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Abstract

Type 1 diabetes (T1D) is characterized by pancreatic beta cell dysfunction and insulin depletion. 

Over 40% of people with T1D manage their glucose through multiple injections of long-acting 

basal and short-acting bolus insulin, so called multiple daily injections (MDI).1,2 Errors in dosing 

can lead to life-threatening hypoglycaemic events (< 70 mg dL^−1) and hyperglycaemia (> 180 

mg dL^−1), increasing the risk of retinopathy, neuropathy, and nephropathy. Machine learning 

(artificial intelligence) approaches are being harnessed to incorporate decision support into many 

medical specialties. Here we report an algorithm that provides weekly insulin dosage 

recommendations to adults with T1D using MDI therapy. We employ a unique virtual platform3 to 

generate over 50,000 glucose observations to train a K-nearest-neighbours4 decision support 

system (KNN-DSS) to identify causes of hyperglycaemia or hypoglycaemia and determine 

necessary insulin adjustments from a set of 12 potential recommendations. The KNN-DSS 

algorithm achieves an overall agreement with board-certified endocrinologists of 67.9% when 

validated on real-world human data, and delivers safe recommendations per endocrinologist 

review. A comparison of physician-recommended adjustments to insulin pump therapy indicates 

full agreement of 41.2% among endocrinologists, which is consistent with previous measures of 

inter-physician agreement (41–45%)5. In silico3,6 benchmarking using a platform accepted by the 
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U.S. Food and Drug Administration for evaluation of artificial pancreas technologies, indicates 

substantial improvement in glycaemic outcomes after 12-weeks of KNN-DSS use. Our data 

indicate that the KNN-DSS allows for early identification of dangerous insulin regimens and may 

be used to improve glycaemic outcomes and prevent life-threatening complications in people with 

T1D.

Optimal management of type 1 diabetes requires precise insulin administration to maintain 

glucose within safe ranges. Dosage regimens are complicated by day-to-day changes in 

insulin sensitivity, which can cause large excursions in glucose. Failure to dose insulin 

properly can result in diabetic ketoacidosis and hypoglycaemia, which may lead to coma or 

death. Intensive insulin regimens can enhance glycaemic outcomes in people with T1D who 

use MDI therapy7, but a number of factors confound adherence to insulin dosing. Fear of 

hypoglycaemia, challenges with numeracy to calculate meal or correction boluses, changes 

in insulin sensitivity during exercise, illness, stress andmenstruation, and the psychological 

toll of this chronic disease make it difficult for people with T1D to adhere to these regimens.
8–11

Whereas many smartphone apps are available to help people better manage their diabetes, 

most of these are not validated and have not shown clinical efficacy. A recent review 

indicated that out of hundreds of such applications, only 12 were validated in clinical trials 

and few of these significantly improved glycated haemoglobin (HbA1c) in people with T1D.
12–15 Apps shown to improve glycaemic outcomes provided users with weekly or biweekly 

feedback from health professionals on insulin dosage adjustments.12,13 Continuous glucose 

monitoring (CGM) has been shown to significantly improve HbA1C, but as a sole 

intervention does not bring everyone to goal.16 CGM-informed advisory systems17 range 

from machine learning to physiologic models and heuristic approaches for the adjustment of 

basal18–20 and bolus therapies.21,22 Nimri et al. developed a system to guide adjustment of 

insulin pump settings using capillary blood glucose or CGM data.5 Perez-Gandia et al. 

developed a predictive neural-network to assist with real-time insulin administration or 

carbohydrate consumption.23 MDI-inclusive approaches include a model-based decision 

support system for titration of insulin prior to exercise by Breton et al.24, and an adaptive 

KNN case-based reasoning approach for titration of short-acting insulin by Reddy et al.25

The KNN-DSS that we describe provides up to four optimally selected dosing and 

behavioral recommendations once per week to adults with T1D who use MDI therapy. 

Recommendations are selected to manage insulin dosed for meals andsnacks to bring 

glucose to within a target range. A virtual patient simulator platform was implemented to 

design the KNN-DSS algorithm. The virtual patient simulator3 is a mathematical 

representation of the glucoregulatory response to food, insulin, and exercise in people with 

T1D. The virtual patient simulator was used to train a machine-learning KNN4 model to 

predict optimal insulin recommendations that improve glycaemic outcomes. Input data for 

the algorithm are acquired from CGM data, insulin data obtained from Bluetooth-enabled 

capture devices, and physical activity metrics obtained through wearable sensors (Figure 1a). 

The KNN-DSS then classifies glycaemic features and delivers recommendations to improve 

percent time in ange (70–180 mg dL^−1) and reduce percent time in hypoglycaemia (Figure 
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1b). User-specific titration of insulin occurs using an adaptive learning postprandial 

hypoglycaemia avoidance (ALPHA) algorithm26 which selects the optimal bolus insulin 

based on the prior glycaemic outcomes of the user (Figure 1c). To ensure recommendations 

conform to physician standards, we developed an expert-knowledge quality control 

algorithm (Figure 1d, Extended Data 1–7). The heuristic Quality Control algorithm is 

designed for user safety and operates independent of the machine-learning framework. The 

KNN-DSS system delivers one or more recommendations from a set of 12 unique 

recommendations for insulin adjustments and dosage behaviors with respect to long-acting 

basal insulin, fast-acting carbohydrate-to-insulin ratio (carb:ins), and correction insulin 

dosage (Table 1). The top three meal and basal insulin recommendations are selected by 

KNN classification, whereas recommendations for correction doses and compliance with 

care are supplied by the heuristic ALPHA and quality control algorithms.

We validated the accuracy and safety of KNN-DSS generated recommendations compared 

with those of board-certified endocrinologists using 687 days of real-world data collected 

from 25 adult participants on MDI therapy. We demonstrated efficacy of the KNN-DSS 

during two 52-week studies in silico and characterized the response of the engine to 

dynamic disturbances in glycaemic patterns. Lastly, we report the results of a short, proof-

of-concept, single-centre clinical study to evaluate the safety of the KNN-DSS in human 

participants (Supplementary Table 1: Study 1).

To compare the recommendations of the KNN-DSS with endocrinologist recommendations, 

we used data collected from 25 adult participants with T1D during a 28-day outpatient study 

(Supplementary Table 1: Study 1). One of three endocrinologists from Oregon Health and 

Science University (OHSU) medical center analysed the glucose and insulin dosing data 

from each participant and provided recommended adjustments to basal insulin, and fast-

acting meal insulin and correction insulin during four different windows of time (7:00 – 

11:00, 11:00 – 15:00, 15:00 – 20:00, or 20:00 – 7:00) (Table 1). Recommendations 

regarding daily bolus calculator use were also provided. The KNN-DSS recommendations 

were labelled as being in full agreement, partial agreement, full disagreement, or partial 

disagreement with the physician. The accuracy of recommendations delivered by the KNN-

DSS as compared to those of board-certified endocrinologists was quantified using a 

modified Sorenson-Dice coefficient27 (equation (6)). We measured a combined agreement of 

67.9% between endocrinologist and KNN-DSS recommendations, whereas 6.4% of 

recommendations were in disagreement. In 16.7% of recommendations the engine identified 

an issue and physician did not indicate a recommendation, and 9% of recommendations 

were not comparable (Table 2). We performed additional analysis on a subset of these 

participants who exhibited consistent use of the bolus calculator and adherence to their 

insulin dosage settings (greater than 75%). For this subset of participants, the engine 

recommendations were in full agreement with physicians 50.8% of the time and exhibited an 

overall agreement of 67.5% with the recommendations of physicians. We observed that over 

99% of recommendations delivered across the 100 weeks of data by the KNN-DSS passed a 

safety review in which the endocrinologists reviewed each recommendation for the potential 

to cause hypoglycaemia episodes and overnight events.
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The measure of physician agreement with the KNN-DSS is similar to those found in 

published studies involving other decision support systems. In an international, multicenter 

study,5 Nimri et al. compared physician-recommended adjustments of insulin pump settings 

and found the expected full agreement of different physicians to be between 41% and 45%, 

and the expected full disagreement between 9% and 12%. The results demonstrated high 

variability among physicians both internationally and in practice at the same institution. 

Nimri et al. used multiple study centers and evaluated insulin pump settings, which 

differentiated their study from that of a single-center study on people using MDI. Additional 

studies that compared adjustments in MDI therapy reported that general practitioners and 

endocrinologists alike identified 67% of indicated changes to insulin,28 and reported an 

agreement of 63% between physician-recommended and software-recommended titrations to 

insulin dosages.29

We measured inter-physician recommendation variability on a dataset collected previously 

from participants with T1D using sensor augmented pump therapy30 (Supplementary Table 

1: Study 2). We found a value of 41.2% in relation to full agreement among endocrinology 

faculty at OHSU (Supplementary Table 2). The KNN-DSS engine, trained with a virtual 

platform, demonstrates high full agreement (50.8%) and partial agreement (67.5%) with 

endocrinologist recommendations when validated on real-world data (Study 1), and exceeds 

inter-physician agreement found in Study 2.

We evaluated the ability of the KNN-DSS to improve glycaemic outcomes using two virtual 

patient simulators3,6. Each virtual patient was given real-world meal scenarios previously 

recorded during a clinical trial of automated insulin delivery therapy. These meal scenarios 

are meant to rigorously challenge algorithm performance with realistic eating patterns.

Evaluation in silico demonstrated the ability of the KNN-DSS to identify problematic 

glycaemic patterns and to deliver effective insulin dosage recommendations. In the first in 
silico study using the OHSU T1D simulator3, 29 virtual patients with varying adherence to 

insulin therapy, varying circadian insulin sensitivities and carbohydrate misestimation of 

±30%, were evaluated in a 75-week study of weekly decision support. After 12 weeks of 

use, the KNN-DSS and supporting algorithms improved virtual patient outcomes 

considerably, increasing average percent time in target range from 59.5% to 79.8% (P = 

2E-5), maintaining percent time in hypoglycaemia at target (<2%) and reducing inter-

individual variability (Figure 2a, Supplementary Table 3).

After the optimal insulin dosing settings were obtained at 52 weeks of simulation, we 

disturbed the system by imposing new insulin dosing errors and changes to patient settings 

(Supplementary Table 4). The engine was able to correct the problems with the invalid 

dosing settings, gradually improve the time in target range, and reduce the time in 

hypoglycaemia (Figure 2b). Patient settings largely trended towards their pre-disturbance 

values (Figure 2c), which indicates the engine’s ability to respond to dynamic changes and 

retrieve the original settings. Since there are many possible combinations of long-acting and 

short-acting insulin therapy that may improve glycaemic control in a person with T1D, not 

all therapy settings returned to the original settings prior to the disturbance. We nonetheless 
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found that all of the glycaemic outcomes of the virtual patients still improved following the 

disturbance (Figure 2b).

In the second 52-week in silico study, we used a benchmarking platform accepted by the 

United States Food and Drug Administration for the evaluation of artificial pancreas 

algorithms, the UVA-Padova simulator6, to evaluate the performance of the KNN-DSS on 

100 virtual adult patients, 100 virtual adolescent patients, and 100 virtual pediatric patients. 

In adult patients, percent time in target range improved from 75.1% at baseline to 81.8% 

(P=1E-4) at the study conclusion. Percent time in hypoglycaemia was reduced from 4.0% at 

baseline to 0.55% (P=2E-12) at the end of the study (Supplementary Table 3, Extended Data 

8). In silico studies may provide optimistic estimations regarding glycaemic outcomes 

because virtual study patients exhibit near perfect adherence to recommended insulin 

adjustments, which often does not happen in real-world studies. Nonetheless, the results 

shown here indicate that study participants who use the recommendations provided by the 

KNN-DSS may expect a reduction in hypoglycaemia and an improvement in time in target 

range after 12 weeks. Notably, at 4 weeks, both the UVA-Padova and the OHSU T1D 

simulators showed reductions in glycaemic variability and hypoglycaemia and a small 

average improvement in glycaemic time in target range, with many patients showing a 

reduction in time in target range. The KNN-DSS is designed to prioritize safety and reduce 

hypoglycaemia as well as optimize insulin dosages and percent time in target range; as a 

consequence, time in target range may initially be reduced as problematic and aggressive 

insulin doses are titrated down, and improves significantly after 12 weeks of continued use. 

Performance was also evaluated using the UVA-Padova simulator in an adolescent and 

pediatric population. For adolescents and children, we also observed significant 

improvements in glycaemic outcomes, as percent time in target range increased from 68.2% 

to 75.2% (P = 8E-9) for adolescents, and 65.7% to 69.1% (P = 0.02) for children after 12 

weeks (Supplementary Table 5).

We evaluated the safety of the KNN-DSS in a single-center feasibility study. Sixteen adults 

out of 25 adults with type 1 diabetes on MDI therapy (Supplementary Table 1: Study 1) 

underwent weekly KNN-DSS augmented decision support. These 16 participants were given 

weekly recommendations on dosing and behavioral changes from a physician who reviewed 

the glucose history of participants and recommendations suggested by the KNN-DSS. 

Although this small pilot study was not powered to detect any impact from the intervention, 

and the study duration of 4 weeks was too short to observe a significant impact on time in 

target range, we did observe that participants exhibited a 25% decrease in hypoglycaemia 

events over a 24-hr period (from 0.86 to 0.64 events per day, P = 0.051), a 33% decrease in 

daytime hypoglycaemia events (from 0.43 to 0.29 events per day, P = 0.096), a 43% 

decrease in hypoglycaemia overnight (from 0.50 to 0.29 events per day, P = 0.04) and an 

76% decrease in serious hypoglycaemia (<54 mg dL^−1) overnight (from 0.48% to 0.11%, 

P=0.03) during the final week compared with the first week in the study (Extended Data 9). 

Fifteen of the 16 participants completed all 4 weeks of the study whereas one participant 

chose to exit the study after two weeks. In a similar manner, we observed no substantial 

changes in daytime percent time in target range comparing the final week to week 1 (54.2% 

to 52.6%, P = 0.63), a decrease in time in target range overnight (56.7% to 45.7%, P = 

0.034), a non-significant decrease in time in target range over a 24-hr period (55.3% to 
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49.1%, P = 0.06), and a non-significant increase in mean glucose (172.4 mg dL^−1 to 185.5 

mg dL^−1, P = 0.08). As shown in Supplementary Table 3, our simulation studies confirm 

the findings of the clinical study, which indicates that, although a reduction in 

hypoglycaemia can be expected after four weeks, a longer study is required before we can 

expect substantial improvements in time in target range.

Other groups have also reported on the impact of automated decision support systems on 

glycaemic outcomes, with results primarily indicating that hypoglycaemia can be reduced. 

Breton et al. recruited 24 participants with T1D (8 of whom were on MDI therapy) for a 

crossover study to evaluate automated decision support. Glycaemic outcomes were evaluated 

during a 48-hour in-patient session in which participants underwent standardized meals and 

exercise. They observed a statistically significant reduction of percent time in 

hypoglycaemia for the DSS vs. the control group (3.2% [1.3, 4.8] vs. 0.9% [0.4 2.3], P = 

0.02) but no significant change in percent time in target range.24 Herrero et al. described a 

case-based reasoning DSS (named ABC4D) and evaluated the system in silico using 20 

representative adults and adolescents from the UVA-Padova simulator population. They 

found that after 4 weeks, percent time in target range could be improved in adults from 75.2 

± 11.7 to 81.9 ±13.4 (P<0.05) and percent time in hypoglycaemia could also be reduced 

from 0.3±0.5 to 0 (P=0.17).22 Although we also used the UVA-Padova population, a direct 

comparison of ABC4D to the KNN-DSS would be difficult as we evaluated our algorithm in 

300 UVA patients. Reddy et al. further evaluated the ABC4D algorithm in a real-world, 6-

week pilot study, but whereas both percent time in target range and percent time in 

hypoglycaemia improved slightly, the changes were not significant.25 Other approaches 

described a reduction in hypoglycaemia after 12 weeks of basal and fast-acting insulin 

decision support, but no significance measures were reported5. A common theme of these 

studies is that it has not yet been shown that a DSS can improve percent time in target range 

in human studies. Our in silico results indicate that longer study durations (>12 weeks) will 

be necessary to demonstrate improvements in percent time in target range through use of the 

KNN-DSS.

The KNN-DSS was trained and validated for use with specific sensor technologies, insulin 

therapies, and target populations. The KNN-DSS system utilizes CGM devices that sample 

glucose at 5-min intervals. Flash glucose systems are compatible with the KNN-DSS 

algorithm; however these will require further testing to handle the asynchronous sample 

rates of flash glucose systems. Like flash glucose monitoring systems, fingerstick glucose is 

also measured at varying intervals (4–10 times per day), and more training and testing is 

needed before this could be incorporated into the KNN-DSS. The engine is also compatible 

with the large majority (~95%) of existing insulin therapies including fast-acting aspart or 

lispro and long-acting Lantus (glargine), Tresiba (degludec), and Toujeo (glargine U300) 

basal formulations. Intermediate-acting NPH insulin (which represents <5% of use cases) 

will require additional testing and evaluation. Although we report on adults, adolescents and 

children in this article, further work will be needed to assess performance in vulnerable and 

complex populations, including the elderly and pregnant women. Moreover, virtual 

simulators have not been developed to fully represent these populations, which makes it 

challenging to incorporate these populations into the design. The KNN-DSS will need 

further training before it can be targeted to these groups.
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We explored how specific glucose and insulin features were related to optimal 

recommendations calculated by the KNN-DSS algorithm (Supplementary Table 6). We 

observed that the KNN-DSS mapping of specific glycaemic features to optimal 

recommendations matches intuition and, in general, is synonymous with physician opinions 

regarding titration of insulin dosing for people with T1D.

We have shown that an artificial intelligence decision support system with an expert-

knowledge quality control algorithm can be used to help people with T1D identify 

problematic glycaemic patterns at the same level of accuracy as board-certified 

endocrinologists. Our unique in silico training platform enables us to generate training sets 

of diverse glycaemic profiles from the OHSU T1D simulator. The final engine design 

performs well on independent in silico virtual populations and, most notably, can identify 

insulin dosage issues in real-world human data. Further validation in longer clinical trials in 

humans is critical to understand how artificial intelligence-based decision support systems 

can improve glycaemic outcomes in people with T1D.

Methods

K-nearest-neighbours design

The K-nearest-neighbor classification algorithm (KNN)4 is a supervised machine learning 

approach that matches input features with an outcome variable or class. We define the KNN 

input features as specific glycaemic outcomes, such as percent time in target range (70–180 

mg dL^−1), percent time spent in hypoglycaemia (<70 mg dL^−1), the number of meal- or 

correction-related hypoglycaemia episodes and so on (see Supplementary Table 7 for 

complete list of features). The outcome variable or class that the KNN predicts is a 

recommended adjustment to insulin dosage that leads to an improved percent time in target 

range and a reduction in percent time in hypoglycaemia. This classification is accomplished 

using a look-up table that matches the weekly glycaemic features of a person with optimal 

dosing recommendations. The KNN approach identifies unique recommendations regarding 

long-acting basal insulin and fast-acting meal insulin. Recommendations regarding 

adherence and correction factors are accomplished separately by the ALPHA and Quality 

Control algorithms described in detail below (Figure 1).

Training Dataset generation

We generated the look-up table of optimal recommendations using an in silico virtual patient 

simulator consisting of 99 individuals with T1D exhibiting diverse glycaemic dynamics 

generated by variations in insulin sensitivity and daily insulin requirements, carbohydrate 

sensitivity, weight differences, circadian insulin sensitivity and variations in adherence to 

insulin dosing3. Circadian insulin sensitivity was achieved through continuous modulation of 

insulin-mediated peripheral glucose uptake, peripheral insulin uptake, and hepatic glucose 

production, varying within 20% of their original values3. CGM data and insulin data were 

obtained from 70 of the virtual patients over the course of a 15-week in silico study, while 

the other 29 patients were retained for an evaluation of algorithm performance in a separate 

in silico study. Real-world meal scenarios provided to the virtual test subjects were obtained 

from a previous clinical trial31 in which we acquired 80 d of realistic meal patterns and 
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carbohydrate content. Forty of these daily meal scenarios were used to train the KNN-DSS, 

while the other 40 were used to validate the algorithm. These daily meal-scenarios were 

randomized and administered to virtual patients and the Pettus-Edelman32 approach for 

CGM trend arrow adjustment and a bolus calculator was used to dose mealtime insulin. The 

optimal recommendations for an individual were identified by simulating the glycaemic 

outcomes from administering each dosing recommendation given in Table 1. The glycaemic 

outcomes of time in glucose target range (70–180 mg dL^−1), mean glucose, hypoglycaemia 

(<70 mg dL^−1), and serious hypoglycaemia (<54 mg dL^−1 ) were measured the week 

following each simulated dosing scenario. During the training of the KNN, these measured 

outcomes were used to define a heuristic objective function to select the optimal 

recommendations, {R_Opt}, to maximize the measured percent time in target range, and 

reduce percent time in hypoglycaemia (X_TIR, X_Hypo in equation (1), respectively). We 

provide this heuristic objective function in equation (1). In step 1, we identify a subset of 

recommendations, {R_Hypo}, that yields percent time in hypoglycaemia less than or equal 

to 2% and no serious hypoglycaemia. If the patients exhibit persistent hypoglycaemia, we 

identify the recommendations that minimize hypoglycaemia, {R_Hypo}. Recommendations 

that yield a percent time in hypoglycaemia greater than 2%, or any extreme hypoglycaemia, 

are excluded from the subset of optimal recommendations. In step 2, we identify from this 

subset the optimal recommendation, { R_Opt}, which yields the largest improvement in the 

time spent in target glucose range, or mean glucose if the percent time in target range is too 

small due to persistent hyperglycaemia.

ROpt =

Step 1a, RHypo = ⋃i = 1
n i ∗ δ xℎypo ∗ γ xserious ℎypo

δ(a) = 0, a > 2
1, a ≤ 2

γ(a) = 0, a ≠ 0
1, a = 0

Step 1b, {RHypo} = argminXHypo ∑i = 1
n xi perform if step 1a yeilds empty set

Step 2a, {ROpt} = argmaxXTIR ∑i = RHypoxi

Step 2b, {ROpt} = argminXMeanGlucose ∑i = RHypo xi perform if step 2a yeilds empty set

(1)

This optimal recommendation was stored with the glycaemic features from the prior week to 

form an observation in the look-up table. The observation of paired weekly glycaemic 

features and optimal insulin dosage were compiled into a look-up table used in the KNN 

algorithm. Additional real-world behavioral scenarios were imposed during the in silico 
study by programming the virtual patient to perform one or more of 13 insulin dosing errors 

(Supplementary Table 4), to periodically accept or fail to accept the advice of the 

recommendation given each week and to use one of two different types of bolus calculators. 

The size of the final look-up table totaled 51,831 observations.
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K-nearest neighbours parameter identification and feature selection

The features used in the KNN-DSS included features drawn from CGM, physical activity 

data, and long-acting and short-acting insulin data. We identified an optimal set of features 

through a feature selection technique called ‘greedy’ sequential forward selection33. We 

determined the optimal number of neighbours by performing a grid search using the optimal 

set of features. The final KNN design used 30 neighbours and 25 glycaemic features to 

perform classification (see Supplementary Table 7). The weighting scheme was decided by 

comparing classification accuracy across (1) no weighting, (2) distance-based weighting, (3) 

class-based weighting, and (4) combined distance and class-based weighting 

(Supplementary Tables 8–9).

Feature Importance

We evaluated which features contributed most significantly to each recommendation by 

calculating the ‘mutual information’ between each feature and the recommendation selected 

by the classifier. The mutual information between two random variables (for example, a 

feature f with a distribution F and a recommendation r with a distribution R) with a joint 

probability mass function P_FR) is defined according to equation (2).

I(F , R) = ∑f, rPFR(f, r)log PFR f, r
PF f PR r (2)

The mutual information of features was calculated for each separate recommendation in the 

classifier. A one-vs-all approach was used, in which the mutual information considers a 

single recommendation class as positive and all other classes as negative. This was repeated 

for each recommendation class in order to generalize what features contribute most 

significantly to a given recommendation class. Relative feature importance determined for 

each recommendation is listed in Supplementary Table 6.

Precise Insulin Titration

The KNN-DSS assumes that meal insulin doses are calculated using carb:ins ratio, and 

correction boluses are calculated correction factors and glucose trends32,34. The also uses 

smart-bolus calculations that incorporate meal-time corrections and active insulin on board 

(IOB) (equation (3)).

Recommended Insulin Bolus = Bolusmeal + Boluscorrection − IOB

Bolusmeal = Grams of Carboℎydrate x 1 unit of insulin
carb: ins

Boluscorrection = (Current Glucose + Offset − Target Glucose) x 1 unit of insulin
correction factor

(3)

Precise titration of insulin is accomplished using heuristic approaches that adjust carb:ins 

ratios and correction factors. The ALPHA algorithm, described in our recent publication26, 

retrospectively analyses the average glycaemic response of a person to insulin boluses and 

returns an aggressiveness factor (A_f). The framework of this algorithm, as well as the 
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modifications to the original algorithm for the current paper implementation, is described as 

follows. Separate analysis is performed for both meal-related boluses and correction boluses, 

again across different windows of time (see Table 1). For each bolus entry, ALPHA adapts 

the aggressiveness factor if the glucose of the person is outside of target range following 

meals or corrections. The aggressiveness factors corresponding to each bolus are then used 

to calculate an average, smoothed aggressiveness factor (A_fÂvg) shown in equation (4). 

This smoothed aggressiveness factor is used to adjust carb:ins ratio and correction factor 

settings.

Af
Avg(k) =

Af k + Af
Avg k − 1 + Af

Avg k − 2
3

(4)

In the implementation discussed herein, the aggressiveness factor assigned to an individual 

bolus delivered at time k, A_f (k) is determined using a piece-wise linear adjustment that is a 

function of the minimum glucose (G_min ) measured within 4 h of the last meal bolus or 

within 3 h after the last correction bolus (equation (5)).

Af(k) =

0.4, 0 ≤ Gmin ≤ Gℎypo

Gmin − Gℎypo ∗ Af
Avg k − 1 − 0.4

Geug − lower − Gℎypo
+ 0.4, Gℎypo ≤ Gmin ≤ Geug − lower

Af
Avg k − 1 , Geug − lower ≤ Gmin ≤ Geug − upper

Gmin − Geug − upper ∗ 1.3 − Af
Avg k − 1

Gℎyper − Geug − upper
+ Af

Avg, Geug − upper ≤ Gmin ≤ Gℎyper

1.3, Gℎyper ≤ Gmin

(5)

If G_min is within the target range of G_eug-lower = 90 to G_eug-upper = 140 mg dL^−1 

(where G_eug-lower and G_eug-upper are the lower and upper limits of a euglycaemic 

glucose target range, respectively), then the aggressiveness factor does not change and A_f = 
A_fÂvg. However, if G_min drops below G_eug-lower, the aggressiveness factor, A_f, is 

reduced proportionally down to a hypoglycaemia threshold of G_hypo (70 mg dL^−1 ). 

Below the hypoglycaemia threshold (G_hypo ), A_f = 0.4 which means that the pre-meal 

insulin will be dosed at 40% of the original amount as shown in equation (5). In a similar 

manner, the aggressiveness factor is increased proportionally with respect to G_min if 

G_min is above the upper limit of target range (G_eug-upper ) until G_min exceeds the 

hyperglycaemic threshold (G_hyper ). Above G_hyper, the value of the insulin 

aggressiveness factor is 1.3. To ensure that the aggressiveness factor accurately reflects user 
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glycaemic response, a minimum of 5 boluses must be observed within a specific window of 

time before a new aggressiveness factor is calculated.

Adjustment of carb:ins and correction factor occurs under two separate scenarios. The 

ALPHA algorithm is used to calculate the precise dosage adjustment to carb:ins only when 

indicated by the KNN classification procedure. In contrast, the ALPHA algorithm adjusts 

correction factors directly because the KNN classification does not address correction 

factors. The maximum adjustment to fast-acting insulin is constrained to ±15% per week. 

For adjustments to long-acting basal insulin, the dosage is adjusted by ±10% per week when 

indicated by the KNN classification procedure. The KNN-DSS system accounts for the 

extended (> 5 d) pharmacologic steady state of ultra-long-acting Tresiba (degludec) and 

Toujeo (glargine U300) by constraining basal recommendations to one basal insulin 

recommendation every 2 weeks (see Extended Data 2–3). These constraints are a safety 

measure. Titrations to basal insulin are applied uniformly to all basal doses that may occur at 

different times of day. For example, for people who require twice-daily basal insulin 

injections, if a 10% reduction in basal insulin is recommended, both the morning and 

evening insulin will be reduced by 10%.

Quality Control Algorithm

A quality control algorithm was developed to ensure that recommendations delivered to the 

person adhere to physician standards. This algorithm incorporates expert knowledge based 

on physician input on titration of basal and bolus insulin regimens to ensure that engine 

recommendations are consistent with physician standards and are safe for a person with 

T1D. Quality control metrics for each recommendation delivered by the KNN-DSS are 

shown in Figure 1d and elaborated further in Extended Data 1–7.

Clinical Study Data and Physician Review

Data were obtained from 25 people with T1D who participated in a 4-week, outpatient study 

of CGM-augmented MDI therapy (Supplementary Table 1: Study 1). After the data 

collection techniques were optimized on the first 9 participants, the remaining 16 

participants received recommendations for dosing and behavioral changes on the basis of 

suggestions from the KNN-DSS system. At the end of each study week, an endocrinologist 

reviewed the data and identified one or more adjustments to insulin therapy. Study 

participants were equipped with a Dexcom G6 sensor and Apple Watch to track glucose 

trends and physical activity. Participants used either long-acting Lantus or Tresiba insulin 

that was captured automatically using the Bluetooth enabled Gocap or Clipsulin insulin 

dose-capture devices. Participants used fast-acting Novolog (aspart) insulin captured during 

the study automatically with an InPen device. Participants were instructed to log meals and 

exercise using a custom food and exercise tracking app, and to dose insulin using the InPen 

app. Out of the 25 participants, 15 were female, the mean weight was 82.73 +/− 19.56 kg, 

and mean height 170.60 +/− 19.56 cm. The mean duration of diabetes was 15.52 +/− 6.92 

years, mean age was 30.50 +/− 5.92 years, and mean A1c was 8.78 +/− 1.36 %. Additional 

information regarding study population characteristics, recruitment, and ethics oversight can 

be found in the Reporting Summary.
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The study concluded with a total of 78 physician review sessions accounting for over 500 d 

of data from 25 participants. For each week of study data, physicians were instructed to 

identify one or more adjustments to insulin therapy from a set of 12 potential 

recommendations (Table 1). Data obtained during this clinical study were retrospectively 

analysed by the KNN-DSS to generate recommendations and calculate physician agreement 

metrics according to Supplementary Table 10.

Safety Review

Recommendations generated by the KNN-DSS for human participants underwent safety 

evaluation by faculty at the Department of Endocrinology, Harold Schnitzer Diabetes Health 

Center. Safety of the KNN-DSS recommendations was assessed by having the physician 

determine whether the recommendation had the potential to cause hypoglycaemia or night-

time hypoglycaemia events. A total of 100 safety reviews were performed.

Missing Data

At least four days of cumulative CGM data are required by the KNN-DSS framework to 

provide new recommendations. The KNN-DSS engine framework will refrain from 

providing a recommendation until sufficient CGM data are present. To address issues of 

missing data and data misclassification of insulin boluses that are common in real-world 

datasets, we developed an auxiliary insulin bolus estimation tool. Insulin boluses recorded 

by the Bluetooth-enabled insulin capture devices were first paired to announced meal 

entries. Boluses that were not within 20 min of an announced meal were counted as 

unlabeled boluses. For each unlabeled bolus, we evaluated the glucose level, glucose trend, 

and correction factor setting at the time of bolus administration. We then estimated the 

correction insulin dose that would have been called for by inputting this information into the 

Scheiner trend adjustment calculator34. Any remaining units of insulin are counted as a meal 

bolus. These estimated contributions are then combined with existing insulin data and are 

input to the algorithm.

Assessment of the Accuracy of KNN-DSS Recommendations as Compared to 
Endocrinologist Recommendations

Glycaemic outcomes and insulin dosing behaviors were analysed by one of three board-

certified endocrinologists and by the KNN-DSS. Recommendations delivered by the KNN-

DSS were compared to physician recommendations for each week of data collected during 

the clinical study. Similarity between KNN-DSS recommendations and physician 

recommendations were calculated using a modified Sorensen-Dice similarity coefficient25.

DSC = REngine ∩ RPℎysician
REngine

(6)

In equation (6), the similarity between physician and engine recommendations is calculated 

as the number of recommendations common to both sets, divided by the total number of 

recommendations delivered by the engine.
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Recommendations were classified into one of three categories: ‘agreement’, ‘disagreement’, 
or ‘additional treatment’ (Supplementary Table 10). Agreement refers to an engine 

recommendation that was in full agreement with the physician recommendation (a perfect 

categorical match), or that was in partial agreement with the physician recommendation and 

titrates insulin in the same direction (for example, different categorical recommendations 

that both increase insulin). Disagreement refers to an engine recommendation that was in 

full disagreement with the physician (for example, one recommendation increases basal 

insulin and the other decreases basal insulin), or that partially disagrees with the physician 

and titrates overall insulin in a different direction (for example, one recommendation 

increases meal insulin and the other decreases basal insulin). Additional treatment refers to a 

scenario in which the engine recommended insulin dosage adjustments, but the physician 

indicated no change to the settings of the study participant, and vice-versa. Short-acting 

insulin bolus treatments reflect a 4 h pharmacokinetic activity; therefore insulin doses in 

adjacent treatment windows are highly correlated and are considered in partial agreement. A 

behavioral recommendation to be more adherent to a dosing regimen was counted as safe 

and in agreement. In some scenarios where the engine recommended to use the bolus 

calculator and the physician recommended to increase or decrease basal insulin, the 

recommendations are not comparable. The overall accuracy was calculated by averaging the 

similarity across all recommendations.

Inter-physician Recommendation Agreement

Using a dataset30 collected during a 1-month outpatient clinical study of open-loop insulin 

therapy, three board-certified endocrinologists separately reviewed participant CGM data 

and dosing behaviors and recommended one or more adjustments to insulin therapy 

(Supplementary Table 1: Study 2). The physicians then collectively reviewed participant 

data to reach a consensus on what recommendation should be given. The Sorensen-Dice 

coefficient (equation (6)) was then used to determine the agreement between individual 

physician recommendations, as well as the accuracy of physicians’ recommendations, as 

compared to the consensus (Supplementary Table 2). A summary of dataset description and 

usage is available in Supplementary Table 1.

In silico evaluation

We evaluated the KNN-DSS during two in silico studies. In the first study, 29 virtual patients 

from the OHSU T1D simulator participated in a 75-week study in which the virtual patients 

used the decision support system weekly to adjust doses to basal insulin, mealtime insulin, 

and correction insulin. After 52 weeks, we changed certain insulin settings and dosing 

behaviors and monitored the ability of the engine to recover these settings. In the second 

study, 100 virtual patients from the UVA-Padova simulator participated in a similar 52-week 

study of engine usage. To simulate an MDI population using the UVA-Padova simulator, we 

replaced the default time-varying basal rate, which is characteristic of programmable insulin 

pumps, with a constant basal dosage that could be titrated weekly by the KNN-DSS.

Virtual patients from both studies exhibited inter-individual variations in weight, total daily 

insulin requirement, and circadian insulin sensitivities as described above. For both the 

OHSU T1D and UVA-Padova simulators, patients were fed real-world meal scenarios 
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(Supplementary Table 1: Study 3) that ranged from 2–9 meals per day and occurred at 

varying intervals. In addition, we imposed errors in insulin dosing settings and adherence to 

dosing strategies (see Supplementary Table 4), as well as statistical variation in estimation of 

meal amounts to reflect realistic use of bolus calculators, interstitial glucose CGM 

measurement noise and circadian variation in insulin sensitivity to reflect realistic glycaemic 

profiles. We evaluated study outcomes of percent time in target range and percent 

hypoglycaemia at time points of 1 week, 1 month, 3 months as well as at the study 

conclusion.

The virtual patients used for evaluation and a subset of the real-world meal scenarios were 

excluded from the training process. In this way, performance was analysed on virtual people 

with T1D that had not been observed before by the KNN-DSS.

Analysis and Statistical Power

The glycaemic outcomes of percent time in target range and percent time in hypoglycaemia 

were determined for the virtual patients at each time point of the study. The percent change 

was calculated across each week of the study compared with the first week of the study, 

before any recommendations were given. Results are reported by mean and s.d. for normally 

distributed outcomes, and median and interquartile range for non-parametric data. A 

students two-tailed, paired t-test of alpha = 0.05 was used to determine the significance in 

the change of glycaemic outcomes, and a two-tailed Wilcoxon signed-rank test was used to 

determine significance for non-parametric data. Cohen’s d effect size for paired samples was 

calculated to account for the influence of the in silico framework35 and large sample sizes on 

p-value statistics.

Use of Human Subjects

All participants were adults enrolled under informed consent. The pilot study was approved 

by the Institutional Review Board at OHSU, and additional information can be found at 

clinicaltrials.gov under registration number NCT03443713.

Data Availability

The data generated in silico during this study and the code used for analysis is available 

from the corresponding author on request. Access to human participant data was granted for 

the current study, and further human data usage or sharing is subject to restrictions and is not 

publicly available. Requests for restricted, de-identified data on human participants can be 

submitted to the corresponding authors at OHSU. Requests will be assessed on a case-by-

case basis, and are subject to a formal Repository Sharing Agreement. Additional reported 

outcomes of human participants can be found at clinicaltrials.gov under registration number 

NCT03443713.

Code Availability

The code used to generate in silico data for this study, the OHSU virtual patient population 

simulator code, is available at https://github.com/petejacobs/T1D_VPP. Access to the 

licensed software for the UVA-Padova virtual population was granted for the current study 
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and it can be requested from the developers of this software directly at the University of 

Padova.

Extended Data
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Extended Data Fig. 1. Quality control algorithm to assess need for insulin titration.
Quality control algorithm to assess need for insulin titration. User data and glycaemic 

outcomes are loaded and compared against metrics for percent time in hypoglycaemia, 

percent time in target range, and percent time in serious hypoglycaemia. If users meet all 

metrics, recommendations for insulin titration are not required.
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Extended Data Fig. 2. Quality control algorithm to assess increasing basal insulin dosage.
Quality control algorithm to assess increasing basal insulin dosage. User features and 

glycaemic outcomes are loaded by the algorithm and assessed for physician-informed 

metrics of nocturnal hypoglycaemia, near hypoglycaemia episodes, subject time in target 

range, subject adherence, and insulin formulation-dependent requirements.
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Extended Data Fig. 3. Quality control algorithm to assess decreasing basal insulin dosage.
Quality control algorithm to assess decreasing basal insulin dosage. User features and 

glycaemic outcomes are loaded by the algorithm and assessed for subject adherence, and 

insulin formulation-dependent requirements.
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Extended Data Fig. 4. Quality control algorithm to assess increasing meal bolus insulin dosage.
Quality control algorithm to assess increasing meal bolus insulin dosage. User features and 

glycaemic outcomes are loaded by the algorithm and assessed for physician-informed 

metrics of postprandial hypoglycaemia, subject adherence, and factors returned by the 

ALPHA algorithm.
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Extended Data Fig. 5. Quality control algorithm to assess decreasing meal bolus insulin dosage.
Quality control algorithm to assess decreasing meal bolus insulin dosage. User features and 

glycaemic outcomes are loaded by the algorithm and assessed for physician-informed 

metrics of postprandial severe hyperglycaemia, subject adherence, and factors returned by 

the ALPHA algorithm
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Extended Data Fig. 6. Quality control algorithm to assess increasing correction bolus insulin 
dosage.
Quality control algorithm to assess increasing correction bolus insulin dosage. User features 

and glycaemic outcomes are loaded by the algorithm and assessed for physician-informed 

metrics of postprandial and correction-related hypoglycaemia, subject adherence, and factors 

returned by the ALPHA algorithm.
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Extended Data Fig. 7. Quality control algorithm to assess decreasing correction bolus insulin 
dosage.
Quality control algorithm to assess decreasing correction bolus insulin dosage. User features 

and glycaemic outcomes are loaded by the algorithm and assessed for physician-informed 

metrics of subject adherence, postprandial and correction-related hypoglycaemia, and factors 

returned by the ALPHA algorithm.
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Extended Data Fig. 8. KNN-DSS engine performance in improving subject outcomes in an 
independent virtual patient population.
KNN-DSS engine performance in improving subject outcomes in an independent virtual 

patient population. Glycaemic outcomes during a 52-week study of the FDA-approved 

UVA-Padova virtual patient simulator. Percent time in hypoglycaemia is indicated by the 

blue circular radius.

Tyler et al. Page 23

Nat Metab. Author manuscript; available in PMC 2020 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Fig. 9. Outcomes of a human pilot study evaluating KNN-DSS augmented 
decision support.
Outcomes of a human pilot study evaluating KNN-DSS augmented decision support over 4 

weeks where the first recommendation is given at the start of week 2. For panels a-f, boxplot 

limits indicate the first and third quartiles, centerline indicates the median, and whiskers 

mark the last non-outlier data-point within 1.5xIQR. For panels a-f, participant data 

collected during week 1 and the final week of the study were compared using a two-tailed 

Wilcoxon signed-rank test, with significance level of 5%. a, Frequency of hypoglycaemia 

was nominally reduced on the final week compared to week 1 of the study (0.86 vs 0.64, P = 

0.051, n = 16 independent subjects). b Serious hypoglycaemia was nominally reduced on the 

final week compared with week 1 of the study (0.34% vs. 0.19%, P = 0.56, n = 16 

independent subjects). c Postprandial hypoglycaemia events were nominally reduced on the 

final week compared with week 1 (0.29 vs 0.14, P = 0.08, n = 16 independent subjects). d 

Frequency of overnight hypoglycaemia was significantly reduced on the final week 

compared to week 1 (0.50 to 0.29, P= 0.04, n = 16 independent subjects). e Serious 

hypoglycemia overnight was significantly reduced on the final week compared to week 1 

(0.48% to 0.11%, P = 0.03, n = 16 independent subjects). f Postprandial hypoglycemia 

overnight was nominally reduced on the final week compared to week 1 (0.14 to 0.07, P = 

0.06, n = 16 independent subjects).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Decision support engine framework to identify user-specific insulin titrations.
a, The user data are aggregated and processed for extracting glucose, insulin, meal, and 

exercise features that may be used to optimally titrate insulin doses. b, The user features 

F_user are matched to the closest examples in the look-up table for the K-nearest neighbours 

algorithm, F_lookup. The distance between user features and the examples in the look-up 

table are calculated as {D}, and the K examples within minimum distance to user features, 

{n}, are weighted by distance, w_d, and class-size, w_c; the final insulin dosage 

recommendations, R_c, are returned by the KNN algorithm. c, For those recommendations 

indicated by the KNN-DSS, the ALPHA algorithm assigns an aggressiveness factor that 

titrates carbohydrate ratios and correction factors to improve time in target range and reduce 

time in hypoglycaemia. d, A quality control algorithm is employed to ensure that KNN-DSS 

recommendations adhere to physician standards
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Figure 2: Engine performance in improving subject outcomes in silico.
a, Outcomes of the in silico evaluation of the KNN-DSS over 52 weeks. Virtual patients 

from the OHSU T1D simulator undergo weekly use of the KNN-DSS engine. b, At 52 

weeks, new insulin settings and dosing behaviors are imposed on patients, the effects of 

which are measured at 53 weeks. c, Evolution of patient settings 20 weeks from baseline 

following a disturbance at week 52. The red dashed line indicates 10% from baseline.
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Table 1|

Recommendations delivered by the KNN-DSS engine.

Recommendation Message to User Adjustment Window Titration Method

Basal Adjustment “You may need (less/more) basal insulin. It is recommended that 
you (decrease/increase) your AAA insulin from BBB to CCC units.

AM
PM

Adjustment by +/− 10% 
from weekly baseline 
settings

Carb:ins Ratio “You may need (less/more) insulin before (breakfast/lunch/dinner/a 
meal). It is recommended that you change your carb ratio from 
AAA to BBB.”

7:00 – 11:00
11:00 – 15:00
15:00 – 20:00
20:00 – 7:00

ALPHA Algorithm: meal 
bolus glycaemic response 
and assignment of dosage 
titration.

Correction Factor “You may need (less/more) insulin in (morning / afternoon / 
evening / nighttime) to bring down high glucose levels. It is 
recommended that you change your correction factor from AAA to 
BBB.”

7:00 – 11:00
11:00 – 15:00
15:00 – 20:00
20:00 – 7:00

ALPHA Algorithm: 
correction bolus 
glycaemic response and 
assignment of dosage 
titration.

Bolus Adherence
a “You may have taken (more/less) insulin than recommended by the 

bolus calculator during certain times of day. It is recommended that 
you use the amount recommended by the bolus calculator”

All Day N/A

Basal Adherence 
a “We have found that the amount of basal insulin that you are taking 

is different than the amount we recommend. Taking the 
recommended amount may improve your glucose levels.”

All Day N/A

Recommendations for insulin dosage are titrated to be higher or lower during different time windows using the specified titration method.

a
Behavioral recommendation.
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Table 2|

Agreement between KNN-DSS and endocrinologist recommendations using real-world human data.

Recommendation Comparison % Agreement % Disagreement % Additional % Not comparable

Assessing recommendations on all participant data (N = 78 
weeks)

Full 27.8
Partial 40.1

Overall 67.9

Full 0.4
Partial 6.0

Overall 6.4

Physician 6.4
Engine 10.3
Overall 16.7

9.0

Assessing recommendations on participant data with > 
75% recommendation adherence (N = 39 weeks)

Full 50.8
Partial 16.7

Overall 67.5

Full 2.6
Partial 8.8

Overall 11.4

Physician 13.2
Engine 7.9

Overall 21.1

0.0

Agreement is calculated using a Sorensen-Dice coefficient similarity comparing physician recommendations to engine recommendations for each 
week of observed data. Adherence refers to participant use of the bolus calculator.
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