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Normal tissue at risk of neoplastic transformation is characterized by somatic mutations, copy-number variation
and DNAmethylation changes. It is unclear however, which type of alterationmay bemore informative of cancer
risk.We analyzed genome-wide DNAmethylation and copy-number calls from the sameDNA assay in a cohort of
healthy breast samples and age-matched normal samples collected adjacent to breast cancer. Using statistical
methods to adjust for cell type heterogeneity, we show that DNA methylation changes can discriminate
normal-adjacent from normal samples better than somatic copy-number variants. We validate this important
finding in an independent dataset. These results suggest that DNA methylation alterations in the normal cell of
origin may offer better cancer risk prediction and early detection markers than copy-number changes.
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1. Introduction

Throughout life, normal cells acquire somatic alterations in the ge-
nome and epigenome, both of which are thought to contribute to the
onset of neoplasia and cancer [1–11]. Mapping genetic and epigenetic
changes in normal tissue at risk of neoplastic transformation is therefore
critically important for understanding oncogenesis, identifying early
causal drivers and for cancer risk prediction [12]. Although a number
of studies have been able to link somatic mutations and copy-number-
variants (CNVs) in whole blood to the future risk of hematological and
solid cancers [2,4–6,13,14], analogous results for somatic alterations in
the epithelial cell of origin of solid cancers have remained elusive. In-
deed, identifying somaticmutations in normal tissue is technically chal-
lenging [12,15,16], with only a couple of studies having been able to
associate epithelial cancer risk to somatic mutations in normal (epithe-
lial) tissue [17,18]. In contrast, DNAmethylation (DNAm) changes have
been correlated to cancer risk in blood [7,19–21], are frequently ob-
served in preneoplastic epithelial tissue [22–27], and in the context of
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cervical smears have allowed prospective risk prediction of a high-
grade intraepithelial neoplasia independently of HPV status [25].

Two recent studies formally compared somatic mutations/CNVs to
DNAm changes in their ability to predict prospective risk of gastric
and esophageal cancer [17,18]. One study showed that DNAm changes
may be a better risk predictor than somatic mutations, specially for gas-
tric cancer [18], whilst the other study showed that both CNVs and
DNAm changes were better than somatic mutations at predicting pro-
gression of intestinal metaplasia to gastric cancer [17]. Thus, both stud-
ies underscore the importance of DNAm changes in carcinogenesis and
suggest that epigenetic alterationsmay be a bettermolecular cancer risk
predictor than genetic changes. However, despite these two studies, the
relative importance of genetic and epigenetic alterations for cancer risk
prediction remains unclear.

Here we decided to shed further light on this outstanding question.
Although comparing different types of molecular alteration as predic-
tors of cancer risk is technically challenging due to the requirement of
measuring all relevant molecular profiles in the relevant tissue and in
a relatively large number of individuals, several studies have shown
the feasibility of using Illumina Methylation 450 k/EPIC beadarrays to
obtain high-confidence CNV calls [28–30], thus allowing at least for an
objective comparison between CNV and DNAm. Here we conduct such
a comparison in the context of an epithelial cancer using a cohort of
50 normal healthy breast samples, 42 age-matched normal samples col-
lected adjacent to breast cancer, and a total of 305 invasive breast
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ebiom.2018.04.025&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.ebiom.2018.04.025
a.teschendorff@ucl.ac.uk
https://doi.org/10.1016/j.ebiom.2018.04.025
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.sciencedirect.com/science/journal/23523964
www.ebiomedicine.com


244 Y. Gao et al. / EBioMedicine 31 (2018) 243–252
cancers (of which 42 were matched to the normal-adjacent ones), all
profiledwith Illumina 450k beadarrays [24]. Since cell type heterogene-
ity represents a major source of DNAm variation in a complex tissue
such as breast, we use recent state-of-the art statistical techniques to
rigorously adjust for this major confounder. Using these techniques, as
well as an independent validation, we demonstrate that DNAm changes
in normal cells are more predictive of breast cancer status than their
CNV counterparts.

2. Materials and Methods

2.1. Breast Cancer DNA Methylation Datasets

We analyzed 2 different normal breast and breast cancer tissue
datasets, both profiled with the same Illumina Infinium 450 k DNAm
technology. The Erlangen set was generated and analyzed by us previ-
ously [24], consisting of 50 normal healthy breast samples, 42 age-
matched normal-adjacent breast cancer pairs (84 samples in total),
and an additional 263 unmatched breast cancers. The clinical character-
istics and normalization of the DNAm dataset was described previously
[24]. The second “validation” dataset generated Illumina 450 k profiles
for 18 normal healthy (from breast reduction surgery) breast samples,
as well as 70 normal samples found adjacent to breast cancer [31].
Clinical characteristics and normalization of the Infinium data was
described by us previously [24,31].

2.2. Construction and Validation of a Reference DNA Methylation Database
for Breast Tissue

We aimed to build a reference DNAm database for breast tissue that
would allow us to estimate fractions of epithelial, adipocyte and
immune-cells from the DNAm profile of a sample, using the EpiDISH al-
gorithm [32]. To construct the reference database, we used 450 k data
representing human mammary epithelial cells (HMECs) from Lowe
et al. [33], adipocytes from Nazor et al. [34] and all 7 major immune cell
types (neutrophils, eosinophils, monocytes, CD4+ and CD8+ T-cells, B-
cells and NK-cells) from Reinius et al. [35]. These 450 k profiles were
used in conjunctionwith an empirical Bayes framework [36] to select dif-
ferentially methylated CpGs (DMCs) between all 9 cell types, demanding
FDR b 0.05 and at least 50% difference in average DNAm between cell
types. Cell type specific DMCs were filtered further by demanding that
they map to a DNase Hypersensitive Site (DHS), as determined by the
NIHEpigenomics Roadmap (if such cell type specificDHSdatawere avail-
able), following a procedure we used previously [32]. This resulted in a
reference matrix of 349 DMCs and 9 nine cell types. For an independent
sample, cell type fractions for the 9 cell types can be estimated using
EpiDISH (using the implementation with Robust Partial Correlations).

We performed three separate validations/tests to ensure that the
reference DNAm profiles are representative of epithelial, fat and
immune-cells. First, we collected Illumina 450 k data representing
these same cell types from independent studies: HMECs from ENCODE
[37], adipocytes and blood samples from Slieker et al. and [38]. We con-
structed 100 in-silico random mixtures of these 3 cell types and com-
pared estimated to true cell-fractions. Second, we applied the
reference DNAm profile database and EpiDISH to purified monocytes,
T-cells and B-cells from 50 monozygotic twin pairs [39], as this should
correctly predict zero fractions for epithelial and adipocytes and near
100% for blood cell types. Third, we applied the reference DNAm profile
database and EpiDISH to WGBS data of two IHEC samples enriched for
breast epithelial cells [40], as this should predict higher cell-fractions
for the epithelial component.

2.3. Identification of DNAm Field Defects

The procedure used to identify epigenetic field defects in normal-
adjacent breast tissue was described by us previously [24]. Briefly, we
used our iEVORA algorithm to identify differentially variable (DV) and
differentially methylated CpGs (DVMCs) between the 50 normal
healthy and 42 normal-adjacent samples. The iEVORA algorithm de-
mands genome-wide significance (after correction for multiple testing)
at the level of differential variance only, thus defining differentially var-
iable CpGs (DVCs), but subsequently re-ranks DVCs by a t-statistic, in
order to favor DVCs where the differential variance is driven by as
many outliers as possible. This re-ranking heuristic achieves a good
compromise between sensitivity and the type-1 error rate, as demon-
strated by us previously [41]. DVMCs were selected using a FDR thresh-
old of 0.001 for differential variability (P-values estimated using
Bartlett's DV test, whichwe stress can also be interpreted as a normality
deviation test) and a P-value threshold of 0.05 for the t-statistics. Subse-
quently, we restrict to hypervariable DVMCs, i.e. the subset exhibiting
increased variance in the normal-adjacent samples, as the underlying
hypothesis is that samples exhibiting deviations from the normal-
state represent those at higher risk of carcinogenic transformation.

An appealing feature of using differential variability statistics to
identify DNAm alterations in normal-adjacent samples compared to
healthy normals is that the resulting hyperV DVMCs are less likely to
be driven by changes in cell type composition compared to randomly
selected set of CpGs. To see this, we note that the use of the differential
variability statistic favors CpGs (hyperV DVMCs) that show ultra-stable
DNAm profiles across the normal healthy samples (i.e. very small vari-
ance), with outliers driving increased variance in the normal-adjacent
specimens. The ultra-high stability of DNAm across the normal healthy
samplesmeans that these CpGs are notmarkers of underlying cell types
(in breast these are mainly epithelial cells, adipocytes and immune
cells), since variations in the adipose, epithelial and immune cell frac-
tions dominate the top components of variation across normal samples
[24]. To prove the result formally, we used our EpiDISH algorithm [32]
and our reference DNAm database for breast tissue to estimate epithe-
lial, adipose and immune-cell fractions in all 50 normal samples from
healthy women, demonstrating that the top PC in a PCA correlated
with these fractions. We then derived CpGs correlating significantly
with the estimated epithelial and adipose fractions, thus defining “cell
type” DMCs (ctDMCs). We then compared how the previously selected
hyperV DVMCs ranked among the list of ctDMCs (i.e those CpGs corre-
lating most strongly with cell type composition) to demonstrate that
hyperV DVMCs are ranked significantly lower than a randomly selected
set of 10,000 non-DVMCs.We also compared the ranking of the hyperV
DVMCs to all non-DVMCs, which did not alter the conclusions.

2.4. CNV Calling Procedure

We used the following procedure to derive copy number alterations
for both the Erlangen and validation Illumina 450 k sets. First, idat files
were loaded, background-corrected and normalized using functions im-
plemented in theminfi package [42]. The returnedMethylSet objectwas
then used as input to the conumee package [43], to infer CNV states.
Briefly, conumee performs the inference in 3-steps: (i) background
corrected intensity values of the “methylated” and “unmethylated”
channels are added, and the log2-ratio of probe intensities of the
query sample (this includes any sample, be it normal, normal-adjacent
or cancer) to the average over all normal healthy samples is calculated,
(ii) themedian log2-ratio of probeswithin predefined genomic bins de-
fines the bin-intensity value, and the bin intensity values are then
shifted to minimize the median absolute deviation of all bin intensities
from zero to determine the copy-number neutral state, (iii) segmenta-
tion is performed using the circular binary segmentation (CBS) algo-
rithm implemented in the DNAcopy package [44]. For calling CN gain
or loss, we used sample-specific thresholds instead of the widely used
cutoffs (±0.1), in order to reduce the bias caused by cell type heteroge-
neity. The sample-specific threshold for CN gain/loss is determined au-
tomatically by analyzing the distribution of all shifted bin intensity
values. For normal-adjacent samples, the median of the log2 ratio



245Y. Gao et al. / EBioMedicine 31 (2018) 243–252
+ 2σ or +6σ was computed for the 90% of central bins (ordered by
their log ratios) to call gains and amplifications, respectively. The me-
dian of the log2 ratio − 2.5σ or −7σ was used to call losses and dele-
tions, respectively. For cancer samples, the median of the log2 ratio
+ 2σ or + 6σ was computed for the 50% of the central bins (ordered
by their log ratios) to call gains and amplifications, respectively. The
median of the log2 ratio− 2.5σ or−7σwas used to call losses and de-
letions, respectively. All these thresholds for calling gains, losses, ampli-
fications and deletions, have been extensively validated [45]. Thus,
using these thresholds, the copy number state of each segment falls
into five categories: deletion, loss, neutral, gain, amplification. To assign
copy number states to genes we mapped segments to genes and
assigned states according to the procedure used and validated by the
METABRIC consortium [45].

The procedure described above to obtain CNV calls uses sample-
specific thresholds, which directly accounts for the proportion of non-
neoplastic cells in the sample [45]. In the case of normal breast tissue ad-
jacent to breast cancer, non-neoplastic cells will include stromal cells
like adipocytes and immune-cells, and the sample-specific threshold
should therefore also automatically adjust for variations in the adipose
and immune-cell content. To check this, we used the previously esti-
mated epithelial, adipocyte and immune cell fractions (fromEpiDISH al-
gorithm) in the normal-adjacent samples, and also computed for each
sample, a genomic instability index (GII), measured as the fraction of
the genome that is altered [46]. Finally, we observed that the GII and
the epithelial purity index from EpiDISH algorithmwere not correlated,
indicating that our CNV calls have adjusted reasonably well for varia-
tions in epithelial cell purity.

In order to assess how the results depend on the segmentation algo-
rithmused,we also called CN-states using the cnAnalysis450kR-package
with standard default parameter settings [47].

2.5. Differential Copy-Number Alteration Analysis

Differential CN analysis between normal-healthy and normal-
adjacent tissue was performed using a statistical test for differences in
binomial proportions, as given by the prop.test function of R. To correct
for multiple testing we used a sample-relabeling strategy whereby for
each of 100 distinct permutations of phenotype labels we counted the
number of genes with P-values as significant ormore than the observed
ones. These numbers were averaged over the 100 permutations and
compared to the observed number of genes passing the same signifi-
cance P-values.

2.6. Identification of CNV Field Defects

Since the differential CN analysis between normal-healthy and
normal-adjacent tissue did not result in genome-wide significance, we
adopted a feature selection heuristic that mimics the feature selection
step in the iEVORA algorithm. Specifically, we identified genes that ex-
hibited no CN-change across the 50 normal healthy samples (thus
being ultra-stable and of zero variance), but which exhibited at least 1
CN alteration across the 42 normal adjacent samples. We verified that
there significantly more genes exhibiting this type of pattern, than
genes exhibiting the reverse pattern with no CN-change across the 42
normal-adjacent samples and with at least 1 CN alteration across the
50 normal healthy ones. This is the feature selection procedure we im-
plemented when constructing and evaluating risk predictors from the
CN-state data.

2.7. Computation of Cancer Risk Scores and Prediction Using AUC Analysis

2.7.1. Internal Cross-Validation
We used a five-fold cross validation strategy and an adaptive-index

algorithm [48] to obtain cancer-risk prediction estimates in the Er-
langen set. Briefly, the 50 normal (N) and 42 normal-adjacent (NADJ)
samples were split into 5 bags, with 4 bags containing 10 Ns and 8
NADJs and one final bag containing 10 Ns and 10 NADJs. At each fold,
4 bags were used for training and feature selection, with 1 bag left as
blind test set and for model selection. In the case of DNAm, at each
fold we applied iEVORA with FDR(Bartlett-test) b 0.001 and P(t-test)
b 0.05 thresholds to a training set consisting of the 4-bags, selecting hy-
pervariable DVMCs (hyperV DVMCs). With these hyperV DVMCs we
then estimated a “risk-score” in the leave-one-out (LOO) bag. The
risk-score for each sample in the LOO bag was obtained as the fraction
of DVMCs exhibiting a significant deviation in DNAm in that sample
compared to the normal samples, i.e.

Rs ¼ 1
n

Xn

c∈DVMC

I βcs : μ;σf gð Þ

where I is an indicator functionwith a value 1 if the corresponding beta-
value βcs is unlikely to have been derived from a normal with mean μ
and standard deviation σ, as estimated across the normal (N) samples,
and where the summation is over the DVMCs selected in the training
set of 4-bags. The significance of the deviation was determined by com-
puting the z-score of the DNAm value in the sample relative to a Gauss-
ian approximating the distribution of DNAm values in the normal
samples. Thus, the risk score depends on two parameters: (i) the spe-
cific top-number of DVMCs used to average the score over, and (ii) the
significance threshold itself. We allowed these two parameters to
vary, defining a grid, for each point in the grid obtaining a risk score.
In the case of the significance threshold (pvth), we considered the fol-
lowing values: 1e-5, 5e-5, 1e-4, 5e-4, 0.001, 0.005, 0.01. In the case of
the number of top-ranked DVMCs to consider (ntop), we allowed
ntop to vary in units of 50 CpGs, starting from 50 and ending at the
smallest possible value across the 5 partitions (recall that for each
fold,we obtain a different set andnumber of significantDVMCs). Finally,
for each pvth and ntop value, we combine the risk-scores for each LOO-
bag over the 5 CV folds, thus allowing us to derive an unbiasedmeasure
of discrimination accuracy in blinded samples, and to determine which
model (parameter choices) generalizes best. As a measure of discrimi-
nation accuracy we used the Area Under the Receiver Operator Charac-
teristic Curve (AUC). This identified ntop= 469 and pvth= 0.001 as an
optimal parameter combination.

In the case of CNV, the risk-score for each sample in the LOO bagwas
obtained as the fraction of selected genes with CN aberrations. The
genes were selected based on their frequency of CN alteration (gain/
loss) across all normal-adjacent samples of a training set (4 bags) and
requiring no CN-change across the normal-healthy ones. Thus, the risk
score depends on one parameter, which is the frequency-threshold of
CN alteration, i.e. the minimum number of samples exhibiting a CN al-
teration. For each fold, we varied the frequency from 1 to 10 to select
different numbers of genes and generating corresponding risk-scores
for the LOO bag. Finally, for each frequency value, we combined the
risk-scores for each LOO-bag over the 5 CV folds to subsequently derive
an AUC. This identified the optimal parameter to be 4.

2.7.2. External Validation
In order to validate our risk prediction model we used the model

with ntop = 469 and pvth = 0.001 with the 469 top-ranked hyperV
DVMCs selected from the full training set. Equivalently, one can com-
bine the 5 derived classifiers using an ensemble classifier approach,
which leads to near identical results. To obtain risk scores in the external
validation set [29], we applied the above model to these external sam-
ples, deriving the AUC plus 95% confidence interval. In the case of
CNV, we applied the risk prediction model with genes exhibiting at
least 4 CN gains or losses in the training (Erlangen) set.

2.7.3. Some Notes
(a)When estimating the risk score as the fraction of hyperV DVMCs

exhibiting a significant deviation from the normal state, there could be
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ties between samples, specially if deviations are infrequent events. To
resolve these matches we used the average of the −log10[P-values] to
favor samples with higher significance levels. Specifically, for samples
with a tied risk-score, R, we computed these averages, rescaling these
average values to be between 0 and 1-ε (ε a very small number e.g.
1e-6), denoting these values by λ. For these samples we then define
new risk scores using the formula: R' = (Ru – R) λ + R, where Ru is
the closest risk-value to R satisfying Ru N R. For λ = 0, R' = R, and for
λ=1- ε, R' = Ru – ε(Ru - R) b Ru, as required. ([60b]) When estimating
the risk score in the LOO bags or in the external validation sets, we com-
pute deviations relative to the normal samples from the LOO bags or ex-
ternal validation set. Thus, our classifiers are not single-sample
classifiers, and our procedure merely validates selected features. This
is justified since the aim of our study is a comparison of the validity
and generalizability of the features (in relation to cancer risk) selected
from DNAm with those derived from CNV data. ([60c]) In the case of
copy-number, we performed the same risk prediction analysis de-
scribed above, but for 4 separate procedures designed to test the robust-
ness of the conclusions to the process of segmentation and CNV-calling.
In one case, we performed the analysis described above but for genomic
bins (instead of genes), as defined by the conumee package. In the sec-
ond case, we performed the same analysis but at the level of individual
probes (ie using the log2 of the intensity (I) ratio probe values (I=U
+ M)). In the third case, we used the segmentation algorithm from
the cnAnalysis450k R-package [47] to obtain CN-state calls. In the fourth
case, we used again probe-level data but this time not calling CN-states,
but running an Elastic Net logistic regression classifier [49] on the log2 I
ratio values (I=U + M).

2.8. Further Details on the Elastic Net Classifier Implementation

Weused a nested cross-validation strategy to obtain cancer-risk pre-
diction estimates in the Erlangen dataset based on CN log2(I) ratios.
Briefly, the 10 normal (N) and 42 normal-adjacent (NADJ) samples
were split into 5 bags, with 4 bags containing 10 Ns and 8 NADJs and
one final bag containing 10 Ns and 10 NADJs. We used the elastic net
model implemented in glmnet R-package for feature selection and risk
score estimation [49]. At each fold, 4 bags were used for training to de-
termine which model (parameter choices) generalizes best, with 1 bag
left as blind set. The parameter tuning process is based on the nested
cross-validation using the cv.glmnet function in glmnet R package,
with a line search of alpha starting from 0.1 to 0.9 with 0.05 increase
each time. The risk-score for each sample in the LOO bag was obtained
using the best model trained in the 4 bags. We found the 5 best models
use the alpha 0.45, 0.4, 0.8, 0.65, 0.7 separately as the optimal parameter
choice. We combined the risk-scores for each LOO-bag over the 5 CV
folds, thus allowing us to derive an unbiased measure of discrimination
accuracy in blinded samples. When estimating the risk score in the ex-
ternal validation set, we used the average of coefficient vectors for all
5 models in the training dataset.

2.9. Data Availability

All data analyzed in this manuscript is already publicly available
from GEO (www.ncbi.nlm.nih.gov/geo/) under accession numbers
GSE69914 and GSE67919, or from the TCGA data portal (https://gdc.
cancer.gov).

3. Results

3.1. DNA Methylation Outliers in Normal-Adjacent Samples Mark Changes
in Epithelial Cells

Previously, we used Illumina Infinium 450 k DNAm beadarrays to
profile the methylation state of approximately 480,000 CpGs in normal
breast tissue from healthy women (n=50), in the normal breast tissue
adjacent to breast cancer (n = 42) and in a total of 305 invasive breast
cancers [24]. As shown by us, the normal adjacent samples could not be
discriminated from the normal healthy ones using a feature selection
paradigm based on differential methylation, as none of the top-ranked
differentially methylated CpGs (DMCs) passed genome-wide signifi-
cance levels [24]. However, using an entirely different feature selection
paradigm based on differential DNAm variance, we identifiedmany dif-
ferentially variable and methylated CpGs (DVMCs) between the two
normal tissue types [24]. Importantly, we demonstrated that most
DVMCs exhibited increased DNAm variance (termed hyperV DVMCs),
in the normal adjacent tissue compared to normal healthy (Fig.1a, Ma-
terials &Methods). These hyperV DVMCsmaymark epigenetic field de-
fects, as they are more frequently altered across the matched breast
cancers (Fig.1b) and were specifically enriched in the breast cancer
matched to the given normal-adjacent tissue (Fig.1c).

However, breast is a complex tissue made up primarily of epithelial,
adipose/stromal and immune cells. Thus, it is important to establish that
the DNAm outlier events (i.e. the hyperV DVMCs) are not driven by
changes in the stromal milieu, but instead mark DNAm changes in the
epithelial compartment. To address this challenge, we first sought to es-
timate the fractions of epithelial, adipose and immune cells in each sam-
ple. To this end, we constructed a DNAm reference matrix consisting of
DNAm profiles of pure breast epithelial, adipose and all major immune
cell subtypes (CD4+ T-cells, CD8+ T-cells, Natural-Killer Cells, B-cells,
Monocytes, Neutrophils and Eosinophils) (Materials & Methods). The
reference matrix was defined over a set of 349 CpGs which were highly
discriminative of the underlying cell subtypes (Supplementary Table 1).
This reference matrix can then be used in conjunction with the EpiDISH
algorithm to obtain sample-specific cell type fraction estimates [32].We
validated the referencematrix using in-silicomixtures of independently
generated DNAm profiles representing pure breast, fat and immune cell
subtypes (Fig.S1a). As further validation, we also applied it to Blueprint
Illumina 450 k data representing purified T-cells, B-cells andMonocytes
[39], as well as whole-genome bisulfite sequencing (WGBS) data from
the International Human Epigenome Consortium (IHEC) [50] (Fig.S1b).

Having validated the reference DNAm matrix, we next applied it to
our DNAm dataset of breast samples, estimating sample-specific frac-
tions of epithelial, adipose and immune cells. As assessed over the 50
normal healthy samples, the estimated fraction of epithelial and adipose
cells correlated fairly well with the top two principal components (R2

values ~0.8, Fig.2a- [60b]), thus demonstrating that the epithelial-fat
ratio is the main source of DNAm variation in breast tissue. Finally, in
order to demonstrate that our DNAm outliers (hyperV DVMCs) are
not driven by alterations in these cell type fractions, we ranked all
CpGs according to their strength of association with these fractions,
which confirmed that hyperV DVMCs were significantly underenriched
among the most highly correlated features (Fig.2a- [60b]). More for-
mally, we compared the correlation significance P-values of the hyperV
DVMCs to those of 10,000 randomly selected non-DVMCs, which con-
firmed that hyperV DVMCs were significantly less correlated with epi-
thelial or fat content than non-DVMCs (Fig.2a- [60b]). Thus, the
DNAm outliers defined by hyperV DVMCs are not caused by changes
in the epithelial-fat ratio, and most likely reflect alterations in the epi-
thelial compartment of the breast tissue samples.

3.2. Differential Copy-Number Analysis Between Normal-Adjacent and
Normal Tissue Reveals no Genome-Wide Significance

Next, we asked if CNVs differ between normal-adjacent and normal
healthy tissue. Since Illumina 450 k data can also be used to derive CNV
profiles [28], we obtained CNV calls in the samples and from the same
DNA-assay, using a previously validated procedure designed to auto-
matically adjust for cell type heterogeneity (Materials & Methods). Val-
idating the adjustment procedure, the genomic instability index (GII),
which reflects the overall amount of aberrant CNV in a normal-
adjacent sample, did not correlate with the estimated fraction of breast

http://www.ncbi.nlm.nih.gov/geo
https://gdc.cancer.gov
https://gdc.cancer.gov


Fig. 1. The aberrant CNV and DNAm landscape in normal cells at risk of neoplastic transformation. a) Top panel displays the fraction of “field defects (FD)” f(FD) for all 42 normal-adjacent
samples from the Erlangen set, with samples ranked in increasing order. Lower panel is a corresponding heatmap displaying the significance, i.e. z-scores, of DNAmchanges relative to the
normal healthy breast samples and over the 4062 hypervariable (hyperV) differentially variably and differentially methylated (DVMCs), over which the f(FD) is computed. The z-score is
computed relative to the 50 normal healthy samples, andmeasures the standardized deviation of a sample's DNAmvalue from a Gaussianwithmean and standard deviation as estimated
over the 50 normal healthy samples. f(FD) is computed as the fraction of the 4062 DVMCs which exhibit a significant z-score deviation (using a P-value threshold of 0.001). b) Top panel
displays the f(FD) for the 42 matched breast cancers, with the women ordered as in a). Lower panel is the corresponding heatmap displaying the significance of DNAm alterations of the
same hyperVDVMCs in the breast cancers compared to normal healthy breast tissue. c) Scatterplot of the DNAmvalues for the 4062DVMCs in the normal-adjacent sample (x-axis) vs. the
corresponding value in thematchedbreast cancer (y-axis) for all 42women. Density of data points is displayed in greenwith darkgreen representing denser regions. The hypermethylated
(hypomethylated) DVMCs in normal-adjacent tissue compared to healthy normal, for which the DNAm value in breast cancer was higher by 0.1 (or lower by 0.1) than in the matched
normal-adjacent sample are indicated in blue (orange). Data points hypomethylated (hypermethylated) in normal-adjacent tissue relative to normal-healthy but which exhibited
significant hypermethylation (hypomethylaton) in cancer are indicated in black. P-value is from a one-tailed Fisher's exact test. d-e) As a-b), but now for the 2845 genes that exhibit at
least 1 copy gain or loss across the 42 normal-adjacent samples compared to healthy breast, with f(FD) now defined as the fraction of genes exhibiting a gain or loss across the 2845
genes. d As c), but now plotting the segment value of the gene in normal-adjacent tissue (x-axis) compared to its value in the matched breast cancer (y-axis). Because several genes
may map to the same segment, the data points reflect segments rather than genes, hence why there appear to be less data points than expected.
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epithelial cells (Fig.S2). Further validating the procedure, the derived
CNV landscape across our 305 invasive breast cancerswas highly similar
to those derived using SNP-based technologies in the breast cancer
TCGA [51] and METABRIC [45] cohorts, and was able to detect known
~500 kb amplicons and deletions (Figs.S3-S5). However, there were
also differences in the derived CNV landscapes, which we attribute to
differential probe representation between the 450 k and Affymetrix
SNP 6.0 arrays used in the TCGA/METABRIC: for instance, frequent loss
of a 10 Mb region on 17q containing 3 tumor suppressor genes
(AXIN2, BRIP1, CLTC) (Fig.S3) was not observed with SNP arrays, proba-
bly due to a sparser representation (3099 SNP probes compared to
9857,450 k probes in this region). As a final check of our CNV-calling
procedure, we observed good agreement of estimated frequencies of
chromosome 1q gain and chromosome 16q heterozygous loss, with
those reported previously (Fig.S6), thus validating our thresholds for
single-copy gains and losses.

Having established that our CNV calling procedure is accurate, we
next used a statistical procedure that tests for differences in binomial
proportions (a well-known Chi-Square test, Materials & Methods), to
determine if frequencies of CN gain or loss differ significantly between
the 42 normal-adjacent and the 50 normal-healthy tissues. In the case
of CN gain, this analysis was done for a total of 4269 genes exhibiting
at least 1 CN gain across all 92 samples. Only 147 genes passed an unad-
justed P-value threshold of 0.05, with the smallest P-value being 0.019,
which corresponded to genes exhibiting no CN gain across the normal
samples but 6 gains across the 42 normal-adjacent ones. To assess the
overall statistical significance of these 147 genes, we permuted the
phenotype-labels a 100 times and recomputed P-values, revealing that
only once did more genes pass the same threshold. In contrast to
gains, we did not observe any genome-wide significance for differences
in the frequency of CN loss between normal and normal-adjacent tissue.
Thus, overall, the differential CN analysis did not reveal genome-wide
significance, with only a very marginal effect for gains, driven by
genes with no CN alteration across normal healthy samples and at
least 6 gains across the normal-adjacent ones.

3.3. CNV Field Defects are Enriched in the Adjacent Breast Cancer

The previous differential CNV analysismirrors the standard differen-
tial methylation analysis in that there is no, or very weak, genome-wide



Fig. 2.DNAmoutliers (hypervariable DVMCs) in normal-adjacent breast are not driven by changes in the epithelial-adipose ratio. a) Left panel is a scatterplot between the top-PC (PC1, x-
axis) against the estimated fraction of breast epithelial cells for the 50 normal healthy breast samples from the Erlangen set [24], as derived from Illumina 450k DNAm data. Linear
regression and R2 values are given, demonstrating the strong correlation. Middle panel is a volcano-type plot of the t-statistic of a linear regression of CpGs DNAm profiles against the
estimated breast epithelial cell fraction over the same 50 normal healthy samples, for all ~450k CpGs on the array, with the y-axis labeling the significance level of the t-statistic
(−log10(FDR)). Green dashed line represents FDR=0.05. Plot shows how hyperV DVMCs (indicated in red) are underenriched among CpGs most strongly associated with variations in
the breast epithelial fraction. Right panel compares the significance levels (y-axis) of the hyperV DVMCs against a randomly selected set of 10,000 non-DVMCs. P-value is from a one-
tailed Wilcoxon rank sum test, demonstrating that hyperV DVMCs are less associated with variations in the breast epithelial fraction than a random set of CpGs. b) As a), but now for
the estimated adipose/fat cell type fractions. The fraction of breast epithelial cells was estimated using the EpiDISH algorithm using robust partial correlations [32] and an extension of
the reference DNAm database used in [24]. This reference database included reference DNAm profiles for breast epithelial cells, adipocytes and 7 blood cell subtypes (CD4+ T-cells,
CD8+ T-cells, NK-cells, B-cells, Neutrophils, Eosinophils, Monocytes).
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statistical significance. However, in the case of DNAm, we observed
that many more CpGs were hypervariable in the normal-adjacent
breast compared to the normal-healthy tissue [24]. A similar pattern
was also evident at the CN-level: a total of 2845 genes exhibited no
CN-change across the normal samples with at least 1 CN-change
across the 42 normal-adjacent tissues (Fig.1d, Supplementary
Table 2), in contrast to 1295 genes exhibiting a reverse pattern (i.e.
no CN-change in any of the 42 normal-adjacent samples, but at
least 1 CN-change across the 50 normals) (Fig.S7). Thus, based on
this, we decided to investigate the pattern of CN alteration of the
2845 genes in the matched breast cancers. As with the hyperV
DVMCs, we observed an increase in the frequency of alteration in
the invasive breast cancers (Fig.1e). Using the matched 42 breast
cancers, we observed that CN-gains in normal-adjacent tissue exhib-
ited a preference for a higher level gain in the matched breast cancer,
a pattern also present, but less evident, for CN losses (Fig.1f). This in-
dicates that CN changes in the normal-adjacent cells become more
aggravated in the adjacent breast cancer. We note that this pattern of
enrichment is similar to that seen at the DNAm level (Fig.1c). Of note,
the frequency of CN alteration over the 2845 genes correlated well
with the corresponding frequency of DNAm field defects, although
this correspondence was only evident for the 4 to 5 samples carrying
the largest fractions of alteration (SI Fig. S8).
3.4. DNAMethylation Changes Discriminate Normal-Adjacent fromNormal
Samples Better than Copy Number Variations

Having identified DNAm and CN alterations in normal-adjacent tis-
sue which become enriched in the matched breast cancers, we next
asked which type of alteration better discriminates the 42 normal-
adjacent samples (representing normal cells at risk of neoplastic trans-
formation) from the 50 normal healthy ones. To address this, we built
predictors of cancer-risk, separately for CNVs and DNAm changes,
using a five-fold cross-validation strategy (Materials & Methods).
Briefly, for each fold, predictors were developed using a training set
and sample-specific risk scores reflecting the overall load of CNV or
DNAm alteration over selected loci, were computed in the blind test
set. Finally, risk scores were combined over the five folds to give an un-
biased estimate of the discrimination accuracy as given by the Area
Under the Curve (AUC). We observed that DNAm changes achieved a
higher level of discrimination accuracy than CNVs: AUC = 0.94 (95%
CI: 0.88–1) for DNAm and AUC = 0.60 (95% CI: 0.49–0.72) for CNVs
(Fig. 3a,c,d,f, Figs.S9-10). In fact, for CNV the AUC was not significantly
above 0.5.

Given the limited size of our Erlangen dataset (n=92), it is critically
important to validate the above result in independent data to support its
significance. Using the risk predictors derived in the Erlangen set, we
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Fig. 3. DNAm patterns predict normal-adjacent status better than CNV a.) Boxplot of the fraction of DNAm field defects, [60d](FD), in the Erlangen discovery set, between the 50 normal
breast samples from healthy women and the 42 normal-adjacent samples, as assessed using a 5-fold cross-validation and an adaptive index algorithm. P-value is from a one-tailed
Wilcoxon rank sum test [60b].) Boxplot of the fraction of DNAm field defects, [60d](FD), in the validation set, between 18 normal breast samples from healthy women and 70 normal-
adjacent samples, as assessed using the optimal adaptive index classifier as inferred from the Erlangen discovery set. P-value is from a one-tailed Wilcoxon rank sum test [60c].)
Corresponding ROC curves and AUC values plus their 95% confidence intervals. d- [60d]) Exactly as [a-c]), but now for the field defects inferred from CNV data.
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thus estimated risk-scores in an independent Illumina 450 k dataset
encompassing 18 normal healthy and 70 normal-adjacent breast sam-
ples [31]. This confirmed a statistically significant discrimination in the
case of DNAm (AUC= 0.84 (95% CI: 0.74–0.94)), while also confirming
non-significance in the case of CNV (AUC = 0.50 (95% CI: 0.34–0.67))
(Fig. 3b,c,e,f).

In order to confirm that the difference in discrimination accuracy is
not the result of overly stringent thresholds used in the CN segmenta-
tion algorithm, nor dependent on the segmentation method itself, we
repeated the CN-analysis in 3 different ways: (i) at the probe-level,
(ii) at the level of genomic bins, as defined in the conumee package
[52] and (iii) using an entirely different copy-number and segmentation
package (cnAnalysis450k) [47]. All three analyses confirmed that it was
not possible to construct a CNV-based risk classifier that would validate
strongly in our independent dataset (Fig.S11). Associations, if any, were
only marginal (Fig.S11). We also performed the CN-based analysis at
the level of individual probes using a powerful Elastic Net classifier
[49,53], which resulted in a negative validation (Fig. S12). Thus, the dif-
ference in predictive ability between the DNAm and CNV-based classi-
fiers is not an artefact of the segmentation algorithm or of the
parameter choices used in these algorithms. Conversely, to demonstrate
the importance of the feature selection framework used in iEVORA in
the case of DNAm data, we trained an Elastic Net classifier on the
DNAm data using the same 5-fold cross-validation procedure as in the
CN-case. This did not result in a consistently significant AUC across
both discovery and validation sets (Fig. S13). Our analyses therefore at-
tribute the difference in classification performance to the biological sig-
nificance of theDNAmoutliers in the normal-adjacent samples, and tthe
differential variance feature selection algorithm which can robustly
identify such outliers.
3.5. The Hyper DVMCs are not Driven by Genomic Loss or Deletions

Because of the nature of the DNAm-assay, genomic regions that are
lost or deleted could result in artefactual shifts in DNAmof probes map-
ping to these regions [28]. Specifically, if the U and M intensity values
are not significantly above background, as they would be for probes in
deleted regions, DNAm beta-values might hover around 0.5, resulting
in hypermethylation if the probe is normally unmethylated, or hypome-
thylation if the probe is normally methylated. Although our classifica-
tion analysis above strongly suggests that hyperV DVMCs do not fall
within deleted regions (as otherwise the CNV-based risk predictor
would performaswell as theDNAm-based one),we sought to obtain in-
dependent confirmation of this. The 4062 hyperV DVMCs mapped to a
total of 1768 genes, of which 1681 had reliable CN calls. We verified
that none of these 1681 genes exhibited a genomic deletion (2-copy
loss) in any of the 42 normal-adjacent samples, thus confirming that
their aberrant DNAm is not a CN-artefact. Moreover, the fraction of
DNAm alterations attributable to a 1-copy loss was very small,
exhibiting a maximum per sample of 6% and with 34/42 (81%)
normal-adjacent samples exhibiting no single CN-loss at any of the
hyperV DVMC probes (Fig. S14).
4. Discussion

The results presented here are relevant to one of the most pressing
questions in oncogenesis, namely, what is the relative role of genetic
versus epigenetic alterations in the development of cancer. Both types
of alteration are seen in normal cells as a function of age and other
major risk factors, and their frequency increases in cancer cells
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themselves. Although for technical reasonswe did not consider somatic
mutations, we did compare CNVs to DNAm changes in normal breast
samples. We found that although both CNV and DNAm alterations
seen in normal-adjacent samples become enriched in their matched
cancers, that only the epigenetic changes could significantly discrimi-
nate normal adjacent from normal healthy tissue. This was demon-
strated using a rigorous cross-validation strategy in the discovery set,
and further validated in an independent cohort.

Importantly, we verified that the difference in performance between
the DNAm and CNV-based predictors was not the consequence of strin-
gent parameter choices when implementing the CN segmentation algo-
rithms, as results were largely unchanged if CN-analyses had been
performed at the level of probes, genomic bins or using an altogether
different segmentation method. In fact, the analyses presented here
confirm the biological and predictive significance of the DNAm outliers
in the normal-adjacent tissue, since training a powerful elastic net clas-
sifier (which by design does not identify DNAm outliers) on the DNAm
data did not result in a positive validation (Fig.S13). Moreover, the fea-
ture selection step implemented on the CN-data was designed tomimic
the feature selection step in iEVORA, yet the corresponding CN-based
predictors failed to validate consistently across the discovery and vali-
dation sets (Fig.3f). Further attesting to the greater biological and pre-
dictive significance of the DNAm outliers, we observed that the
corresponding fraction of DNAm field defects was more variable across
the 42 normal-adjacent samples, enabling more of these to be discrim-
inated from thenormal healthy ones (Fig.1a,d). Intriguingly, while there
was concordance between the 4 or 5 samples with the highest DNAm
and CNA field defect loads (Fig.S8), the specific CNAs in these samples
were generally not representative for the rest of the normal-adjacent
samples. Thus, we conclude that the improved prediction derived
from the DNAm data is driven by the biological significance of the
DNAm outliers, and the differential variance feature selection step in
iEVORA, that allows these outliers to be identified.

While this important finding does not imply that DNAm changes are
functionally more important in the development of cancer, it clearly in-
dicates that epigenetic changes might represent more relevant cancer
risk biomarkers. For instance, by measuring DNAm at the hyperV
DVMCs in cell-free or circulating DNA it may be possible to develop
non-invasive early detection or risk prediction tests assuming enough
precursor cell DNA can be captured [54–57].

The data presented here is also consistent with other studies sug-
gesting that DNAm alterations may play a more causative role than
CNVs in the earliest stages of carcinogenesis. First, risk prediction of an
epithelial carcinoma (specifically, high grade cervical intraepithelial
neoplasia), has been shown to be possible with DNAm patterns in the
cell of origin, and using a differential variability feature selection algo-
rithm similar to the one used here [25]. Second, age-associated DNAm
alterations preferentially target developmental transcription factors
(TFs), and as shown recently by us, tissue-specific transcription factors
are also preferentially silenced in the corresponding cancer-type, with
promoter hypermethylation emerging as the dominant associative
mechanism [58,59]. Indeed,many of the hyperV DVMCsmap to binding
sites of developmental TFs, suggesting that deregulation of TF-binding
via DNAm changes at the regulatory elements might indeed be an
early event that contributes to oncogenesis. In contrast, tissue-specific
TFs silenced in the corresponding cancer type were not enriched for
copy-number deletions [59]. Third, two recent studies have confirmed
the importance of DNAm alterations as predictors of cancer risk, one
in gastric cancer [17] and another in both gastric and esophageal cancer
[18]. Although the former study found that somatic CNAs can predict
the risk of progression of an intestinal metaplasia to gastric cancer as
well as DNAm, a detailed comparative analysis was not performed.
The second study compared DNAm to somatic mutations, concluding
that DNAm alterations may be important predictors of cancer risk in
the stomach, but not so in the esophagus. The findings obtained in
gastric cancer are consistent between the two studies, indicating
that DNAm changes are more reliable indicators of cancer risk than
somatic mutations. Our findings are in line with these two studies
in that DNAm alterations are indicative of cancer-risk. We stress
however that our comparative study between DNAm and CNV was re-
stricted to breast cancer, and therefore it is entirely plausible that the
cancer risk prediction potential of CN-changes may be very different
in other cancer types, similar to what has been observed for somatic
mutations [18].

We acknowledge that the results presented here need to be
interpreted with caution, as our study has a number of other additional
limitations. One caveat is that the improved prediction performance of
DNAmover CNVs could be due to the use of a technologywhichwas de-
signed to measure DNAm and not CNV. However, we and others have
clearly demonstrated that the intensity values (i.e. the sum of methyl-
ated andunmethylated intensities) providedby the Illumina450 k tech-
nology are perfectly suitable to detect both large-scale aberrations as
well as small scale amplicons and deletions [28,47]. Moreover, the abil-
ity to detectDNAmandCNV from the sameDNAsample can be seen as a
succinct technical advantage of the approach taken here, since techno-
logical biases and confounders (e.g. signal distribution, dynamic range
and background signal) are accounted for by using the same assay for
two data-types. On the other hand, the reduced genomic coverage of
the 450 k beadarray, which is limited to approximately 480,000 CpGs,
imposes a major limitation, as it has a sparse representation for regions
with low CpG density. The technology is also unable to measure signals
related to methylation or copy number gains at repeat elements, which
is a good proxy for genome stability. Thus, overall, we stress caution
when extrapolating the results obtained here to those that we would
obtain using whole-genome profiling.

Another limitation is that our study was not of a prospective nature.
For epithelial cancers it is technically and logistically challenging to set-
up prospective studies due to the need to collect the cell of origin in ad-
vance of diagnosis, which is generally not easily accessible. One excep-
tion is cervical cancer, and a previous study showed that DNA
methylation profiles measured in cytologically normal cervical samples
could discriminate women who developed a cervical intraepithelial
neoplasia of grade 2 or higher (CIN2+) within 3 years from those
who did not [25]. This is important, because we observe that the pat-
terns of DNAm in normal cervix at risk of neoplastic transformation
are similar to those seen in the normal breast tissue found adjacent to
breast cancer [24], in both cases with hypervariable DVMCs/DVCs map-
ping preferentially to targets of the polycomb-repressive complex PRC2.
Thus, using normal-adjacent samplesmay indeed be a valuable strategy
to identify cancer risk biomarkers. Of note, the normal-adjacent breast
samples analyzed here were also taken at a wide margin, specifically
at least 3 cm away from the invasive cancer boundary, which means
that contamination of normal-adjacent samples by neighboring cancer
cells is unlikely to explain the 20 to 30% methylation differences seen
among the hyperV DVMCs. In this regard, we also showed, by adjusting
for the epithelial-adipose ratio of the breast samples, that these DNAm
outliers are not artefacts of changes in this ratio. Indeed, the differential
variability feature selection algorithmwe used here identifies CpGs that
exhibit fairly stable DNAm values across all the healthy normal breast
samples, and this is only possible if they are not differentially methyl-
ated between the major cell types in breast tissue (epithelial and adi-
pose cells), as shifts in the epithelial-adipose ratio drive most of the
DNAm variation across the normal healthy samples.

In summary, our analysis suggests that DNAmand CNValterations in
normal cells adjacent to breast cancer are enriched in the matched tu-
mors, but that only DNAm changes can discriminate the normal-
adjacent from normal-healthy samples. Thus, epigenetic alterations
may constitute more relevant cancer risk biomarkers, which supports
amodel of oncogenesis whereby epigenetic alterations play amore fun-
damental role in the earliest stages of cancer development.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.ebiom.2018.04.025.
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