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Epigenetic regulation of aging: implications for interventions
of aging and diseases
Kang Wang1,2,3, Huicong Liu4, Qinchao Hu1,5,6,7, Lingna Wang4, Jiaqing Liu4, Zikai Zheng3,5, Weiqi Zhang3,5,8, Jie Ren3,5,8✉,
Fangfang Zhu4✉ and Guang-Hui Liu 1,3,8,9,10✉

Aging is accompanied by the decline of organismal functions and a series of prominent hallmarks, including genetic and epigenetic
alterations. These aging-associated epigenetic changes include DNA methylation, histone modification, chromatin remodeling,
non-coding RNA (ncRNA) regulation, and RNA modification, all of which participate in the regulation of the aging process, and
hence contribute to aging-related diseases. Therefore, understanding the epigenetic mechanisms in aging will provide new
avenues to develop strategies to delay aging. Indeed, aging interventions based on manipulating epigenetic mechanisms have led
to the alleviation of aging or the extension of the lifespan in animal models. Small molecule-based therapies and reprogramming
strategies that enable epigenetic rejuvenation have been developed for ameliorating or reversing aging-related conditions. In
addition, adopting health-promoting activities, such as caloric restriction, exercise, and calibrating circadian rhythm, has been
demonstrated to delay aging. Furthermore, various clinical trials for aging intervention are ongoing, providing more evidence of the
safety and efficacy of these therapies. Here, we review recent work on the epigenetic regulation of aging and outline the advances
in intervention strategies for aging and age-associated diseases. A better understanding of the critical roles of epigenetics in the
aging process will lead to more clinical advances in the prevention of human aging and therapy of aging-related diseases.
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INTRODUCTION
Aging is a slow but gradual process that is characterized by a
continuous decline in the normal physiological functions of living
organisms over their lifespan. With age, the body’s resilience
decreases, making it more sensitive to aging-related diseases,
such as neurodegenerative diseases and cancer, and increasing
the risk of death.1–3 Although most organisms have a similar death
curve and a higher mortality rate during aging, dramatic variance
in aging rates can be observed within the same species. Taking
honey bees as an example, although the queen bee and the
worker bees are genetically identical, the queen lives on average
ten times longer.4 Intriguingly, there are so-called “non-aging”
organisms that have exceptionally long lifespans, exhibit no or
late-onset aging-related declines in physiological abilities and are
resistant to aging-related diseases, such as hydra and naked mole
rats.5–7 These phenomena indicate that aging is a complicated
process that may be regulated by a variety of different factors.
Numerous studies have revealed how aging occurs and how it

is regulated by complex cellular and molecular mechanisms at
different stages of life. Many factors affecting the aging process
and longevity have been reported,8–10 including telomere short-
ening, nutrient sensing, mitochondrial dysfunction and oxidative

stress, deterioration of DNA repair and accumulation of DNA
damage, changes in protein homeostasis leading to the accumu-
lation and aggregation of misfolded proteins, and changes in
epigenetic regulation. The word “epigenetics” is derived from the
Greek word “epi” and means “over” or “above” the genome.
Epigenetics represents a reversible mechanism in regulating the
function of the genome without altering the underlying DNA
sequence of the genome; thus, the epigenome links genotype to
phenotype, which plays an important role in modulating the aging
process in response to environmental stimulation.
Epigenetic modifications are often reversible with the aid of

epigenetic regulators, which lay the theoretical basis for aging
modulation and make them promising targets for aging-
intervention strategies. However, it was not until recently that a
series of important studies have been carried out on epigenetic
regulation and interventions for aging. In 1967, whole-genome
DNA methylation was found to be related to the age of spawning
salmon.11 Subsequent studies revealed that DNA methylation was
generally downregulated in a variety of mouse tissues and human
fibroblasts during aging.12,13 In 1987, the nucleosome occupancy
in human skin fibroblasts was shown to decrease during aging,
suggesting that chromatin configuration may change in the aging
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process.14 In 2010, histone methylation was first linked with life
extension, and it was demonstrated that H3K4me3 demethylation
in the germline boosted the lifespan of C. elegans.15 With
increasing epigenetic evidence related to aging, in 2013, the
concept of the “epigenetic clock” was proposed to link DNA
methylation with biological age.16 In addition, RNA modifications
and ncRNA regulation have recently been demonstrated to be
involved in the regulation of aging.17 Furthermore, emerging
single-cell chromatin modification profiling may provide molecu-
lar information with an unprecedented resolution of the relation-
ship between epigenetics and aging in the future.18–20

Understanding how aging is regulated by epigenetic factors
greatly facilitates the development of aging-delaying therapies.
Ever since the first report of caloric restriction (CR) to slow down
aging in 1935, researchers have been exploring potential
approaches to delay aging.21 One of these aging-intervention
studies shows that the aging process can be delayed, and the
healthy lifespan or healthspan can be extended by CR and
lowering the basal metabolic rate.22 Another exemplary study is
the discovery of resveratrol, an agonist of the longevity factor SIR2
of the sirtuin family, and its function in extending the lifespan of
yeast.23,24 In addition, heterochronic parabiosis (HP) and circadian
rhythm models have been found to be effective in identifying
factors that delay aging.25,26 In 2011, senescent cells from
centenarians or Hutchinson–Gilford progeria syndrome (HGPS)
patients can be fully reprogrammed to a pluripotent state with a
rejuvenated epigenome, suggesting the potential of reprogram-
ming in the reversal of aging.27,28 In 2015, a combination of
dasatinib and quercetin was identified to kill senescent cells
selectively; hence they were named senolytic drugs.29 More
recently, the concept of aging vaccines was proposed, and
glycoprotein nonmetastatic melanoma protein (GPNMB) vaccina-
tion has been shown to decrease tissue senescence and alleviate
aging-related phenotypes.30 However, how epigenetic mechan-
isms are involved in these aging-intervention approaches has just
begun to be revealed (Fig. 1).31

In this review, we will discuss how epigenetic remodeling,
including DNA methylation, histone modification, chromatin

remodeling, RNA modification, and non-coding RNA regulation,
is regulated during aging. We will also introduce current
therapeutic strategies to delay aging, including small molecules,
reprogramming, active health, and many other epigenetic-
associated approaches.

EPIGENETIC REGULATION OF AGING
Accumulating evidence from invertebrate and vertebrate organ-
isms, tissues, and in vitro systems links aging with epigenetic
mechanisms. In mammals, there are global and local DNA
methylation changes in the genome during aging. Additionally,
there is a general loss of histones as well as global chromatin
remodeling in all aging models. RNA modification and ncRNA
regulation also play essential roles in cellular senescence via post-
transcriptional regulations. Studies on how these epigenetic
mechanisms regulate individual aging can provide targets to
delay aging and rejuvenate aging organisms (Fig. 2).

DNA methylation
DNA methylation occurs at the cytosines in CpG dinucleotides to
form 5-methylcytosine (5-mC), and 60%-90% of CpG sites in the
mammalian genome are methylated (Fig. 3). The genome is
generally hypomethylated during aging. Consistent with this,
genes in energy metabolism and oxidative-stress resistance show
higher expression in skeletal muscle of aged individuals.32,33

DNA methyltransferases (DNMTs), namely DNMT1, DNMT3A,
and DNMT3B, add methyl groups to nucleotides, resulting in gene
silencing.34,35 The expression of DNMT1 decreases with age,
resulting in a reduced DNA methylation level. DNMT1 mutants
that cause the degeneration of selective central and peripheral
neurons have been shown to translocate to the cytoplasm and
form aggresomes while failing to bind to heterochromatin.36 In
contrast, the expression of DNMT3A and DNMT3B increases with
age, and contributes to de novo methylation of CpG islands in
mammalian cells, increases with age.37,38 DNA methylation can be
removed by ten-eleven translocation (TET) enzymes.39 In clinical
research of aged patients, mutations of TET2 or DNMT3A increase

Fig. 1 The history of studies on aging-associated epigenetic regulation and interventions
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the expression of pro-inflammatory cytokines and chronic
inflammation, which is associated with conventional cardiovas-
cular disease (CVD).40

DNA methylation shift
DNA methylation generally decreases with age in certain human
and mouse tissues or cell cultures.13,41,42,43 Compared with
newborns, whole-genome DNA methylation in CD4+ T cells of
individuals over 100 years old has been shown to be decreased.41

The decrease of 5-mC from young to old mice is also observed in
various organs, such as the brain, liver, and small intestinal
mucosa, and the loss of 5-mC impairs the physiological function of
cells in old mice.13 However, there is no notable shift in the
genome-wide methylation level during aging in other human cell
types, such as cells of the epidermis, liver, and heart, or some rat
tissues, such as blood and kidney. These differences in DNA
methylation may be due to tissue specificity or different detection
techniques. On the other hand, many genes tend to be
hypermethylated at CpG islands with aging (Fig. 3).44–46 A large
meta-analysis of aging-related CpG islands demonstrated that
hypermethylation of CpG islands is conserved across 59 tissues,
including blood, liver, muscle, skin, brain, and cortex, derived from
128 mammalian species.47

Moreover, there are CpG sites that have increased variability in
methylation with age, which are called age-associated variably
methylated positions (aVMPs).44,48 Researchers first identified
aVMPs in twin studies, in which older monozygotic twins exhibit
a higher level of methylation variation in the overall content of
5-mC than younger twins, meaning that the methylation variation
increases with age.48 The increased variation in aVMP methylation
is associated with the downregulation of the expression of
pentose metabolism genes, including PYGL, TALDO1, and PGD.49

Apart from aVMPs, there are also specific CpG sites, named age-
associated differentially methylated positions (aDMPs).50 The
methylation rate of aDMPs decreases with age in 6 mammalian
species, including human beings, mice, dogs, naked mole rats,
rhesus macaques, and humpback whales.43 Thus, the DNA
methylation shift is associated with different CpG sites, including

aVMPs and aDMPs, which can be measured to assess
epigenetic age.

Epigenetic clock
The level of CpG site methylation with age is a reliable biomarker
to predict chronological age. Researchers have developed age
estimators called epigenetic clocks based on these mammalian
DNA methylation levels. Epigenetic clocks use machine learning
methods and are based on a set of CpG sites, whose DNA
methylation states are consistent in multiple cells, tissues, or
organs to predict the chronological age.51

The earliest model can estimate the age of a person and
predict the risk of aging-related diseases, but shows low
precision, only explaining 73% of age variance with a prediction
error of 5.2 years.51 Since then, multiple epigenetic clocks have
been reported with higher accuracy, precision, and broader
application prospects in aging research.52,53 Among them, the
first-generation clocks are Horvath’s epigenetic clock and
Hannum’s epigenetic clock.54,55 Horvath’s epigenetic clock is a
multi-tissue predictor based on 353 CpG sites to estimate the age
of most tissues and cell types and is widely used in aging and
cancer research.16 Hannum’s epigenetic clock can measure and
compare human aging rates and provides a quantitative readout
for aging-related diseases using 71 CpG markers from the DNA of
blood.52 Based on Horvath’s pan-tissue clock, the DNAge™
algorithm is developed to compare the chronological age of
young and aged muscles.56 Later, the second-generation clocks,
including PhenoAge and GrimAge, introduced morbidity and
mortality into the model, improving accuracy over the first
generation.53,55 PhenoAge takes into account the role of multiple
clinical biomarkers and can predict 10-year and 20-year
mortality.53 GrimAge is based on 12 plasma proteins and smoking
pack-years, and is a more predictive epigenetic clock for
identifying clinical phenotypes.55 Notably, a recent study built
up a single-cell age clock (scAge), which exhibits the epigenetic
age using single-cell methylation data.57 ScAge is not only able to
epigenetically differentiate “young” and “old” cells in hetero-
geneous tissues, but also predicts the chronological age of the

Fig. 2 An overview of the aging epigenome. During aging and the emergence of cellular senescence, a series of epigenetic changes occur in
cells, including alterations in DNA methylation, chromatin remodeling, histone modification, RNA modification, and ncRNA regulation
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tissues in mice.57 In summary, different epigenetic clocks have
been developed for the prediction of the chronological age,
which can be used to assess the efficacy of intervention methods
for aging and to advance precision medicine.

Histone modification
Post-translational modifications of histones can activate or silence
gene expression and regulate the aging process. The types of
histone modifications include methylation, acetylation, phosphor-
ylation, ubiquitination, ADP ribosylation, and others.58 Among
these modifications, methylation, and acetylation at lysine
residues are the most widely studied and are known to affect
the aging process. In vivo and in vitro studies report global
changes in H3K9me3, H4K20me3, H3K27me3, and H3K9ac levels
during aging.59 Several enzymes are involved in the regulation of
histone methylation and acetylation. Histone methyltransferases
(HMTs) and histone demethylases (HDMs) play opposite roles in
regulating histone methylation, and histone acetyltransferases
(HATs) and histone deacetylases (HDACs) antagonistically regulate
histone acetylation (Fig. 4).

Histone methylation
Previous studies have shown that H3K4me3, a marker associated
with active transcription, plays an important role in determining
aging and lifespan by regulating the expression of aging-related
genes.60,61 With aging in yeast, H3K4me3 accumulates in non-
promoter regions and ribosomal DNA (rDNA), leading to the loss
of rDNA heterochromatin along with an increase in genome-wide
pervasive transcription.62,63 Studies in C. elegans somatic cells
have also shown increased enrichment of H3K4me3 in promoter
regions of senescence-related genes, and that this dynamics often
occurs in regions with relatively low H3K4me3 markers,64 while
down-regulation of the ASH-2 trithorax complex leads to
H3K4me3 deficiency and lifespan extension.15 Consistently, ROS
stimulation in C. elegans juveniles leads to an overall decrease in
the H3K4me3 level and enhances their longevity.65 In a mouse
model of Alzheimer’s disease (AD), the level of H3K4me3 and its
catalyzing enzymes increases in the prefrontal cortex, a crucial
brain region impaired in AD, and treating these mice with an
inhibitor of H3K4 HMTs promotes the recovery of prefrontal cortex
functions.66 The H3K4me3 level has also been shown to increase

Fig. 3 The mechanism of DNA methylation and the epigenetic clock theory of aging. Aging is often marked by global DNA hypomethylation,
but hypermethylation also occurs at selective CpG islands. DNA methylation at the promoter of a gene often leads to silencing of that gene.
DNA methylation at the 5ʹ cytosine of CpG results in 5-methylcytosine (5-mC). The methylation of DNA is mediated by DNMTs whereas the
methyl group on DNA is removed by TET enzymes. TET enzymes oxidize 5-mC to generate 5-mC derivatives, including
5-hydroxymethylcytosine (5-hmC), 5-formylcytosine (5-fC), and 5-carboxylcytosine (5-caC), in mammalian cells. Age estimators, such as
Horvath’s clock, Hannum’s clock, PhenoAge, GrimAge and single-cell age clock (scAge) are based on DNA methylation changes in the genome

Epigenetic regulation of aging: implications for interventions of aging. . .
Wang et al.

4

Signal Transduction and Targeted Therapy           (2022) 7:374 



with age in mouse hematopoietic stem cells (HSCs).67 In contrast,
a recent study using physiologically aged human HSCs demon-
strated that aging is associated with reduced H3K4me3, H3K4me1,
and H3K27ac.68 Neurons in aged (>60 years) human prefrontal
cortex exhibit loss of H3K4me3 at 556 genes and gain of H3K4me3
at 101 genes compared to young (<1 year) neurons.69 Thus,
H3K4me3 is related to aging in different species, although its
influence on aging is context-dependent and requires further
investigation.
H3K27me3 is generally associated with gene silencing and

compacted heterochromatin.70 Earlier studies suggested a global
loss of H3K27me3 in aged C. elegans and prematurely aged cells
from Hutchinson-Guildford progeroid syndrome (HGPS)
patients,71 while in killifish and mouse brains, global H3K27me3
increases with age.72 In C. elegans, the effect of the H3K27me3
demethylase UTX-1 on lifespan seems paradoxical, as both UTX-1
knockdown and overexpression in neurons and the intestine have
been shown to extend lifespan.73–75 The conserved histone lysine
demethylases jmjd-1.2/PHF8 and jmjd-3.1/JMJD3 could work as
positive regulators of lifespan in response to mitochondrial
dysfunction across different species, suggesting that increased
levels of H3K27me3 in genes involved in the mitochondrial
unfolded protein response (UPRmt) are detrimental to lifespan.76

Determining the locus- and cell-type-specific roles of H3K27me3
in lifespan regulation will be the key to unraveling the impact of
H3K27me3-modifying enzymes on aging.
H3K36me3 and H3K9me3 also play important roles in the aging

process. In both S. cerevisiae and C. elegans, deficiency of
H3K36me3 is associated with a shorter lifespan. Consistently, the
loss of H3K36me3 demethylase extends the lifespan of S.
cerevisiae.77 Similarly, loss of H3K9me3 in the adult Drosophila
midgut leads to intestinal stem cell aging.78 Interestingly, in aged

somatic tissues of C. elegans, the global H3K9me3 level increases
at heterochromatic regions in the distal arms of chromosomes,
but decreases in euchromatic central regions of autosomes.79 In
aged Drosophila, H3K9me3 and HP1 signals on chromosomes are
significantly reduced compared with those in young flies, and
overexpression of HP1 extends lifespan.80 Additionally, diminished
levels of H3K9me3 and HP1 were identified in mesenchymal stem
cells (MSCs) bearing pathogenic mutations of HGPS or Werner
Syndrome (WS), another human disease with accelerated
aging.81–83 The expression of the H3K9me3 methyltransferase
SUV39H1 is decreased during the aging of both human and
mouse HSCs,84 leading to a global reduction in H3K9 trimethyla-
tion and perturbed heterochromatin function.84 Treatment of
Werner syndrome (WS)-specific MSCs with vitamin C, gallic acid
(GA), or low-dose chloroquine (CQ) ameliorates a range of
senescent phenotypes, promotes cell self-renewal, and upregu-
lates levels of heterochromatin-associated marks, including
H3K9me3.85–87 Thus, a reduction or redistribution of H3K9me3 is
observed across different species with aging, although this trend
is also tissue and cell-type dependent.88,89

Histone acetylation
Unlike histone methylation, the relationship between global
histone acetylation and longevity is better understood. Histone
acetylation is mediated by lysine acetyltransferases and is
increased in active gene regions. HDACs are considered to
function as corepressors and, together with HATs, play a critical
role in longevity. Sirtuins are class III HDAC that enhance genome
stability and regulate the deacetylation of lysine residues in an
NAD+ level-dependent manner.90,91 Among the sirtuin family
members, SIRT1 has been reported to decrease with age in various
tissues of humans and mice, such as the liver, heart, kidney, brain,

Fig. 4 Chromatin structural remodeling during aging. A general loss of heterochromatin and detachment of lamina-associated domain (LAD)
structures from the nuclear lamina occur during this process. Higher-order chromatin structure alterations during aging are accompanied by
the redistribution of various histone modifications, including histone methylation (H3K4me3, H3K27me3, H3K36me3, H3K9me3) and
acetylation (H3K9ac, H3K56ac, H4K16ac, H3K18ac). This leads to reactivation of repeating sequences and dysregulated gene expression due to
aberrant chromatin accessibility
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and lung.92,93 SIRT6 functions as an NAD+-dependent H3K9
deacetylase that modulates telomeric chromatin, and its over-
expression contributes to the longevity of rat and human nucleus
pulposus cells via inhibiting senescence.94 On the other hand, the
HDAC class II family member HDAC4 was reported to be
polyubiquitylated and degraded during all types of senescence.
HDAC4 selectively binds to and monitors H3K27ac levels at
specific enhancers and super-enhancers, such as enhancers of
AKR1E2 and VEGFC. Treatment with the inhibitor of the HAT P300
could rescue senescence in HDAC4-depleted cells, suggesting a
potential antagonistic effect between HDAC4 and P300.95 In
IMR90 cells, P300, which promotes the formation of active
enhancer elements in the non-coding genome, significantly
increases the levels of H3K122ac and H3K27ac at the proximal
senescence-specific gene promoters and is confirmed to be a
primary driver of the senescent phenotypes, and depletion of
p300 alone is sufficient to downregulate senescence genes and
delay replicative senescence.96 CBP-1, the homolog of mammalian
acetyltransferase CBP/p300 in C. elegans, is an essential regulator
of the UPRmt and mediates H3K27ac and H3K18ac upon
mitochondrial stress. Knockdown of CBP-1 decreases the lifespan
of the worm in an HSF-1-dependent manner.97,98 Interestingly,
abundant H3K4me1 marks are displayed in replicatively senescent
IMR90 cells at the senescence-associated secretory phenotype
(SASP)-associated super-enhancer loci, which also show substan-
tial H3K27ac marks and BRD4 binding.96,99 Recent studies also
demonstrated that aging-mediated changes in H3K27ac and
H3K9ac in the human cerebral cortex are associated with
AD.100,101

Owing to the antagonistic actions of HATs and HDACs, it is not
surprising that HATs have also been implicated in aging. The level
of H3K14ac in the brains of aging mice can regulate the
expression of aging-related synaptic plasticity genes, and the
H3K9me3/H3K14ac bivalent marks are significantly decreased in
old mouse hepatocytes.102,103 Inactivation of KAT7 decreases
histone H3K14ac and alleviates human mesenchymal precursor
cell (hMPC) senescence.104 H3K18ac and H3K56ac are negative
markers of senescence in Drosophila and yeast.105,106 Although the
mechanism of action is different, knockdown of H3K56ac, Hst3,
and Hst4-related HDAC-encoding genes during yeast aging
shortens the lifespan.107 In aged yeast, the H3K56ac level
decreases while the H4K16ac level increases, leading to the
silencing of telomeric repeats.108 Interestingly, H4K16ac may also
be involved in brain aging and AD progression. Normal aging
leads to H4K16ac enrichment, while H4K16ac in the proximity of
genes linked to aging and AD is dramatically reduced in AD.109

Additionally, dysregulation of H4K12ac leads to aging-related
memory impairment, suggesting that it may serve as a critical
signal of memory formation.110 By administering the HDACi
suberoylanilide hydroxamic acid (SAHA) to aged mice, the
acetylation deficit of H4K12 could be rescued in neurons.111 Thus,
substantial changes in histone acetylation occur during aging and
aging-related diseases, and understanding its regulatory mechan-
isms may provide new insight into the development of aging-
intervention strategies.

Histone phosphorylation and ubiquitination
In addition to histone methylation and acetylation, histone
phosphorylation and ubiquitination have also been shown to be
associated with aging, and in some cases through crosstalk with
other histone marks. For example, the effect of histone
ubiquitination on DNA damage accumulation can induce pre-
mature neuronal aging.112 H3S28A mutants, which depletes
H3S28 phosphorylation but also reduces H3K27 methylation to
prevent by compromising the activity of its methyltransferase
complex in Drosophila, prolong lifespan and improve resistance
against starvation and paraquat-induced oxidative stress.113,114

However, the correlation between these modifications and aging

is less clear, and more research is needed to refine the
mechanisms in the future.

Chromatin remodeling
Chromatin is a flexible and dynamic structure composed of DNA
and histones that can exist as heterochromatin or euchromatin.
The basic unit of chromatin is the nucleosome core particle,
encapsulated in a histone octamer consisting of a central H3-H4
tetramer flanked by two H2A-H2B dimers.115 Chromatin remodel-
ing is defined as a series of genome-wide changes in the nuclear
architecture that can be recognized at the level of specific
chromosomes or chromosome domains, such as centromeres.
Significant chromatin structural remodeling has been identified
during cellular senescence, from histone component and mod-
ification changes to alterations of the chromatin compartments
and topologically associating domains (TADs).83,116,117 Global
canonical histone loss is regarded as a common feature of aging
from yeast to humans.108,118,119 Overexpression of histone H3/H4
in yeast extends the lifespan, suggesting that an increased pool of
free histones promotes survival during aging by facilitating
nucleosome exchange and post-transcriptional chromatin
repackaging.106 Genome-wide profiling of the core histone H3
occupancy in primary cultures of aging male mouse tissues and
neural stem cells (NSCs) reveals local changes in H3 occupancy as
tissues and cells age, even though the H3 level remains relatively
stable.120 Reversible phosphorylation of serine and threonine
residues in the C-terminal tail of H1 histones is responsible for
regulating the H1 stacking behavior. Individuals with mutations
deleting these residues in one of the histone H1 isoforms show a
progeria phenotype, and their fibroblasts exhibit more nucleoid
relaxation, less condensed chromosomes, and higher nucleolar
instability (Fig. 4).121

In eukaryotes, histone-modifying enzymes and ATP-dependent
chromatin-remodeling complexes are the two main factors of the
chromatin-remodeling process.122 Modified histones may induce
conformational changes in nucleosomes. Restoration of acetyl
coenzyme A (acetyl-CoA) production through nutrient supple-
mentation (citrate, acetate, pyruvate, and glucose) could strongly
attenuate chromatin reorganization and diminish the extended
lifespan of worms under mitochondrial stress conditions.123,124 In
mice, aged MSCs show significantly decreased levels of total
histone H3-H4 acetylation and an increased abundance of
H3K27me3 across the gene body, resulting in a lower transcrip-
tional rate and the loss of chromatin accessibility compared with
young MSCs. Restoring cytoplasmic acetyl-CoA levels in aged
MSCs can remodel chromatin structure and rejuvenate these
cells.125 As H3K9me2 levels decrease, the nuclear peripheral
heterochromatin loses its anchor to the nuclear lamina and moves
toward the nuclear interior.126 In specific regions during aging,
H3K9me2 switches to H3K9me3, another repressive mark but not
enriched with direct contacts with the nuclear lamina; this may
reflect aging-associated changes in subnuclear location of
peripheral chromatin and associate with shortened lifespan in
aged C. elegans somatic tissues.79 Interestingly, histone deacety-
lase or methyltransferase inhibitors alter histone modifications in
ways that predominantly increase euchromatin or decrease
heterochromatin.127 These results suggest that chromatin remo-
deling is largely related to the level of histone post-translational
modifications. In addition, deletion of autophagy-related 7 (Atg7)
leads to disordered nucleosome assembly in mouse CD11b+Ly6G-

bone marrow cells, resulting in cellular senescence.128 Promoters
of the conserved transcriptional and phenotypic responses to
defects in chromatin structure genes and are sensitive to histone
dosage. Reducing nucleosome occupancy at these promoters by
deleting HHT1-HHF1 allows transcriptional activation induced by
the stress-responsive transcription factors Msn2 and Gis1, and
thus, responses induced by moderate chromatin architectural
defects promote longevity.129

Epigenetic regulation of aging: implications for interventions of aging. . .
Wang et al.

6

Signal Transduction and Targeted Therapy           (2022) 7:374 



ATP-dependent chromatin-remodeling complexes can be
divided into the SWI/SNF, ISWI, CHD, and INO80 families. SWI/
SNF is required for the activation of nutrient-responsive genes,
and the destruction of this complex impairs the ability of cells to
adapt to their environment. SWI/SNF also regulates transcription
by remodeling chromatin and promoting a more open chromatin
configuration.130 In vitro, the BRM-SWI/SNF complex is required to
promote co-expression of the telomere-binding proteins TRF1 and
TRF2, which are essential for maintaining telomere length and
structure in human fibroblasts and cervical cancer cells, contribut-
ing to the development of longevity-related functions.131 SWI
plays a role in regulating aging during adulthood, and the absence
of SWI shortens the lifespan of nematodes.132 Among CHD
chromatin remodelers, the role of NuRD has been widely reported,
and disruption of the NuRD complex may compromise the
epigenetic composition of histones and the higher-order structure
of chromatin, making the NuRD complex more susceptible to the
influence of genotoxic stress.133 BAZ1A encodes an accessory
subunit of the ATP-dependent chromatin-remodeling complex
that regulates cellular senescence in cancer and normal cells.134

Inhibition of the chromatin-remodeling factor SMARCA4 is able to
prevent aging-dependent dopaminergic degeneration and short-
ening of lifespan caused by α-synuclein and LRRK2 in Drosophila
PD models.135

Chromatin accessibility states and the expression programs of
aging-related genes are positively correlated during aging. Two
types of chromatin regions with regular changes in their
accessibility during aging are increased accessibility regions (IARs)
and decreasing accessibility regions (DARs). IARs mainly exist in
genes related to the occurrence and development of aging,
whereas DARs mainly exist in genes related to functional decline
caused by aging.136,137 The chromatin in human cells is spatially
segregated into two compartments, compartment A and com-
partment B, and chromatin in the same compartment should have
more frequent interactions, as revealed by Hi-C analysis.138 The
disruption of higher-order chromatin structure and the separation
of heterochromatin from the nuclear membrane are observed
during cellular senescence and aging.63,83,130,139–141 A hierarchy of
integrated structural state changes has been characterized
through large-scale epigenomic analyses of isogenic young,
senescent, and progeroid hMPCs, manifested as heterochromatin
loss in repressive compartments, euchromatin weakening in active
compartments, switching in interfacing topological compart-
ments, and increasing epigenetic entropy. Nuclear lamina
dysfunction results in the derepression of constitutive hetero-
chromatic regions in repressive LAD structures marked by H3K9
methylations. Diminished histone markers such as H3K27me3 and
facultative heterochromatin disruption contributed to an overall
increase in epigenetic instability and ectopic expression of lineage
restricted genes, SASP genes and repetitive elements.83,142–145

Loss of heterochromatin leads to a global increase in transcription
and intercellular transcriptional heterogeneity, which is reported
to be associated with cellular senescence and the onset of aging-
related diseases.81,137,143,146,147 Higher resolution data show that
chromosome compartments are partitioned into TADs, which are
more basic domains with high interaction frequency therein and
relatively isolated from neighbor regions. Below the scale of TADs,
long-range chromatin looping interactions are insulated by TAD
boundaries.148 CTCF, a highly conserved architectural protein with
11 zinc fingers, functions as a barrier to inhibit heterochromatin
spreading,149 and it has been shown to be reduced during aging
in various models and plays an important role in chromatin
remodeling.150 Consistent with this, high levels of CTCF in
proliferating fibroblasts promote p16INK4a silencing.151

RNA modification
More than 170 types of RNA modifications have been discovered
thus far that regulate gene expression at the epitranscriptomic

level.152 Although few studies have directly revealed the relation-
ship between RNA modifications and organismal aging, accumu-
lating data show the essential roles of these post-transcriptional
regulatory mechanisms in the cellular senescence process, one of
the critical causes for aging and aging-related diseases (Fig. 5).

m6A modification
As one of the most extensively studied mRNA modifications in
mammalian cells, m6A has been demonstrated to be involved in
cellular senescence. m6A is regulated by writer, reader, and eraser
proteins.152,153 The multi-subunit writer RNA methyltransferases
(MTases) are assembled mainly by methyltransferase like 3
(METTL3), METTL14, and Wilms tumor 1 associating protein
(WTAP).154 The first reported m6A modification involved in
senescence is methylation at the 3ʹ-UTR of the CDKN1A mRNAs
by a METTL3/14 heterodimer, which facilitates p21 translation.
Consistently, the expression of METTL3/14 and p21 is enhanced in
oxidative-stress-induced senescence.17 Recently, ATG7 mRNAs
with METTL3-dependent m6A were found to be destabilized by
the reader YTH N6-methyladenosine RNA-binding protein 2
(YTHDF2), which promotes senescence instead of autophagy in
fibroblast-like synoviocytes and leads to the progression of
osteoarthritis.155 METTL14 also catalyzes the m6A modification
affecting miRNAs associated with senescence. For example, TNF-α-
induced METTL14 overexpression leads to increased production of
miR-34a-5p from m A-modified primary transcript. miR-34a-5p
promotes celluar senescence by targeting Sirtuin-1 (SIRT1) in
nucleus pulposus cells (NPCs) of patients with intervertebral disc
degeneration (IVDD), one of the most prevalent degenerative
diseases.156 More recently, the regulator WTAP, which functions to
translocate METTL3/14 dimers to nuclear speckles,154 has also
been demonstrated to be associated with IVDD. Increased WTAP
in senescent NPCs enhances the level of m6A in the lncRNA
NORAD, contributing to the disruption of the NORAD/PUMILO/
E2F3 axis and accelerating senescence.157

METTL3/14-mediated m6A modification has also been reported
to inhibit senescence in some cases. METTL3/14 levels are
reduced in LMNA mutant-induced prematurely aged human
HGPS cells and senescent fibroblasts, and METTL14 overexpres-
sion delays cellular senescence.158 The interaction of Lamin A and
METTL3/14 protects the latter from proteasome-mediated degra-
dation to maintain sufficient m6A levels in normal cells.158

Moreover, METTL3-mediated m6A modification of MIS12 mRNAs
positively regulates their stabilization by recruiting IGF2BP2, and
in young hMSCs, MIS12 facilitates their self-renewal and alleviates
cellular senescence. In HGPS and WS hMSCs, cellular models of
premature aging, the downregulation of MIS12 is detected at
both the mRNA and protein levels.159 Knockdown of DNMT2 in
mouse embryonic fibroblasts (MEFs) reduces the m6A level and
accelerates senescence.160 Thus, in addition to RNA MTases,
DNMT2 participates in senescence regulation by affecting the
m6A level. Sulforaphane-mediated cycle arrest and senescence in
breast cancer cells are also accompanied by downregulated
global m6A levels of mRNAs; however, the underlying mechanism
is unclear.161

Similar to these m6A writers, the main erasers of m6A, i.e., fat
mass and obesity-associated protein (FTO) and alkB homolog 5
(ALKBH5), are also involved in aging. For example, the expression
of FTO declines with ovarian aging, followed by increased m6A
levels in old human granulosa cells.162 Furthermore, FTO is crucial
for the progression of the G1 phase of the cell cycle by removing
m6A from the cyclin D1 mRNAs and stabilizing them.163 The
ALKBH5 level is increased during IVDD and NPC senescence, and it
removes m6A from the DNMT3B mRNAs, which limits the
expression of the transcription factor E4F1 by methylating CpG
islands at its promoter region and accelerates NPC senescence.164

To execute the function of m6A, reader proteins are needed,
which include YTHDC family members, YTHDF family members,
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the eukaryotic translation initiation factor eIF3, the insulin-like
growth factor 2 mRNA- binding proteins (IGF2BP1/2/3), and the
fragile X retardation protein (FMRP).165 Several studies have
indicated that the YTHDF family plays an important role in cellular
senescence by destabilizing targeted mRNAs. In mouse embryonic
stem cells (ESCs), m6A-modified intracisternal A-particle (IAP)
mRNAs recruit YTHDFs to shorten their half-life, repressing
endogenous retroviruses (ERVs).166 Conversely, the accumulation
of IAP mRNAs after deletion of YTHDFs leads to high ERV
activity,166 resulting in senescence and diseases.167 The well-
known senolytic therapy (discussed in the next chapter) of the
combination of dasatinib and quercetin can reduce the lipopo-
lysaccharide (LPS)-induced SASP by upregulating YTHDF2, fol-
lowed by destabilization of MAP2K4 and MAP4K4mRNAs in human
umbilical vein endothelial cells (HUVECs).168

In addition to cellular senescence, the role of m6A methylation
in organs or organismal aging remains elusive. In brain aging and
neurodegenerative disease models, dysregulation of m A and
related regulatory proteins was indicated but the findings varied.
For example, a tendency toward an overall increase in m6A
methylation was observed in the cortex and hippocampus of the
APP/PS1 transgenic mouse model for AD.169 Yet m6A in the 3ʹ UTR
of many AD-associated transcripts in the 5XFAD mouse model of
AD is downregulated, which is accompanied by an 8% increase
and 4% decrease in FTO and METTL3, respectively, compared to
wild-type mice, leading to higher Tau toxicity using the AD fly
model.170

m5C modification
The m5C modification of RNAs is also tightly associated with
senescence, in which the diverse roles of the tRNA methyltrans-
ferase NSUN2 (NOP2/Sun domain family, member 2) depend on
the substrates of the m5C modification. For example, the 3ʹ-UTR of
cyclin‐dependent kinase 1 (CDK1) mRNAs and the 5ʹ-UTR of the
CDK inhibitor p27 mRNAs are targets of NSUN2, and m5C
modification facilitates the translation of CDK1 while repressing
that of p27, both of which alleviate replicative senescence.171,172

Interestingly, NSUN2 shows the opposite function in senescence
under oxidative-stress conditions by targeting other mRNAs.
NSUN2-mediated m5C at A988 in the 3ʹ-UTR of cyclin-dependent
kinase inhibitor 2A (CDKN2A, i.e., p16) mRNAs stabilizes the
mRNAs, contributing to senescence.173 H2O2 treatment leads to
upregulation of NSUN2 and Src homology 2 domain-containing
(SHC) family proteins in HUVECs with accelerated senescence,
whereas knockdown of NSUN2 reduces ROS accumulation and
delays senescence. NSUN2 catalyzes m5C modification of SHC1
mRNAs at several sites, which promotes its translation, activates
the p38 MAPK pathway, and leads to cell cycle arrest and elevated
ROS levels.174 Strikingly, NSUN2 and METTL3/14 have synergistic
effects on the p21 mRNA methylation induced by oxidative stress.
The m5C modification induced by NSUN2 facilitates METTL3/14 to
catalyze the m6A modification at the p21 mRNA 3ʹ-UTR and vice
versa.17 Furthermore, the RNA-binding protein human antigen R
(HuR) facilitates the m5C modification at the C106 site of TERC to
enable telomerase activity and delay cellular senescence.175 In

Fig. 5 RNA modifications involved in senescence. RNA modifications that have been revealed to be associated with senescence or aging
mainly include m6A modification, m5C modification, and adenosine-to-inosine (A-to-I) editing. The m6A modification is regulated by factors
including the writer RNA methyltransferases complex, the erasers FTO and ALKBH5, and the reader YTHDF2, whose effects on senescence are
complex based on different substrates. Under different stress conditions, m5C modification mediated by NSUN2 plays opposite roles in
senescence, retarding replicative senescence and accelerating oxidative-induced senescence. The A-to-I RNA editing catalyzed by the ADAR
family mainly exists in the central nervous system, and its relationship to neurodegenerative diseases has been demonstrated
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summary, these studies identify RNA m5C as an epitranscriptomic
marker for aging, and more investigation at the genome-wide
scale will further reveal the dynamics of the m5C landscape and its
potential impact on cellular senescence and tissue and
organismal aging.

A-to-I editing
Adenosine to inosine (A-to-I) RNA editing conducted by the
adenosine deaminase acting on RNA (ADAR) family occurs most
frequently in the central nervous system, and the A-to-I imbalance
has been demonstrated to be involved in neurological disorders,
metabolic diseases, and other diseases.176,177 Insufficient A-to-I
editing influences neurodegenerative processes. The editing level
at the GluA2 Q/R site in the hippocampal region is lower in AD,
which induces altered Ca2+ influx and neuron death.178 In human
endothelial cells under pro-inflammatory conditions, cathepsin S
(CTSS) mRNAs, encoding a cysteine protease, can be targeted by
ADAR1, thereby recruiting HuR to improve its stability and
translation. Consistently, the frequency of A-to-I editing on CTSS
mRNAs is much higher in patients with vascular diseases.179

Collectively, these reports indicate that RNA modifications play
crucial roles in regulating senescence. However, further studies are
needed to uncover more detailed underlying mechanisms and

their relationship to organismal aging, which may provide an
avenue for developing new treatments for ameliorating
senescence.

Non-coding RNA regulation
Research on the molecular mechanisms of cellular aging has
mainly focused on protein-coding genes. However, accumulating
studies have demonstrated that ncRNAs, which widely regulate
gene expression in multiple biological processes at the epigenetic,
transcriptional, and post-transcriptional levels, also play a critical
role in aging. In recent years, studies of ncRNAs in aging have
mainly focused on microRNAs (miRNAs),180 long non-coding RNAs
(lncRNAs),181 R-loops,182,183 and circular RNAs (circRNAs)184 (Fig. 6).
MiRNAs are small (~22 nucleotides), non-coding and single-

stranded RNAs that bind to the 3ʹ-UTR of target mRNAs to degrade
these mRNAs or suppress their translation.185,186 Using a micro-
array containing 863 miRNAs, researchers discovered that 64
miRNAs, such as miR-30d, miR-320d and miR-339-5p, are
upregulated and 16 miRNAs, such as miR-103, miR-107, miR-24,
and miR-130a, are downregulated in long-lived individuals
compared to younger individuals.180 In addition, the miRNA-p53
pathway can maintain the genomic integrity in long-lived
individuals during aging.180 The expression of miR-217 increases

Fig. 6 The mechanism of non-coding RNAs regulation during aging. Non-coding RNAs (ncRNAs) include microRNAs (miRNAs), long non-
coding RNAs (lncRNAs), R-loop (DNA-RNA hybrids), and circular RNAs (circRNAs). miRNAs bind to mRNAs, lncRNAs or circRNAs to prevent their
functions
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in late-passage fibroblasts, where miR-217 inhibits DNMT1
expression by targeting its 3′-UTR to induce human skin fibroblast
senescence.187 The expression of age-associated miRNAs, includ-
ing miR-130, miR-138, and miR-181a/b, increases in keratinocytes
during cellular senescence, and by binding to p63 and Sirtuin-1
mRNAs, these miRNAs affect cell proliferation pathways.188

LncRNAs are non-protein-coding RNAs longer than 200 nucleo-
tides. LncRNAs bind to DNA, RNA, and proteins to exert their
functions as guides, enhancers, or scaffolds in post-transcriptional
and post-translational regulations.189 Therefore, lncRNAs have
become targets for the treatment of fibrosis in aging. In aged
bone marrow mesenchymal stromal cells, the lncRNA NEAT1
promotes CSF1 secretion and enhances osteoclastic differentia-
tion, which may be a therapeutic target for skeletal aging.190 The
lncRNA APTR accelerates the cell cycle and cell proliferation of
primary hepatic stellate cells in mice.191 Furthermore, targeting
the lncRNA Firre by CRISPR/Cas9 delays Ras-induced cellular
senescence.192,193

Evidence shows that circRNAs play important roles in the
modulation of aging and aging-related diseases, such as
cardiovascular disorders, diabetes, and neurodegenerative dis-
eases.194 As circRNAs are relatively stable, aging-related
increases in global circRNA levels are potential diagnostic
biomarkers for aging.195 R-loops are three-stranded structures
composed of a DNA-RNA heteroduplex and a displaced single
DNA strand. Although R-loops are often considered as “by-
products” of transcription, recent studies have shown that
R-loops are important cellular regulators and may contribute to

cancer and neurodegeneration.183,196,197 For example, deletion
of SPT6 extends lncRNA and increases R-loops associated with
DNA damage, which ultimately leads to senescence in HeLa
cells.198 In summary, ncRNAs (miRNAs, lncRNAs, and circRNAs)
have been proven to serve as biomarkers in regulating cellular
senescence.

Strategies to alleviate aging
Based on the molecular mechanisms underlying cellular senes-
cence and aging, a series of therapeutic strategies, many of which
are closely related to epigenetic regulations, have been proposed
(Fig. 7). Reprogramming and geroprotective drugs have been
developed to interfere with aging, while senolytics aim to remove
senescent cells to delay aging. Active health, such as caloric
restriction, exercise, and a healthy circadian rhythm, exerts
profound influences on multiple organs, systemic circuitries, and
whole-body rejuvenation. Moreover, several advanced interven-
tion methods have entered the clinical trial. Below we will discuss
all these aging-intervention strategies and their underlying
epigenetic mechanisms.

Small molecule-based therapy
The first class of aging-intervention strategies enumerated here is
geroprotective drugs, which include epigenetic-related com-
pounds (e.g., NAD+ precursors, sirtuin-activating compounds,
and HDAC inhibitors), small molecules with robust anti-diabetic
effects (e.g., metformin), mTOR inhibitors (rapamycin), as well as
antioxidant chemicals (N-acetyl-l-cysteine) (Fig. 8).

Fig. 7 The intervention of aging. Existing intervention strategies aim to alleviate aging in various organisms
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NAD+ precursor
NAD+ is a critical redox coenzyme that plays a unique role in aging
through DNA repair and epigenetic regulation.199,200 The effect of
sirtuins on histone deacetylation is highly dependent on NAD+,
highlighting the indispensable role of NAD+ in the epigenetic
regulation of aging.201 Supplementation with NAD+ precursors,
such as nicotinamide mononucleotide (NMN), nicotinamide ribo-
side (NR), and nicotinamide (NAM), prevents the decline in NAD+

and exhibits beneficial effects against aging and aging-related
diseases. NAD+ repletion extends the lifespan and delays the
accelerated aging in C. elegans and Drosophila melanogaster
models of Werner syndrome.202 In mammals, NR supplementation
increases mitochondrial function, delays the senescence of NSCs,
and increases mouse lifespan.203 NR supplementation also
increases mitochondrial function and reduces aging-associated
amyloidosis in muscle.204 In addition, NAD+ repletion with either
NMN or NR ameliorates aging-associated meibomian gland
dysfunction in aged mice.205 It also improves cognitive functions
in AD mouse models, mainly by rescuing cerebral microvascular
endothelial function and neurovascular coupling responses,
preventing amyloid-β (Aβ) production in the brain, and reducing
DNA damage, neuroinflammation, and apoptosis of hippocampal
neurons.206–208 NAM improves glucose homeostasis and reduces
hepatic steatosis and inflammation.209 Thus, boosting the NAD+

level appears to be a promising therapeutic strategy to counter
aging and aging-associated disorders, although its effects in
humans need further clinical studies.

Sirtuin-activating compound
Activators of the sirtuin family of HDACs, also termed sirtuin-
activating compounds (STACs), are another class of epigenetic
drugs as potential geroprotectors. Since they were found to
promote the lifespan of yeast,24 STACs have been demonstrated
to extend the longevity of worms, fruit flies, honey bees, and
fish.210 In mammals, resveratrol, an activator of sirtuin 2, increases

insulin sensitivity and motor function and thus improves the
health and survival of mice on a high-calorie diet.211 Resveratrol is
also found to attenuate the aging of adipose stem cells via
decreasing the levels of 5-mC in DNA and modulating mitochon-
drial dynamics.212 SRT1720, an activator of sirtuin-1, can attenuate
vascular endothelial dysfunction, excessive superoxide produc-
tion, aging-related metabolic diseases, and inflammation with
aging, as well as improve the follicle pool reserve, thereby
extending the lifespan and improving the healthspan of
mice.213–215 SRT2104, another activator of sirtuin-1, preserves
bone and muscle mass and extends the survival of male mice on a
standard diet.216

HDAC inhibitor
As discussed earlier, histone acetylation is one of the most
important patterns of epigenetic regulation during aging. HDAC
inhibitors show geroprotective effects mainly through reversing
aging-associated deacetylation of chromatin, acetylation of
histones near pro-longevity genes, and activating stress resistance
and pro-longevity proteins.217 Administration of the pan-HDAC
inhibitor SAHA rescues the skin phenotype, such as loss of
subcutaneous fat, inflammation, and fibrosis, in a mouse model of
Cockayne syndrome (CS), a hereditary form of premature aging.218

ITF2357 (givinostat) suppresses aging-induced diastolic dysfunc-
tion in normotensive mice.219 Another HDAC inhibitor, butyrate
protects against aging-related muscle atrophy in mice.220 HDAC
inhibitors also exhibit beneficial effects in neurodegenerative
disorders by modulating chromatin-mediated neuroplasticity and
improving learning consolidation.221,222 Since sirtuins are also a
class of HDACs, the mechanism by which both STACs and HDAC
inhibitors can delay aging remains to be further investigated.

Metformin
Metformin is an anti-diabetic drug and one of the most attractive
geroprotective compounds, and it functions through extensive

Fig. 8 Small molecule compounds as geroprotectors in diverse animal models. A series of small molecule compounds can extend the lifespan
or alleviate aging-related phenotypes in different organs. The interventions and corresponding target organs are shown in the diagram
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epigenetic regulation. Metformin retards aging in C. elegans by
altering the ratio of S-adenosylmethionine (SAMe)/S-adenosylho-
mocysteine (SAH), which may affect histone methylation.223 In a
spatial restraint stress mouse model, metformin exerts antide-
pressant effects by increasing the DNA 5-hmC modification level
of the Bdnf gene.224 Metformin treatment increases the microRNA-
processing protein DICER1 in mice and humans and thus modifies
the profile of microRNAs associated with senescence and aging.225

Administration of metformin also alleviates the senescence of
dental pulp stem cells through AMPK/mTOR signaling pathway-
mediated downregulation of miR-34a-3p and upregulation of
CAB39.226 Strikingly, there is evidence that metformin intervention
improves the lifespan and healthspan of mice even when the
administration starts at middle age (12 months)227 or old age
(20–24 months),228–230 and the effect is enhanced when it starts
earlier.231 In female SHR mice, however, metformin administration
starting at the age of 3 months increases the mean lifespan by
14%, whereas the increase is only 6% when it starts at the age of
9 months, and there is no increase when it starts at the age of
15 months. Consistent with this, the lifespan extension effect of
metformin is not seen in male rats232 or aged female mice.233

Nevertheless, metformin relieves many aging-related diseases in
rodent models, including cognitive impairment and neurodegen-
eration,229,234–237 depression,238 chronic kidney disease,239 thymus
degeneration,240 aging-related cataract,228 aging-related hearing
loss,241 mitochondrial dysfunction in aged hearts,230 adipose
tissue senescence and metabolic abnormalities,242,243 and aging-
related developmental and metabolic phenotypes.244

Rapamycin
Rapamycin, an approved immunosuppressant in solid organ
transplantation, also shows potential to intervene with aging.
Rapamycin extends the median and maximum lifespan of both
male and female mice in a dose-dependent manner through
multiple mechanisms,245–247 including attenuating aging-related
DNA methylation changes in the hippocampus to affect brain
aging,248 slowing the aging epigenetic signatures in mouse livers,
and ameliorating a series of aging-related diseases including
cardiovascular dysfunction,249,250 neurodegeneration,251–254 ske-
letal muscle aging,255,256 ovarian aging,257,258 aging-related
hearing loss,259,260 and aging-associated periodontitis.261,262 How-
ever, prolonged rapamycin administration is reported to induce
muscle insulin resistance in rats, which might increase the
incidence of diabetes.263 Considering the immunosuppression
and NSC suppression effects of rapamycin,264 its application as a
geroprotector should be assessed further.

N-acetyl-l-cysteine
N-acetyl-l-cysteine (NAC) is an antioxidant with a prominent
influence on epigenetic regulation. It delays oocyte aging in mice
by increasing the expression of sirtuins.265 Similarly, NAC
attenuates aging-related oxidative damage and neurodegenera-
tion in rat brains by upregulating sirtuin-1 and downregulating
several SASP factors (TNF-α, IL-1β, IL-6).266 In addition, NAC extends
the lifespan of mice267 and ameliorates a series of aging-related
diseases in rodents, such as AD,268,269 aortic fibrosis,270 immuno-
senescence,271 oxidative stress and senescence in the lung,272

bone loss in ovariectomized mice,273 adipose tissue senescence
and metabolic abnormalities,243 and aging-related hearing loss.274

Other geroprotective drugs
Many other drugs also show geroprotective effects, including anti-
diabetic drugs (sodium-glucose cotransporter-2 inhibitors,275

acarbose,276–278) natural compounds (gallic acid,86 querce-
tin,279,280) antioxidant molecules (vitamin C,85,281 methylene
blue,282) antihypertensive drugs (angiotensin-converting enzyme
inhibitors and angiotensin receptor blockers),283,284 chloro-
quine,87,285 aspirin,286 uridine,287 and so on.

Reprogramming strategy
Reprogramming somatic cells with Yamanaka factors (Oct3/4,
Sox2, Klf4, and c-Myc; OSKM) reverses cell fate and finally
generates induced pluripotent stem cells (iPSCs), which possess
the characteristics of ESCs.288,289 A classic strategy for combating
aging comes from the generation of iPSCs. The durable expression
of OSKM leads to widespread chromatin remodeling,290 and
interestingly, some aged somatic cells can be reprogrammed to
exhibit a youthful state. Ectopic expression of OSK without c-Myc
restores the young patterns of DNA methylation and transcrip-
tomes in mouse retinal ganglion cells, which can ameliorate vision
problems in glaucomatous in aged mice. The DNA demethylation
induced by OSK expression is confirmed to be necessary for the
rejuvenation process of retinal ganglion cells.291

Although long-term reprogramming rejuvenates aged cells to
varying degrees, some of the aged somatic cells will be fully
reversed to iPSCs, which makes it impossible to be used to delay
aging in vivo due to the teratoma-forming ability of iPSCs.292

Notably, transient reprogramming, which allows the expression of
reprogramming factors in a certain period of time, also exerts a
rejuvenating effect on aged somatic cells without altering the
original cell identities.293,294 Transfecting aged human fibroblasts,
chondrocytes, and endothelial cells with mRNAs expressing
OSKMLN (OSKM, LIN28 and NANOG) rejuvenates host cells and
significantly reverses the epigenetic clock.295 More recently, a 13-
day OSKM reprogramming using the Tet-on expression system
significantly reduced the epigenetic age of human fibroblasts
without fully changing them into iPSCs, indicating a boundary
between the rejuvenation and the pluripotency programs.296

Furthermore, short-term expression of OSKM in vivo significantly
expands the lifespan of progeria mice and restores the levels of
H3K9me3 and H4K20me3.292,297 In addition, a 2.5-week transient
reprogramming in early life (2-month-old mice) is sufficient to
extend the lifespan of transgenic progeria mice by 15% and
rejuvenates the DNA methylation patterns in skin cells.298 The
aging-associated epigenetic and transcriptional changes can also
be alleviated by transient reprogramming in naturally aged mice.299

Overall, both long-term and transient reprogramming can achieve
the rejuvenation of aged cells, while transient reprogramming also
provides a novel method to alleviate aging in vivo in an organism.

Senolytic therapy
Senolytics selectively clear senescent cells in aged individuals and
have been studied as a potential therapy for aging intervention.
The first proposed senolytic strategy is the combination of
dasatinib (D) and quercetin (Q), two pan-tyrosine kinase inhibi-
tors.29 A single dose of D (5 mg/kg)+Q (50mg/kg) effectively
delays the aging phenotypes, such as frailty, cardiovascular
diseases, and IVDD in aged mice, and extends the lifespan of
Ercc1-/△ mice.29 To date, D+Q has been shown to prolong the
healthspan and the physiological or pathological aging process in
a variety of tissues or organs, including the cardiovascular
system,300,301 skeleton,302–304 brain,305,306 adipose,307,308

lung,309,310 and muscle.311 Most recently, epigenetics regulation
has been demonstrated to be an important mechanism by which
D+Q eliminates aging cells. D+Q treatment leads to a
significant change in epigenetic signatures in the hippocampus
and improves the cognitive ability of aged male Wistar rats.312

Moreover, senescent adipose precursor cells exhibit hypomethyla-
tion and upregulated expression of the ZMAT3 gene, which is
related to type 2 diabetes; 3 days of D+Q treatment is able to
increase DNA methylation of ZMAT3 and decrease its expression,
and reverse the senescence signature.313 In addition to D+Q,
other senolytic drugs such as ABT-263, ABT-737, digoxin, FOXO4-
DRI (D-retro inverso), and heat shock protein (HSP) 90 inhibitor 17-
DMAG, play their senolytic roles mainly by inducing apoptosis and
mitochondrial dysfunction,314–318 but their relationship to epige-
netics needs further investigation.
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Active health intervention
Active health refers to choosing a healthy lifestyle autonomously,
such as caloric restriction, regular routine and moderate exercise,
which are considered to benefit the quality of life and may exert a
rejuvenating effect on the aging process (Fig. 9). With the
increasing awareness of active health, various studies have
demonstrated that healthy lifestyles ameliorate aging-associated
features in different animals and humans.

Caloric restriction
CR, which reduces calorie intake ranging from 10 to 40%, has been
demonstrated to expand the lifespan of rodents to varying
degrees,319–321 attenuating vascular endothelial dysfunction,
improving the aerobic function of skeletal muscles, and ameliorat-
ing the loss of muscle fibers and turnover of motor neurons.322–325

The effect of CR on lifespan and rejuvenation is at least partially
due to the amelioration of aging-related epigenetic changes, such
as DNA methylation and histone modification.320,326 It is likely that
epitranscriptomic regulation also functions as an effector of CR. For
example, CR in rats significantly inhibited the aging-associated
down-regulation of the RNA m6A reader protein YBX1, which has
been shown to be one of the drivers of stem cell aging.327

According to the epigenetic clock developed in mice, 40% CR
treatment slows the molecular changes and reduces the epigenetic
age in mouse livers. Notably, a 20-year CR, which reaches a final
level at 30%, shows reduced aging-related pathologies and a
significant lifespan expansion in adult rhesus monkeys, indicating
that moderate CR also exerts a rejuvenating effect on pri-
mates.328,329 In humans, moderate CR slows biological aging,
improves the function of the liver, and reduces oxidative stress and
the incidence of aging-related diseases.330–336 In summary, CR has
been widely proven to be an effective method to delay aging, and
clinical trials demonstrate the accessibility to applying CR in

humans, which will be discussed in the ‘Clinical intervention’
section later.

Circadian rhythm
The circadian rhythm coordinates the behavior with the day/night
shift and is also considered to play an essential role in the aging
process.337 For example, epidermal and muscle stem cells from
aged mice exhibit changed daily rhythms that cope with the stress
of aging environments, indicating the continuous change of
circadian rhythms along with the aging process.338 Disturbed
circadian rhythm is linked to changes in chromatin structure, and
it is found that 6 h sleep deprivation affects the chromatin
accessibility in the cerebral cortex of mice, which contributes to
long-term effects on gene expression.339 Forced circadian change
may also accelerate the aging process and impair body function at
a systemic level. Light schedule changes significantly affect aged
mice, and advanced daytime leads to increased mortality of aged
mice.26 In addition, mice with an innate circadian period close to
24 h live 20% longer than those with a shorter or longer innate
circadian period.340 The disturbance of the circadian rhythm in
rodents indicates that maintaining regular day/night cycles may
reduce aging-related mortality and raise the question of whether
circadian rhythm affects humans. Notably, a short-term circadian
misalignment of 12-h inverted behavioral and environmental
cycles for three days increases blood pressure and inflammatory
markers in humans.341 However, how regular circadian rhythm
benefits the healthspan, especially from the lens of epigenetic
mechanisms, still needs further investigation.

Exercise
Exercise may remodel DNA methylation on the promoter of key
genes in skeletal muscle342,343 and histone modifications could
also be changed by exercise through inhibition of the function of

Fig. 9 A healthy lifestyle to postpone aging. Active health, including caloric restriction, rhythm control and exercise, improves body function
and affects the lifespan of various animals, suggesting that healthy lifestyles exert profound effects on aging intervention
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HDACs, thereby influencing the gene expression patterns.344,345

Moreover, exercise can modulate the expression of several
miRNAs that mediate the beneficial process.346,347 After voluntary
resistance training for 8 weeks, aged mice exhibit nearly 8 weeks
of younger epigenetic age in their muscle and a modest lifespan
extension.56 In addition, voluntary wheel running benefits aged
mice in neurogenesis and learning ability348 and reduces the
abnormal changes of the aged synapse.324 Importantly, the
rejuvenating effect of exercise is also observed in humans. There
is a significant difference in the transcriptional profile between
physically active and sedentary aged adults, and endurance
exercise improves the function of muscles in aged people.349 In
addition, resistance training reduces the level of the mitochondrial
methylome in aged human skeletal muscle and partially restores
the aging-related change in the nuclear gene methylome in
muscle.350,351 Clinical trials aiming to investigate the beneficial
effects of exercise will be discussed in the “Clinical intervention”
section later.
Current studies have demonstrated that a healthy lifestyle

indeed exerts a beneficial effect on aging and therefore raises
awareness of vibrant health. However, caloric restriction, circadian
control and exercise all need to be moderate during implementa-
tion, and the boundary between healthy and unhealthy status
requires further investigation. As our understanding of aging
deepens, a healthy lifestyle is considered to be the easiest way for
humans to interfere with aging, and active health definitively
deserves more attention.

Clinical intervention
Although various strategies targeting aging show satisfactory
results in animal models, their effects in humans have yet to be
demonstrated. Currently, diet intervention and exercise, which are
extensively associated with epigenetic regulation, are the mostly
studied and accepted strategies to target aging in humans. The
clinical trial results demonstrate that CR (11.9%–25%) attenuates
aging-related biomarkers, such as decreasing weight, enhancing
insulin sensitivity and glucose tolerance, and improving major
cardiometabolic risk factors.334,352,353 Time-restricted eating (TRE)
in humans also provides benefits to some extent. Under an 8–10 h
daily eating window of TRE, reductions in weight, blood pressure,
atherogenic lipids, and cardiovascular risks are observed.354,355 A
more stringent TRE (6 h window) also shows improvement in
insulin sensitivity.356 However, the strategy of TRE is challenging to
undertake, especially for cases with longer fasting times. More-
over, skipping breakfast has been found to be associated with an
increased risk of mortality from cardiovascular disease.357 There-
fore, an 11–12 h daily eating period is suggested to be ideal to
avoid the compliance issues and side effects of TRE.358 Consider-
ing the difficulty for most subjects to adhere to chronic and
extreme diets of CR or TRE, a fasting-mimicking diet (FMD) with
low calories, low sugars, and low proteins but high unsaturated
fats, provides another choice for a diet intervention. In a
randomized phase 2 trial, healthy participants who received
3 monthly 5-day FMD cycles exhibited reduced markers/risk
factors for aging, diabetes, cancer, and cardiovascular disease.359

In addition, a comprehensive understanding of the dietary
interventions in humans has led to the proposal of the everyday
normocaloric longevity diet that includes a mid to high
carbohydrate and low but sufficient protein intake that is mostly
plant-based but includes regular consumption of pesco-
vegetarian-derived proteins.358 Diet intervention has also been
found to be associated with epigenetic regulation in clinical trials.
For example, CR in healthy and slightly overweight subjects
significantly increases plasma concentrations of SIRT1.360 Five days
of periodic fasting significantly elevated the expression of SIRT1
and SIRT3 in blood cells.361 Moreover, diet intervention has been
shown to slow down the DNA methylation-based biomarkers of
aging in several studies.362,363

Exercise has been demonstrated to be an effective geropro-
tector to improve the lifespan and healthspan in humans.
Vigorous exercise, such as running, at middle and older ages, is
associated with reduced disability in later life and reduced
mortality,364,365 and leisure time physical activity of moderate to
vigorous intensity is associated with longer life expectancy.366 In
clinical intervention studies, exercise is found to reverse a series of
aging-related diseases, including heart failure,367–371 cognitive
decline,372,373 atherosclerosis,374 and insulin resistance.375,376 The
geroprotective effect of exercise in humans is closely linked to
epigenetic regulation. Exercise modifies the DNA methylation
patterns in aged human skeletal muscle and reduces stochastic
epigenetic mutations in crucial cancer-related pathways.32,363

Endurance exercise upregulates the expression of SIRT3 in the
skeletal muscle and upregulates SIRT1, SIRT3, and SIRT6 in the
serum.375,377,378 Exercise also modulates the microRNA expression
profile (such as miR-423-3p, miR-451a, miR-766-3p, miR-130a, and
miRNA-223) in subjects with type 2 diabetes, which may be
involved in the improvement of weight loss, blood glucose
control, and insulin sensitivity.379–381 In addition, the combination
of diet and lifestyle interventions, including exercise, sleep,
relaxation guidance, supplemental probiotics and phytonutrients,
reverses the epigenetic age in healthy adult males.362

Pharmacological intervention is another major strategy to
target natural aging. Epigenetic-related compounds, such as
NMN, NR, and STACs, show potential as geroprotectors in clinical
trials. Supplementation with NMN increases muscle insulin
sensitivity, insulin signaling, and muscle remodeling in prediabetic
women.382 NMN prevents aging-related muscle dysfunctions383

and shows benefits in improving aerobic capacity, cardiovascular
fitness, sleep quality, fatigue, and physical performance.89,384 As
for NR, clinical trials indicate that NR suppresses inflammatory
activation of PBMCs in heart failure patients385 and decreases the
levels of inflammatory cytokines in the serum and cerebrospinal
fluid of Parkinson’s disease (PD) patients.386 However, most of
these studies focus on the safety and tolerability of NR in
patients.386,387 The effectiveness of NR in preventing or attenuat-
ing the progression of aging-related disorders should be verified
in further studies, considering that several clinical trials show that
NR does not improve insulin resistance.388–391 STACs exhibit
inspiring effects in preclinical studies, but the results in clinical
trials are not as satisfactory. For example, the natural STAC
resveratrol and early synthetic STACs such as SRT1720 have very
low bioavailability, potency, and limited target specificity,392 and
other STACs, such as SRT2379 and SRT3025, produce no significant
clinical responses. Similarly, although SRT2104 shows some
benefits on lipid parameters, including cholesterol and triglycer-
ides,393,394 it does not improve glucose or insulin control394,395

and has no significant anti-inflammatory effect in ulcerative colitis
patients.396 The poor and variable pharmacokinetics upon oral
administration of SRT2104 need to be resolved in the future.
Other geroprotective interventions, such as metformin, rapa-

mycin, and D+Q, have also been explored in clinical trials, and
the data show that metformin administration reduces the
incidence of diabetes,397 cardiovascular events,398 frailty,399 and
cognitive impairment,400 and improves putative longevity effec-
tors in PBMCs.401 Although rapamycin shows exciting effects in
preclinical studies, similar results have not been observed in
clinical trials. In addition, despite the improved immune function
in the elderly after administration of the mTOR inhibitor
RAD001,402,403 several studies show that rapamycin does not
improve cognitive function or physical performance404 and does
not improve frailty.405 The first clinical study of senolytics
demonstrated that D+Q improves 6-min walk distance, walking
speed, chair raise ability, and short physical performance battery
in idiopathic pulmonary fibrosis (IPF) patients.309 D+Q also
reduces senescent cell burden in adipose tissue and skin and
reduces circulating SASP in people with diabetic kidney disease.406
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Collectively, diet intervention and exercise are still the most
accepted strategies to intervene in aging and aging-related
diseases, mainly because of their effectiveness and safety for
humans. Advances in pharmacological interventions such as
geroprotectors also show improvement in multiple aging-related

conditions; however, the safety concerns and inconsistent results
of these strategies demand further clinical evidence. Many other
clinical trials related to epigenetic targets and the regulations of
aging are still ongoing (Table 1). Together, these findings will
provide more candidates for gerotherapeutics and pave the way
for fighting aging in the future.

CONCLUSION AND PERSPECTIVE
Studies in C. elegans, Drosophila, and mammals have unraveled
the aging-related epigenetic changes in DNA, RNA, and histone
modifications and alterations in the more advanced chromatin
structure states. Correspondingly, these epigenetic changes have
been identified as biomarkers or intervention targets of aging,
such as the global decrease in genomic DNA methylation, the
global loss of canonical histones, chromatin landscape remodeling
caused by heterochromatin loss, and nuclear membrane protein
changes in human and mouse tissues during aging. However, the
same chromatin modifications (e.g., H3K14ac and H3K27me3) may
play opposite roles in regulating aging and longevity across
species and even across tissues within the same species,
indicating that epigenetic changes need to be interpreted with
their context. It is noteworthy that emerging technologies such as
single-cell omics sequencing provide a higher resolution for
dissecting epigenetic characteristics during aging, and provide
new avenues for investigating the heterogeneity of aged cells. In
addition, the spatiotemporal transcriptomic atlas across multiple
mammalian tissues can provide more information on aging-
related interactions between cells or tissues, which may facilitate
the design of better and more precise therapeutics for aging and
aging-related diseases.
Based on these epigenetic changes in cells during aging, a

series of corresponding therapeutic strategies have been devel-
oped. Geroprotective drugs targeting longevity-related histone
acetylation, including supplementation with NAD+ precursors,
STACs have been tested in various species. Metformin, rapamycin,
and other drugs have also shown positive effects in alleviating
aging-related pathologies and regulating aging-related epigenetic
changes in preclinical studies; however, the safety and efficacy of
these drugs require more clinical investigation. Currently, a
rational diet and exercise are considered the most effective and
easiest way to delay aging, but drugs targeting key aging-related
molecular and cellular changes are still promising and attractive
clinical treatment strategies for intervening in aging and treating
aging-related diseases.
Despite all the recent progress, it remains unclear how

epigenetic changes interact with other factors, including the
genetic background and even the microbiome, to regulate the
aging process. It is also unclear how environmental factors,
lifestyles, and physiological and psychological states contribute to
epigenetic changes in the aging process. Furthermore, as aging is
a continuous process that occurs over many years in humans, it
would be necessary to track the epigenetic changes in this entire
process for a better understanding of what and how epigenetic
regulations contribute to each stage of aging.
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