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Radiomics is a challenging development area in imaging field that is

greatly capturing interest of radiologists and neuroscientists. However,

radiomics features show a strong non-biological variability determined by

different facilities and imaging protocols, limiting the reproducibility and

generalizability of analysis frameworks. Our study aimed to investigate the

usefulness of harmonization to reduce site-effects on radiomics features over

specific brain regions. We selected T1-weighted magnetic resonance imaging

(MRI) by using the MRI dataset Parkinson’s Progression Markers Initiative

(PPMI) from different sites with healthy controls (HC) and Parkinson’s disease

(PD) patients. First, the investigation of radiomics measure discrepancies

were assessed on healthy brain regions-of-interest (ROIs) via a classification

pipeline based on LASSO feature selection and support vector machine

(SVM) model. Then, a ComBat-based harmonization approach was applied

to correct site-effects. Finally, a validation step on PD subjects evaluated

diagnostic accuracy before and after harmonization of radiomics data.

Results on healthy subjects demonstrated a dependence from site-effects

that could be corrected with ComBat harmonization. LASSO regressor after

harmonization was unable to select any feature to distinguish controls by

site. Moreover, harmonized radiomics features achieved an area under the

receiving operating characteristic curve (AUC) of 0.77 (compared to AUC

of 0.71 for raw radiomics measures) in distinguish Parkinson’s patients from
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HC. We found a not-negligible site-effect studying radiomics of HC pre-

and post-harmonization of features. Our validation study on PD patients

demonstrated a significant influence of non-biological noise source in

diagnostic performances. Finally, harmonization of multicenter radiomic data

represent a necessary step to make analysis pipelines reliable and replicable

for multisite neuroimaging studies.

KEYWORDS

radiomics analysis, ComBat, multi-site harmonization, structural MRI, Parkinson’s
disease

Introduction

Radiomics is a challenging development area in imaging
field that is greatly capturing interest of radiologists and
neuroscientists (Kumar et al., 2012; Gillies et al., 2016;
Salvatore et al., 2019; Guiot et al., 2022). Allowing quantitative
radiographic phenotyping over several types of magnetic
resonance imaging (MRI) acquisition, radiomic analysis has
been proposed as a primary task to improve knowledge about
diagnosis, prognosis and predictions of pharmaceutical
response in oncology and neurodegenerative diseases
(Mayerhoefer et al., 2020). Moreover, thanks to its capability
to extract engineered measures from specific regions of
interest (ROIs), radiomics has shown to be a useful approach
for characterizing and classifying patients with pathological
conditions (Gillies et al., 2016; Feng and Ding, 2020). Indeed,
many oncological applications have demonstrated the radiomics
ability to capture intra-tumoral heterogeneity in a non-invasive
way. Concerning neurodegenerative diseases, instead, recent
studies on Alzheimer’s (AD) and Parkinson’s diseases (PD) have
highlighted the potentiality of radiomics to detect abnormalities
beyond standard morphological imaging markers. In particular,
radiomics approach had achieved interesting results in
distinguishing patients with PD from controls (Cao et al., 2020;
Liu et al., 2020) and from atypical parkinsonian syndromes
(Tupe-Waghmare et al., 2021). Moreover, associations between
radiomics measures and clinical variables have been described
in both cross-sectional and longitudinal studies (Feng et al.,
2018; Salmanpour et al., 2022).

Despite the outstanding results, radiomics features have
showed a strong dependence from different research facilities
or different acquisition protocols, limiting the reproducibility
and generalizability of the proposed frameworks especially for
application on multi-site dataset (Nieuwenhuis et al., 2017).
Recent studies have addressed this issue using an intensity
normalization step before the feature extraction (Nyul et al.,
2000; Shinohara et al., 2014; Reinhold et al., 2018; Dewey et al.,
2019). However, the elimination of non-biological variability
caused by site-effects represents a not-trivial problem that

makes sometimes the normalization approach ineffective for
application on multi-scanner datasets (Eshaghzadeh Torbati
et al., 2021; Li et al., 2021). Therefore, latest applications in the
field of oncology have proposed an additional step of feature
harmonization based on ComBat method (Crombé et al., 2020;
Da-Ano et al., 2020; Li et al., 2021; Mali et al., 2021), originally
implemented as batch-effect correction method for microarray
expression data (Johnson et al., 2007). This approach has
been also applied to classical morphometric properties such as
cortical thickness, cortical surface area and subcortical volumes
in brain MRI removing scan effect and increasing the power
and statistical significance of the results (Fortin et al., 2018;
Pomponio et al., 2020; Radua et al., 2020; Eshaghzadeh Torbati
et al., 2021).

In the current study, we investigated the effectiveness of
normalization and harmonization approaches to reduce site-
effects on radiomics features from healthy brain ROIs. At first,
we extracted radiomics features on T1-weighted MRI images of
healthy subjects collected from different acquisition sites in the
context of the Parkinson’s ProgressionMarkers Initiative (PPMI),
sponsored by the Michael J. Fox Foundation, evaluating the
sensitivity to site-related effects. In a second step, normalization
and harmonization models defined on healthy subjects were
applied on patients with PD to evaluate the classification
performance pre- and post- site-effect correction.

Materials and methods

Participants

Data used in the preparation of this study were obtained
from the PPMI database.1 For up-to-date information on the
study, visit ppmi-info.org. The T1-weighted MR images selected
for this study were acquired using a 1.5–3 Tesla scanner

1 www.ppmi-info.org/access-data-specimens/download-data
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from different manufactures (Philips, GE, Siemens). Acquisition
protocols from each site are reported in Supplementary Table 1.

Magnetic resonance imaging
pre-processing

Structural MR images were segmented using the recon-
all script included in Freesurfer v6.0.2 After removal of non-
brain tissue and bias of each structural brain image, we used
the non-uniform intensity corrected image (nu.mgz) in the
Freesurfer space to compute radiomics features. An additional
step of intensity normalization was performed using the Z-Score
method by centering each pre-processed T1w volume at the
mean with standard deviation. To identify and characterize the
site effect on radiomic features, we extracted the ROIs using the
Desikan–Killiany atlas cortical parcelation from the individual
subcortical segmentation image (aparc + aseg.mgz) (Desikan
et al., 2006). Then, we thresholded each brain parcelation using
FSL (Smith et al., 2004) tools to extract the binary masks for the
next radiomics analysis.

Radiomics features extraction and
harmonization

Data used for our analysis was collected from three ROIs,
namely Caudate, Putamen and Thalamus, for both hemispheres,
as a set of subcortical brain regions pertinent to PD (Shimohama
et al., 2003; Halliday, 2009). For each ROI, we defined a set of 88
radiomic features, including 18 first-order features to describe
voxel intensity distribution within image mask, and 70 second-
level textural measures to highlight spatial distribution of voxels
through four different matrices: 24 features from Gray Level Co-
occurrence Matrices (GLCM), 16 from Gray Level Run Length
Matrices (GLRLM), 14 measures from Gray Level Dependence
Matrices (GLDM) and 16 features from Gray Level Size
Zone Matrices (GLSZM) (detailed information about extracted
features are reported in Supplementary Table 2; Zwanenburg
et al., 2020). The extraction procedure was implemented using
Pyradiomics, an open-source Python package (Van Griethuysen
et al., 2017).

The multicenter harmonization was performed using
ComBat algorithm (Johnson et al., 2007) for location (mean)
and scale (variance) adjustments of data due to the site
differences between subjects. Particularly, this approach
assume that the batch effects can be modeled out by
standardizing means and variances across batches. We
applied the generalized additive model (GAM) of ComBat, also
called NeuroHarmonize, that considered sex and non-linear

2 https://surfer.nmr.mgh.harvard.edu/

age effects as covariates in the input data (Pomponio et al.,
2020). More in details, this method combines the ComBat
harmonization pipeline (Fortin et al., 2017, 2018), with the
GAM (Hastie and Tibshirani, 1986). The former aims to remove
unwanted sources of variability due to site differences, while
preserving the variability due to other biological significant
covariates; the latter introduces a penalized non-linear term
to better take into account the age effects and capture also
non-linearities in age-related differences in radiomic feature. In
contrast to a general linear model approach that includes site
as a fixed effect covariate, the GAM of ComBat considers only
age and sex as covariates to control for during harmonization.
This approach assumes that for a given site, the effects
across features derive from a common distribution, and
thus borrows information across features to shrink estimates
toward a common mean. In addition to removing additive
site effects, ComBat also corrects multiplicative site effects
by removing heteroscedasticity of model errors across site.
In our framework, NeuroHarmonize was implemented using
Empirical Bayes framework, which is useful for harmonizing
multiple features, such as brain regional measures. The
estimation of the site hyperparameters (γ as an additive batch
effect affecting the measurement, δ as a multiplicative batch
effect) of the prior distribution for site-effect correction was
conducted considering only healthy controls (HC). Of note,
to ensure unbiased results, the harmonization parameters
was calculated over control subjects in the training set of each
cross-validation fold and then applied on the remaining subjects
in train and test folds to correct the site-effect. The Python
implementation of harmonization framework was found at
https://github.com/rpomponio/neuroHarmonize (Pomponio
et al., 2020).

Radiomics modeling

To characterize site effects on radiomics features, a “site
vs. site” classification model was built in Leave-One-Out
cross validation (LOOCV) considering only HC. To this end,
classification performances were first evaluated using raw data.
Next, we evaluated the impact of image normalization and
ComBat harmonization on the classification performances. For
each classification model, at each inner loop of LOOCV, we
firstly reduced the burden of high dimensionality of radiomics
set of features using least absolute shrinkage and selection
operator (LASSO) (Tibshirani, 1996; Friedman et al., 2010).
Therefore, the optimal penalty parameter of LASSO was
defined via minimization of “Binomial Deviance” and features
with non-zero regression coefficients were retained. Then, for
classification purpose, we trained a radial basis Support Vector
Machines (SVM) model (Cortes and Vapnik, 1995; Chang and
Lin, 2011) for each binary site-classifier on previously selected
radiomics features.
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As second step of our framework, we implemented the same
pipeline for PD detection. This procedure was implemented in
a ten-times repeated 10-fold cross validation setting. At each of
100 bootstraps, nine folds was used to define a LASSO regression
model to select optimal radiomics features. The selected features
were saved in a vector to further analysis (Lombardi et al., 2020).
These features were also used to train a radial basis SVM. At
each iteration, we tested the predictive power of the model by
using the excluded fold. The whole pipeline is illustrated in
Figure 1.

Statistical analysis

Demographic and clinical information of the dataset were
provided with descriptive statistics (mean ± SD). Group
differences in age, sex, MoCA (Montreal Cognitive Assessment),
UPDRS-III (Unified Parkinson’s Disease Rating Scale) scales
and H&Y (Hoehn and Yahr) stage were investigated through
Chi-square test, one-way analysis of variance (ANOVA) and
Kruskal–Wallis ANOVA followed by post-hoc comparisons. For
all analyses, the corrected significance threshold was set at
p < 0.05 after Bonferroni’s correction for multiple comparisons.
Statistical analysis was performed by using R software (Version
3.6.3: R Foundation for Statistical Computing, Vienna, Austria).

The Area Under the receiving operating characteristic
Curves (AUCs) were used as evaluation metric for our “site vs.
site” models. Classification performances for HC vs. PD models

were evaluated by accuracy, sensitivity and specificity, mediated
over the 100 bootstraps of classification. Finally, the diagnostic
capabilities of the radiomics signatures were evaluated with
Receiver Operating Characteristic (ROC) curve analysis.

To assess the stability of radiomics features selected by
LASSO regression over HC vs. PD model, we used a frequency-
based criterion. For each round of the bootstraps, we stored as
relevant features only those corresponding to non-zero weights
assigned by LASSO. Subsequently, we selected as most stable
radiomics features those that occurred in at least 95◦ percentile
of the frequency vector.

Results

Demographic and clinical data

We selected MR images from seven sites of the PPMI
database according with the number of enrolled HC. Table 1
reports all demographic and clinical details for each clinical
site included in our study. No statistical difference was found
between HC from clinical sites in age, sex, H&Y score and
MoCA scales.

For each site, we also selected a set of age- and sex-
matched PD. Data is reported in Table 2. As expected, we found
significant differences in H&Y score, UPDRS-III and MoCA
scales (p-values < 0.001) between HC and PD patients.

FIGURE 1

Processing pipeline.
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TABLE 1 Demographic and clinical details of healthy controls for each site.

Site 12 Site 19 Site 20 Site 21 Site 22 Site 27 Site 52 P-value

n 10 12 12 11 11 10 11

Age [mean (SD)] 58.56 (13.68) 52.73 (13.81) 58.08 (10.37) 60.47 (8.75) 63.16 (11.86) 58.98 (7.63) 64.25 (6.55) –

Female (%) 5 (50.0) 4 (33.3) 6 (50.0) 4 (36.4) 2 (18.2) 2 (20.0) 7 (63.6) –

Hoehn and Yahr stage = 0 (%) 10 (100.0) 12 (100.0) 12 (100.0) 11 (100.0) 11 (100.0) 10 (100.0) 11 (100.0) –

MoCA [mean (SD)] 28.30 (0.82) 28.92 (1.16) 28.25 (0.97) 27.82 (0.87) 28.55 (1.13) 28.60 (1.17) 27.82 (0.98) –

Characterization and correction of the
“Site Effects” on healthy controls

As first step, we studied the variability of radiomics
features from healthy ROIs in different acquisition sites.
Figure 2 presents, respectively, bivariate scatter plots of
the first two principal components (dim) from a principal
component analysis (PCA) (Figure 2A) and a histogram-based
representation on one textural feature (i.e., GLCM-Correlation)
(Figure 2B) for no pre-processed/normalized/harmonized
approaches. As expected, a large proportion of the variation
by site was corrected by harmonization of data. In Figure 3,
we also report AUCs results from each binary comparison
across HC from different sites. Classification performance of
raw radiomics features (Figure 3, left panel) showed optimal
discriminative power for all comparisons, except for Site 19
vs. Site 52. Similar results were obtained using radiomics
features calculated from normalized MRI (Figure 3, right panel).
To evaluate pairwise differences between the models, we also
performed a Wilcoxon signed rank test obtaining a p-value of
0.035.

After harmonization of radiomics features, LASSO
regressions were unable to select any features for
prediction of the outcomes. Indeed, LOOCV plots for
each pairwise site comparison resulted in a penalty
factor that shrinked all regression coefficients to zero (see
Supplementary Figure 1).

TABLE 2 Demographic and clinical details of patients with
Parkinson’s disease and healthy controls.

PD HC P-value

N 78 78

Age [mean (SD)] 58.85 (9.68) 59.37 (10.93) –

Female (%) 28 (36.4) 30 (39.0) –

Hoehn and Yahr stage (%) –

0 0 (0.0) 77 (100.0)

1 41 (53.2) 0 (0.0)

2 36 (46.8) 0 (0.0)

UPDRS-III [mean (SD)] 20.01 (9.06) 1.10 (1.95) <0.001

MoCA [mean (SD)] 27.16 (2.42) 28.32 (1.06) <0.001

Parkinson’s disease classification

As second step of our analysis, we evaluated goodness
of classification of PD from HC in our three different
radiomics approaches, namely without any pre-processing
prior to radiomics features calculation, with normalization of
image before radiomics computations and with harmonization
from site-effect of radiomics features. We report results
of each model in Table 3. Figure 4 also shows the
corresponding ROCs for trained SVM. Respect to raw and
normalized radiomics implementations, harmonization of
features determined an increased classification power of the
radiomics model.

As shown in Figure 5, we found five features over 95th
percentile as most stable, with a predominance of radiomics
measures in the right thalamus, involving energy features as
measure of the magnitude of voxel values in an image, and “Gray
Level Non-Uniformity Normalized” measure, quantifying the
variability of gray-level intensity values in the image. Moreover,
we found features in putamen, bilaterally, as most frequent
predictors.

Discussion

This study demonstrated the sensitivity of radiomic
features to site-effects in multicenter neuroimaging study.
We firstly investigated the problem of data variability due
to non-biological effects on healthy brain regions. Then,
implementing a ComBat-based harmonization procedure of
radiomics features, we modelized site-related noise source
reducing differences across healthy subjects. Lastly, as validation
task, we evaluated the effectiveness of our harmonization
approach for classification of PD patients.

The small sample size made necessary some methodological
choices. First of all, it was mandatory to use a feature selection
method to avoid a course of dimensionality problem due to the
imbalance between the number of radiomic features and the
sample size (Koutroumbas and Theodoridis, 2008; Zollanvari
et al., 2020). On the other hand, a feature selection method
such as LASSO was preferred over other feature reduction
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FIGURE 2

(A) Plots of the first 2 principal components (dim) from principal component analysis (PCA), colored by site; (B) histograms of example radiomic
feature for raw, normalized, and harmonized processing.

FIGURE 3

Area under the receiving operating characteristic curves (AUCs) for “site vs. site” classification on healthy controls. Left panel reports
performances for not pre-processed radiomics features; right panel reports results using radiomics features from normalized MRI.

TABLE 3 Performances of PD classification model from different pre-processed radiomics features.

Accuracy
(mean + st .dev)

Sensitivity
(mean + st. dev)

Specificity
(mean + st.dev)

AUC
(mean + st.dev)

No pre-processing 0.700 + 0.120 0.730 + 0.140 0.669 + 0.182 0.709 + 0.247

Normalization 0.713 + 0.078 0.811 + 0.115 0.662 + 0.134 0.715 + 0.212

NeuroHarmonize 0.710 + 0.122 0.754 + 0.173 0.685 + 0.161 0.766 + 0.110
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FIGURE 4

Receiver operating characteristic (ROC) curves for three different radiomics features processing.

FIGURE 5

Frequency of radiomics features for PD vs. HC classification. Red line defines 95th percentile beyond which we choose the most stable
measures.

methods (PCA, LDA, etc.) in order to achieve a more explainable
model (Lombardi et al., 2021). Indeed, the cross-validated
optimization of penalty factor for LASSO feature selection
allowed to define the most important predictors over the
radiomics features, also guaranteeing the interpretability of
the model in the clinical/radiological field (Lombardi et al.,
2022). Overall, the implementation of a leave-one-out cross-
validation procedure for site-vs.-site classification (compared
to k-fold cross-validation as a bias-variance tradeoff) was used
to guarantee approximately unbiased results over our small
sample size. Concerning site-effects on radiomic features, PCA
and histogram-based representation of radiomics measures
highlighted the need of correcting for site effects before
performing further analyses. Indeed, this allowed to distinguish

HC from each site with high accuracy. Similar results were
observed for normalized images. By contrast, after application
of NeuroHarmonize algorithm, no subset of features could
be identified to differentiate HCs each other. On note, only
comparison between subjects of Site 19 and Site 52 reported an
AUC close to random choice without using the harmonization
approach, probably due to common scanner and protocol
parameters used in MRI acquisition.

These findings demonstrated an effective dependency of
radiomics features from scanner and acquisition protocol that
could not be eliminated with normalization of image intensity
but only using a ComBat-based algorithm. Our results were in
line with previous findings in radiomics, over both oncology and
neuroimaging, that have demonstrated a better standardization
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capabilities of ComBat-based models compared with different
intensity normalization techniques, such as normalization (Z-
Score), WhiteStripe and Ravel (Nyul et al., 2000; Shinohara et al.,
2014; Reinhold et al., 2018; Dewey et al., 2019; Eshaghzadeh
Torbati et al., 2021; Li et al., 2021).

As further result, harmonization pipeline applied to
PD patients allowed to improve prediction performance
with respect to raw data, suggesting that site noise factor
might affect classification performance in multicenter
study using radiomic features. Moreover, classification
performance obtained in the current study using thalamus,
caudate and putamen overcame results reported in previous
radiomics studies using similar region-based approach for
PD classification (Liu et al., 2020; Tupe-Waghmare et al.,
2021). Specifically, Tupe-Waghmare et al. (2021) achieved
0.72 of AUC highlighting the T1 radiomics of substantia
nigra as most predictive features. On the other hand, Liu
et al. (2020) studied radiomics of putamen and caudate
separately on T2w MRI with a 0.77 of AUC of caudate model.
Our study further confirmed the impact of right thalamus,
besides the involvement of more classical neostriatal regions
(caudate + putamen) (Sikiö et al., 2015), in PD pathophysiology,
highlighting at the same time its usefulness as diagnostic marker
for PD.

Our work has some limitations. Firstly, the limited
sample size for each site could produce unstable LASSO
regression results, as well as a possible overfitting in
SVM training, that we have tried to overcome with a
bootstrapped 10-fold CV. Overall, cohorts of subjects from
other international neuroimaging studies can be added to
solve these issues guarantying greater generalizability of the
results. Second, we applied only one type of normalization
and harmonization techniques limiting other possible
comparisons and further optimizations of performances.
Future works can consider more complex intensity
normalization methods, such as RAVEL or WhiteStripe,
and recently developed alternative versions of ComBat with
improved flexibility (M-ComBat) and robustness (B-ComBat)
(Da-Ano et al., 2020).

The harmonization of MRI data represents a crucial
problem in several medical imaging applications due to
non-biological effects determined by different acquisition
sites, scanners and multiparametric sequences. Our
study aimed to assess the variability of radiomics
features extracted on T1w MR images collected in a
multicentric context. We found a not-negligible site-effect
comparing radiomics features of HC pre- and post-
harmonization pipeline. Moreover, our study demonstrated
a significant influence of scan noise in distinguishing
controls from PD patients. Overall, harmonization of

radiomic features represents a necessary requirement
for reliable and replicable analysis frameworks in
multicenter study.
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