top three rows show the total CNs (C), and the raw (ρ) and normalized ( ) 

heterozygous DHs, respectively. A 1000 kb safety region (dashed gray frame) around the change point is excluded from the evaluation. The full reso-
lution data points are colored black and the binned (H = 4) ones are colored blue. The three panels in the bottom row show the ROC performance of 
the TCNs (dotted green) and the raw (dashed black) and normalized (solid red and dot-dashed blue for naive and population-based genotypes, re-
spectively) DHs at the full resolution (H = 1; no binning), and after binning in non-overlapping windows of size H = 2 and H = 4 SNPs, respectively.

(a) N/G: normal (1,1) / gain (1,2) (b) G/L: gain (1,2) / copy-neutral LOH (0,2)
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surrounded by a copy-neutral region is the same for total
CNs, this is not the case for DHs. A consequence of this is
that, even with a detection method that takes advantage
of both TCN and DH, we are more likely to detect certain
types of change points before others, and the precision in
locating them will also differ.

Note that the evaluation presented is not designed to
compare the power of TCN and DH to detect PCN
change points, as we are comparing the average detection
power of heterozygous SNPs only. In order to perform
such a comparison, we would also need to take into
account homozygous SNPs and non-polymorphic loci for
TCNs, and compare ROC curves at a resolution defined
by bin widths and not bin counts.

Other platforms and preprocessing methods
The aforementioned results are all based on Affymetrix
GenomewideSNP_6 data that was preprocessed by the
CRMA v2 method. In order to show that the results hold
for other preprocessing methods and microarray geno-
typing platforms, we applied TumorBoost to the same
Affymetrix data set after RMA/median-polish prepro-
cessing (by Birdseed), as well as to the Illumina data sets
preprocessed using BeadStudio. In all cases the conclu-
sion is that TumorBoost improves the SNRs and the
power to detect change points, and that the relative
power of different types of change points is consistent
with the ones expected by theory. It is interesting to
notice that the allele B fractions obtained by the RMA/

Figure 6 ROC evaluation (Chr 10). (a) Left panels: The region 80.0-109.0 Mb on Chr 10 in tumor-normal sample TCGA-23-1027 has a change point 
at approximately 94.0 Mb, which separates a normal diploid state from a deletion. 1,276 loci in each of these two states are used for the evaluation. 
All 53 loci in the safety region have been excluded. (b) Right panels: The region 106.5-113.5 Mb on Chr 10 in tumor-normal sample TCGA-23-1027 
has a change point at approximately 110.0 Mb, which separates a copy-neutral LOH region from a deletion. 254 loci in each of these two states are 
used for the evaluation. All 59 loci in the safety region have been excluded. The outline is the same as in Figure 5.

(a) N/D: normal (1,1) / deletion (0,1) (b) D/L: deletion (0,1) / copy-neutral LOH (0,2)

Table 2: Mean and standard deviation of the (absolute) Student's t statistics to test the null hypothesis of equal means in 
two flanking PCN regions based on heterozygous SNPs only.

Heterozygous SNPs only

Signals Genotypes N/G G/L N/D D/L N/N

Raw DH (ρT) Birdseed 7.17 ± 1.13 27.79 ± 1.93 24.22 ± 1.35 8.88 ± 1.04 0.78 ± 0.64

Normalized DH ( ) Birdseed 21.00 ± 1.45 39.42 ± 2.54 40.22 ± 2.36 11.04 ± 1.13 0.74 ± 0.59

Normalized DH ( ) naive 18.61 ± 1.39 33.38 ± 2.31 35.40 ± 2.07 9.40 ± 1.01 1.06 ± 0.68

TCN (CT) Birdseed 16.43 ± 1.05 18.55 ± 1.26 25.69 ± 1.32 20.57 ± 1.23 2.19 ± 0.99

Greater mean values correspond to greater power to detect a change point. Raw (top line) and TumorBoost-normalized (second and third 
line) DHs, and TCNs (bottom line).
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median-polish method are attenuated, and that Tumor-
Boost also corrects for this. As discussed further in Sec-
tion 'Discussion', this compression is due to incomplete
offset and crosstalk correction. For the Illumina data set,
we only report the results obtained with naive genotype
calls. We did not perform a comparison with the results
obtained with BeadStudio genotype calls as a substantial
proportion of SNPs (4%) were not called by BeadStudio,
making the results of the comparison depend on the
(unknown) reason why these SNPs were not called by
BeadStudio. However we note that naive genotype calls
already perform near perfectly for this data set.

Discussion
Influence of genotyping errors
Above we have noted that although our normalization
method leads to an improved signal ratio at the chromo-
some or at the genome scale, SNPs that have been incor-
rectly called heterozygous will still appear as outliers after
TumorBoost normalization. We have argued that this is
not a major problem for downstream analysis methods.
In this section we show how genotyping errors by our
naive genotyping algorithm can be avoided, and suggest
ways to make segmentation methods robust against
them.

By construction of our naive genotype calling algo-
rithm, genotyping errors correspond to SNPs for which
the allele B fraction is close to the estimated minimum of
the density. Therefore, some of these errors can be
avoided by making more conservative heterozygous calls
in the first place. Our results show that if we remove the
10% SNPs with lowest confidence scores for each method
compared, the power per SNP obtained by TumorBoost
using naive genotype calls increases and becomes compa-
rable to that achieved by more elaborated population-
based genotyping algorithms (ROC curves in Additional
Files 2, 4, 6, 8, 10, 12).

Importantly, we observe a gain after taking confidence
scores into account for TumorBoost-normalized data
with naive genotype calls even after adjusting for the loss
in resolution due to the discarding of 10% of the data
points. This can be seen from the comparison between t
statistics across choices of genotype confidence-score
thresholds, where we adjusted the number of heterozy-
gous SNPs accordingly. For example, when restricting to
the 90% best genotype calls, we used J' × 90% = 225 points
(Additional Files 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12: Supple-
mental Table S2).

Furthermore, a two-dimensional genotyping algorithm
that takes advantage of the fact that the genotype clusters
are better separated in the (βN, βT) space (Figure 2) is
likely to perform better than a naïve genotyping algo-
rithm that is based on βN alone.

Finally, we note that it is possible to make existing seg-
mentation methods more robust against genotyping
errors when genotype confidence scores are available,
such as scores from the above naive genotyping algo-
rithm, scores provided by existing genotyping algorithms,
or generic scores [41]. Confidence scores can be used to
give greater weights to SNPs with better genotype calls.
Recently the authors of Circular Binary Segmentation
(CBS) added support for such weights to their method
[37]. On top of this, one can utilize an iterative re-
weighted approach where the outliers found from one
iteration of segmentation are down-weighted in the fol-
lowing iteration until convergence.

Interpretation in terms of allelic crosstalk
From Equations (1), (8) & (9) one can show that Tumor-
Boost can also be written as

where

and

being a scale factor controlling for the total copy num-
ber and protecting against overcorrection (dual to ηj).
From Equations (14)-(15) one see that for an AA SNP, any
extra signal observed in allele B of the normal is (partly)
subtracted from the allele B, and added back to allele A,
of the tumor. A BB SNP is corrected analogously. For a
SNP that is AB, the correction is toward the diagonal
along the line θB = θ - θA such that if it would be applied to
the normal, the normalized signals would be (θ/2, θ/2).
This is an interpretation of as well as a dual motivation
for TumorBoost - there exists a SNP-specific crosstalk
between the two alleles such that one or both alleles "pull"
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signal from the others, while their total signal is pre-
served (a necessary identifiability constraint in the paired
setup). The effect of TumorBoost on the ASCNs, calcu-
lated as in Equation (3), can be seen in Figure 7. In a
region of diploid ASCNs, there exist a large SNP-to-SNP
variation within each genotype group, a variation which
is decreased after normalization. Similarly, for aberrant
regions, the ASCN clusters are more distinct after nor-
malization.

Population-based estimation of SNP effects
The main idea behind the TumorBoost method is that
there exist SNP-specific effects that to a large extent are
shared by the tumor and normal samples, and that it is
easy to estimate them from the normal. In the case when
there exist no matched normal, or when one wishes to
correct the normal itself, this approach will not work. It
has been previously reported that {(θijA, θijB)}i, {(θij, βij)}i,
or variants of these, cluster into distinct genotype groups
across samples [5,17,27,29,42,43], which suggests that the
SNP effects are shared across samples. This is one of the
rationales behind TumorBoost. A population-based gen-
eralization of TumorBoost is then to estimate how the
observed ASCNs is as a function fj of the true ASCNs,
and then use the inverse of this function to backtrans-

form a new sample, i.e. . One
possibility is to use an affine function for each fj and esti-
mate it from a large population of normal samples for

which the true ASCNs can be called (0, 2), (1, 1) or (2, 0).
Major challenges are how to choose and constrain fj, and
how to deal with batch and lab effects, small sample sizes,
as well as rarely-observed genotype groups. In this con-
text, TumorBoost can be thought of as estimating a highly
constrained linear function fj defined in a neighborhood
of the genotype center as given by the normal sample, see
Equations (14)-(16). This function cannot be used to cor-
rect for data at other genotypes, which is why Tumor-
Boost applies only to paired tumor-normal samples.

Continuing, to the best of our knowledge, Illumina's
proprietary method [5], which normalizes TCNs and
allele B fractions by regressing on normal training data
for each SNP separately, is the only method that does this
and is readily implemented and widely tested and used.
Note that TumorBoost still improves upon these esti-
mates (Additional Files 7-8), which can be because
TumorBoost can also correct for systematic effects spe-
cific to, but not shared across, individuals and/or batches.

In addition to Illumina's method, variants of the above
ideas have been proposed by others, such as the allele-
specific mixture CN model [43] and the Birdsuite method
[17]. Unfortunately, these were either only proposed in
theory, specific to one technology or to older chip types,
used only for calling discrete ASCNs in copy-number
polymorphic regions, or perform suboptimal corrections.
We are aware of a few related methods under develop-
ment that try to close this gap. We look forward to these
when they become available.

( , ) ( , )� �C C C CijA ijB j ijA ijB=
∧ −
f

1

Figure 7 Influence of TumorBoost normalization on allele-specific copy numbers. Allele-specific CNs, (CTA, CTB), of tumor TCGA-23-1027 before 
(top panels) and after (bottom panels) TumorBoost normalization in a normal region (column 1), in a copy-neutral LOH region (column 2), in a gain 
(column 3), and in a deletion (column 4). These are some of the regions in Figure 2 using the same SNPs and annotations.
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Directions for future research
Simultaneous segmentation of TCN and DH
The results presented in this paper suggest that both
TCN and DH may carry information regarding the loca-
tion of a PCN change point. Therefore, analyzing these
two quantities separately is sub-optimal. This motivated
the development of Hidden Markov Model (HMM)-
based methods that make use of both pieces information
simultaneously, such as PICNIC [11], GenoCN [12] and
PSCN [13].

To the best of our knowledge, such joint analyses of
TCN and DH cannot be done with current segmentation
methods, although multi-dimensional segmentation
methods for total copy number data have been developed
in different contexts: multi-platform segmentation [44],
and joint segmentation from multiple biological samples
[45-47]. We advocate the development of joint TCN and
DH segmentation methods that would close this gap.
Calling PCN states
A natural step downstream of the detection of PCN
changes is the calling of PCN states. Besides the true copy
numbers in the tumor, two biological parameters influ-
ence the observed copy number intensity levels: normal
contamination, as explained in Section 'Normal contami-
nation and its impacts', and tumor ploidy. As the total
mass of DNA - not the total number of cells - is fixed by
the assay, tumor ploidy in fact acts as an unknown scale
factor on observed copy number intensities [6,11].

Even in situations when tumor ploidy is assumed to be
known or can be estimated, calling PCN states when κ is
unknown and estimating κ when PCN states are
unknown are difficult problems. In order to disentangle
these two problems, a natural idea is to take advantage of
the fact that although PCN states differ across PCN
regions, κ is the same across regions for a given sample.

However, we note that Equation (12) makes the strong
assumption that the tumor is homogeneous, that is, the
"tumor sample" is a mixture of normal tissue and one
tumor tissue. Another complication is that DHs after nor-
malization need to be calibrated; the mean DH value in a
given PCN region might be a biased estimator of the true
PCN, also after TumorBoost normalization.

Furthermore, as noted in Section 'Power to detect PCN
change points', with joint segmentation of TCN and DH,
there is a greater risk that one of the change points flank-
ing a constant PCN region is more likely to be detected
than the other. This complicates the calling and inference
of the underlying PCN states. On the other hand, under-
standing how this bias works can help locate such
expected but "missing" change points.

We are looking forward to further scientific contribu-
tions to these problems.

Call for the use of matched normals
Finally, we wish to emphasize the great value of including
matched normals in tumor studies. To start, with paired
tumor-normal data there are great opportunities for qual-
ity control, e.g. validating sample annotations and iden-
tify poor or failed hybridizations. More importantly, it is
basically only with a matched normal it is possible to tell
if an event is somatic or in the germline. Moreover, as
reported by others and explained here, matched normals
are useful for identifying homozygous SNPs, which when
excluded greatly helps identifying regions of AI in the
tumor. Not to mention that with a matched normal it is
easier to infer the amount of normal contamination. In
addition to these, we have in this study shown that with
matched normals it is possible to obtain tumor CNs with
significantly higher SNRs, which further helps us identify
chromosomal events. For these reasons, we strongly sug-
gest that it becomes standard to collect normal DNA
(blood or tissue) along with the tumor.

Conclusions
TumorBoost increases the power to detect somatic copy-
number events (including copy-neutral LOH) in the
tumor from allelic signals of Affymetrix, Illumina and
alike origins. Because each SNP is normalized separately,
TumorBoost does not require prior knowledge about
copy number change points or copy number regions, and
its complexity is linear in the number of SNPs.

Importantly, high-precision allelic estimates can be
obtained from a single pair of tumor-normal hybridiza-
tions, if TumorBoost is combined with single-array pre-
processing methods such as (allele-specific) CRMA v2 for
Affymetrix or BeadStudio's (proprietary) XY-normaliza-
tion method for Illumina. Based on these results, we rec-
ommend the use of matched normal samples in cancer
DNA copy number studies.

List of abbreviations
AI: allelic imbalance; ASCN: allele-specific copy number;
CN: copy number; DH: decrease in heterozygosity; LOH:
loss of heterozygosity; PCN: parental copy number; ROC:
receiver operating characteristic; SNP: single nucleotide
polymorphism; SNR: signal-to-noise ratio; TCGA: The
Cancer Genome Atlas; TCN: total copy number.
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