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Abstract

Background: Phytopathogenic fungi affecting crop and post-harvested vegetables are a major
threat to food production and food storage. To face these drawbacks, producers have become
increasingly dependent on agrochemicals. However, intensive use of these compounds has led to
the emergence of pathogen resistance and severe negative environmental impacts. There are also
a number of plant diseases for which chemical solutions are ineffective or non-existent as well as
an increasing demand by consumers for pesticide-free food. Thus, biological control through the
use of natural antagonistic microorganisms has emerged as a promising alternative to chemical
pesticides for more rational and safe crop management.

Results: The genome of the plant-associated B. amyloliquefaciens GAl was sample sequenced.
Several gene clusters involved in the synthesis of biocontrol agents were detected. Four gene
clusters were shown to direct the synthesis of the cyclic lipopeptides surfactin, iturin A and fengycin
as well as the iron-siderophore bacillibactin. Beside these non-ribosomaly synthetised peptides,
three additional gene clusters directing the synthesis of the antibacterial polyketides macrolactin,
bacillaene and difficidin were identified. Mass spectrometry analysis of culture supernatants led to
the identification of these secondary metabolites, hence demonstrating that the corresponding
biosynthetic gene clusters are functional in strain GAl. In addition, genes encoding enzymes
involved in synthesis and export of the dipeptide antibiotic bacilysin were highlighted. However,
only its chlorinated derivative, chlorotetaine, could be detected in culture supernatants. On the
contrary, genes involved in ribosome-dependent synthesis of bacteriocin and other antibiotic
peptides were not detected as compared to the reference strain B. amyloliquefaciens FZB42.

Conclusion: The production of all of these antibiotic compounds highlights B. amyloliquefaciens
GAI as a good candidate for the development of biocontrol agents.
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Background

Phytopathogenic fungi affecting crop and post-harvested
vegetables are a major threat to food production and food
storage. Worldwide, this has led to important economic
losses, particularly over the past few decades as agricul-
tural production has intensified. Post-harvest food spoil-
age also represents a potential health hazard for humans
due to the production by phytopathogens of toxic metab-
olites in the affected sites [1]. To face these drawbacks,
producers have become increasingly dependent on agro-
chemicals. However, intensive use of these compounds
has led to the emergence of pathogen resistance and
severe negative environmental impacts. There are also a
number of plant diseases for which chemical solutions are
ineffective or non-existent as well as an increasing
demand by consumers for pesticide-free food. Thus, bio-
logical control through the use of natural antagonistic
microorganisms has emerged as a promising alternative to
chemical pesticides for more rational and safe crop man-
agement. There is a large body of literature reporting the
potential use of rhizosphere-associated bacteria in stimu-
lating plant growth and biocontrol agents [2-4]. Among
them, several strains belonging to the genus Bacillus and
particularly to the B. subtilis and B. amyloliquefaciens spe-
cies were reported effective for the biocontrol of multiple
plant diseases caused by soilborne [5,6] or post-harvest
pathogens [7-9]. Members of the Bacillus genus are thus
among the beneficial bacteria mostly exploited as micro-
bial biopesticides. Bacillus-based products represent about
half of the commercially available bacterial biocontrol
agents [10].

From a global viewpoint, the beneficial protective effect of
these agents may rely on different mechanisms. By taking
benefit from the nutrients secreted by the plant root, these
bacteria efficiently colonise root systems and the sur-
rounding soil layer (rhizosphere). In turn, they benefi-
cially influence the plant through direct growth
stimulation and/or by protecting it from infection by phy-
topathogens. Antibiosis through the production of anti-
fungal metabolites and antibiotics is probably the best
known and most important mechanism used by biocon-
trol bacteria to limit pathogen invasion in host plant tis-
sues. Competition for iron traces in soils through
siderophore production has also been postulated to be an
important mechanism for the biocontrol activity of some
rhizobacteria [11]. Another important mechanism relies
on the ability of some strains to activate defence systems
in the host plant. In other words, the beneficial bacterium
can trigger a systemic resistance reaction that renders the
host less susceptible to subsequent infection in distal tis-
sues. This long-lasting phenomenon has been termed
rhizobacteria-induced systemic resistance (ISR).
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It is well known that some Bacillus species may synthesise
numerous antimicrobial or, more generally, bioactive
compounds with well-established activity in vitro [12].
However, except for a very limited number of strains
[13,14], few studies that relate the global potential for
antibiotic production with the biocontrol activity of a par-
ticular Bacillus strain have been reported. In this context,
the B. amyloliquefaciens strain GA1 (formerly B. subtilis
GA1, see below) displays high in vitro inhibitory activity
toward growth of multiple fungal and oomycete plant
pathogens [15]. When used as seed treatment, strain GA1
was shown to alleviate seedling diseases through direct
antibiosis against soilborne pathogens (unpublished
data). The strain was also shown to reduce post-harvest
infection of apples caused by B. cinerea, the causative
agent of grey mold disease [15]. These data suggest the
secretion of multiple antibiotics and demonstrate the
potential application of B. amyloliquefaciens GA1 as a bio-
control agent. In the present work, the genome of strain
GA1 was sample sequenced to better characterise the
genetic determinants directing the synthesis of antimicro-
bial metabolites that could be used in the field.

Results

Strain identification

The recN and recA sequences from strain GA1 had 83%
and 98% identity, respectively, with the sequence of B.
amyloliquefaciens FZB42, while scores of 68% and 84%
were obtained for B. subtilis. The phylogenetic tree (figure
1) constructed using cancatenated recA and recN
sequences of related members of the Bacillus genus
revealed that strain GA1 grouped with B. amyloliquefaciens
FZB42 and is phylogenetically separated from B. subtilis.
However, the phylogenetic tree suggests that the two
strains are somewhat distant genetically.

Genome analysis

Sequencing 500 clones from a shotgun library led to the
determination of 461.5 kb of the B. amyloliquefaciens GAI
chromosome and the identification of 358 protein-coding
sequences. These presented, on average, 89% identity on
amino acid level with that of B. amyloliquefaciens FZB42
and 76% with that of B. subtilis. Among these sequences,
the partial ORFs of eight giant gene clusters directing the
synthesis of bioactive peptides and polyketides by modu-
larly organised mega-enzymes, the so-called non-ribos-
omal peptide synthetase (NRPS) and polyketide
synthetase (PKS), were identified (figure 2). In addition,
the sfp gene coding for a 4'-phosphopantetheinyl trans-
ferase responsible for the conversion of the apo-ACP
domains of PKS and NRPS to their active holo-forms, was
also detected in strain GA1 together with the regulatory
gene yczE (data not shown).
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Likelihood phylogenetic tree depicting the phylogenetic relationship between strain GAIl and other represent-
atives of the Bacillus genera: B. amyloliquefaciens FZB42 (NC_009725), B. anthracis str. Ames (NC_003997), B. cereus ATCC
10987 (NC_003909) B. cereus ATCC 14579 (NC_004722), B. halodurans C-125 (BA_000004), B. licheniformis ATCC 14580
(NC_006270), B. pumilus SAFR-032 (NC_009848), B. subtilis subsp. subtilis str. 168 (NC_000964), B. thuringiensis str. Al Hakam
(NC_008600), B. weihenstephanensis KBAB4 (NC_010184). All sequences were aligned on Clostridium botulinum Ba4 str. 657
(NC_012658). Values for frequencies less than 50% are not given. The scale bars represent the number of substitutions per

base position.

Fourteen gene fragments with homology toward gene
clusters directing the synthesis of cyclic lipopeptide were
obtained (figure 2). Of these, eleven had a high amino
acid identity with srf (80-96%) or fen (41-92%) operon
directing the synthesis of surfactin and fengycin in B. amy-
loliquefaciens FZB42. In strain GA1, the two gene clusters
were found located in the same genetic environment as in
strain FZB42 [13]; i.e. at the hxIR-CDS22 and yngL-dacC
loci for srf and fen operon, respectively (figure 2). Simi-
larly to B. amyloliquefaciens FZB42 and B. subtilis 168, the
comS gene, encoding a competence signal molecule, was
found embedded within srfAB (figure 2). Three gene frag-
ments directing the synthesis of an iturin lipopeptide were
also detected. These fragments presented 48-82% amino
acid identity with the ituDABC operon encoding the iturin

A synthetase in B. subtilis RB14 [16]. In strain GA1l, this
operon was found located between the ORFs xynD and
yxjF (figure 2). In addition, five gene fragments presented
a high amino acid identity (87-93%) with the dhb gene
directing the synthesis of the siderophore bacillibactin in
B. amyloliquefaciens FZB42. They were found at an exactly
conserved locus, i.e. between CDS304 and yuilV ORFs (fig-
ure 2). By contrast, the nrs operon directing the synthesis
of a not yet identified NRPS peptide in B. amyloliquefaciens
FZB42 [13] could not be detected by PCR techniques in
strain GA1 (figure 3).

Several gene fragments involved in polyketide synthesis
were also identified. Of these, thirteen presented a high
amino acid identity with PKS genes directing the synthesis
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Figure 2

Overview of the different gene fragments identified in strain GAIl. The grey arrows represent the different genes
involved in the metabolite synthesis in B. amyloliquefaciens FZB42 while the black arrows represent the flanking genes. Black
lines correspond to the gene fragments obtained during the sequencing of strain GAI, while grey lines indicate flanking regions
amplified by PCR on strain GA| genomic DNA with primer pairs described in Table |. The values in parentheses give the per-

centage of the gene cluster determined in strain GAI.

of the antibacterial compounds macrolactin (86-98%),
difficidin (77-96%) and bacillaene (84-96%). In strain
GA1, all these gene clusters were found to be collinear to
that of B. amyloliquefaciens FZB42 [13]; i.e. between
CDS175 and pdhA for macrolactin, prol and CDS254 for
difficidin and mutl and yoak for bacillaene (figure 2).

In addition to these NRPS and PKS metabolites, genes
involved in the synthesis of ribosomaly synthetised anti-
bacterial compounds were detected in strain GA1. Indeed,
their deduced amino acid sequence presented high iden-
tity (76-100%) with bacB, bacC, bacD and bacE genes
encoding enzymes responsible for the synthesis and
export of the di-peptide bacilysin, and were found located
between ORFs ywfH and ywfA as in FZB42 strain. By con-

trast, none of the genes involved in B. amyloliquefaciens
FZB42 in the resistance toward the bacteriocin mersaci-
din, nor those directing the biosynthesis of the cyclic bac-
teriocin subtilosin found in some strains of B.
amyloliquefaciens could be detected by PCR techniques in
strain GA1 (figure 4) [13,17].

Analysis of the NRPS and PKS product of B.
amyloliquefaciens GAI

Culture supernatants of B. amyloliquefaciens GA1 collected
after 12 and 72 h of growth in Landy medium were con-
centrated by solid phase extraction and analysed by
HPLC-ESI-MS. For samples collected after 72 h, three
groups of mass peaks were detected (Table 1). Signals at
m/z from 1030.8 to 1074.8 and from 1471.9 to 1543.8
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Table I: Metabolite production of B. amyloliquefaciens GAl detected by HPLC-ESI mass spectrometry

Metabolite Observed mass peak Assignment Reference
Surfactin 1030.8, 1046.8 [M+Na, K]+ C13-surfactin [28]
1044.8, 1060.8 [M+Na, K]+ Cl4-surfactin [28]
1058.8, 1074.8 [M+Na, K]+ CI5-surfactin [28]
Fengycin 1471.9, 1487.9 [M+Na, K]+ Ala-6 C|5-fengycin [28]
1485.9, 1501.9 [M+Na, K]+ Ala-6 Cl6-fengycin [28]
1499.9, 1515.9 [M+Na, K]+ Ala-6 C|7-fengycin [28]
1513.9, 1529.9 [M+Na, K]+ Val-6 Cl6-fengycin [28]
1527.8, 1543.8 [M+Na, K]+ Val-6 C|7-fengycin [28]
lturin A 1066.1 [M+Na]+ Cl4-iturin A [28]
1079.7 [M+Na]+ CI5-iturin A [28]
Macrolactin 425.4 [M+Na]+ Macrolactin A28 [19]
511.4 [M+Na]+ 7-o-malonyl macrolactin A [19]
525.4 [M+Na]+ 7-o-succinyl macrolactin A [19]
629.3 [M+H-H201+ Macrolactin D [19]
Difficidin 559.2 [M-H]- Oxydifficidin [18]
Bacillaene 583.5 [M+H]+ Bacillaene A [18]
605.5 [M+Na]+ Bacillaene B [18]
Chlorotetaine 289.2 [M+H]+ Chlorotetaine (35Cl) [20]
291.1 [M+H]+ Chlorotetaine (3Cl) [20]

were identified as surfactins and fengycins on the basis of
data obtained both from the literature and from the anal-
ysis of pure compounds. For fengycins, signals at m/z of
1485.9 and 1513.9 and at 1499.9 and 1527.8 highlight an
Ala/Val dimorphy at position 6 of the peptide ring for the
C16 and C17 homologues, which is the characteristic trait
of fengycin A and B. Mass peaks at m/z 1066.1 and 1079.7
were found in accordance with the calculated mass values
of sodium adducts of the C14 and C15 homologues of
iturin A. By contrast, no peaks corresponding to the calcu-
lated mass of the various bacillomycin D homologues or
to those of mycosubtilin could be detected under these
conditions. This suggests that the iturins produced by
strain GA1 correspond to the iturin A group. MALDI-TOF-
MS analyses of crude supernatant were consistent with the
mass patterns obtained by HPLC-ESI-MS (data not
shown). From samples collected after 12 h of growth, sig-
nals at m/z 425.4, 511.4, 525.4 and 629.3 were assigned
to the molecular ions of the antimicrobial polyketide
macrolactin A, 7-o-malonyl macrolactin A, 7-o-succinyl
macrolactin A and macrolactin D respectively, whereas
signals at m/z 559.2, 583.5 and 605.5 were assigned to
oxydifficidin, bacillaene A and bacillaene B (Table 1)
based on data from the literature [18,19].

The production of siderophores by B. amyloliquefaciens
GA1 was investigated by plating cells on CAS solid
medium. After 72 h of incubation, the disappearance of

the blue colour due to the ternary complex chrome azu-
rol-S/iron (III)/hexadecyltrimethylammonium bromide
in favour of a bright orange halo traduces the uptake of
the ferric ions by the cells and thus the production of
siderophore (i.e. bacillibactin) (data not shown).

Production of antibacterial peptide

HPLC-ESI-MS analysis of freeze-dried samples of culture
in Basic 77 medium gave peaks at m/z 289.2 and 291.1,
which represents the typical mass spectrometric signature
of the dipeptide antibiotic chloroteatine, a chlorinated
derivative of bacilysin (Table 1) [20]. Surprisingly, no
mass peak corresponding to this latter compound could
be detected under our conditions. When samples were
analysed by MALDI-TOF mass spectrometry, none of the
bacteriocin subtilosin, mercacidin or subtilin mass signals
could be detected (data not shown).

Discussion

Recent taxonomic studies have revealed that B. subtilis is
heterogeneous and should be considered as a group of
closely related species [21]. In addition, B. subtilis and B.
amyloliquefaciens are phenotypically similar and can be
easily confused. Based on phenotypic and biochemical
characterisations, strain GA1, initially isolated from straw-
berry cultures, was first assigned to B. subtilis (unpub-
lished data, [15]). However, substantial molecular
evidence suggested that the strain was more related to B.
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nrsB nrsA

Detection of the nrs operon in B. amyloliquefaciens strains FZB42 and GAI. The grey arrows indicate the gene
organisation in strain FZB42. The black lines represent the different gene fragments amplified by PCR using primer pairs as

described in Table |I.

amyloliquefaciens than to B. subtilis. Thus, to accurately
characterise the strain taxonomically, recA and recN genes,
encoding DNA repair and recombination proteins, were
sequenced and used to construct a phylogenetic tree.
These two genes were selected because they had previ-
ously been shown to be effective in resolving closely
related taxa [22]. The obtained phylogenetic tree clearly
demonstrates that strain GA1 should be assigned to B.
amyloliquefaciens rather than B. subtilis. The higher level of
identity obtained for the 358 protein-coding sequence
detected in strain GA1l to that of B. amyloliquefaciens
FZB42 is in accordance with this result.

Plant-associated bacteria are known to play a key role in
plant health by stimulating their growth and protecting
them from phytopathogens, with this related to the pro-
duction of a vast array of biologically active NRPS and PKS
secondary metabolites. These metabolites have the same
mode of synthesis, the so-called multicarrier thiotemplate
mechanism, in which small monomer units, aminoacids
and aryl acid in NRPS and acyl-CoAs in PKS are loaded,
activated and condensed by mega-enzymes organised in
iterative functional units [23]. The aim of this work was to
better genetically characterise B. amyloliquefaciens GA1,
with particular emphasis on gene clusters encoding these
mega-enzymes. As they are encoded by large operons of
55 to 80 kb for PKS and 18 to 42 kb for NRPS, randomly

sequencing 10% of the genome yielded enough data to
point out the presence of these gene clusters in strain GA1.

Among NRPS antibiotics, Bacillus amyloliquefaciens GA1
was found to produce surfactin, iturin A, fengycin A and
fengycin B. These are cyclic lipopeptides (CLP) composed
of seven (surfactin and iturin A) or 10 o-amino acids
(fengycins) linked to a B-amino (iturins) or f-hydroxy
(surfactins and fengycins) fatty acid which may vary from
C-13 to C-16 for surfactins, from C-14 to C-17 for iturins
and from C-14 to C-18 for fengycins. CLPs have well-rec-
ognized potential biotechnology and biopharmaceutical
applications due notably to their surface-active properties
[24,25]. These surfactants may also play different roles in
the development and survival of Bacillus strains in their
natural habitat: increasing bioavailability of hydrophobic
water-insoluble substrates, heavy metal binding, bacterial
pathogenesis, quorum sensing, motility, biofilm forma-
tion etc. [26,27]. Other works have highlighted additional
traits that are also very important for the fitness of Bacillus
in the rhizosphere and for its efficacy as biocontrol agent
[28].

The ability of B. subtilis to efficiently colonise surfaces of
plant roots is a prerequisite for phytoprotection. This
process relies on surface motility and efficient biofilm for-
mation of the Bacillus cell populations that evolve and
behave as structured and coordinated microcolonies
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Detection of the gene cluster involved in resistance toward bacteriocins in B. amyloliquefaciens strains FZB42
and GAI (A) and those responsible for subtilosin synthesis, immunity and transport in B. subtilis 168 and B. amyloliquefaciens
strains GAI. The grey arrows indicate the gene organisation in strain FZB42 (A) and 168 (B). The black lines represent the dif-
ferent gene fragments amplified by PCR using primer pairs as described in Table

adhering to root and on soil particle surfaces [29]. By
modifying cell surface properties, surfactin and iturin
were reported to positively influence cell spreading,
swarming and biofilm formation [30-33] and thus may
globally favour plant root colonisation. Furthermore,
iturins and fengycins display strong antifugal activity and
are inhibitory for the growth of a wide range of plant path-
ogens. Surfactins are not fungitoxic in themselves but
retain some synergistic effect on the antifungal activity of

iturin A [34]. In the context of biocontrol, the involve-
ment of CLPs in direct antagonism of phytopathogens is
thus obvious and was demonstrated by testing the pure
compounds in planta or by correlating the biocontrol
activity and use of non-producing or overproducing deriv-
atives [5,35,36].

The role of fengycins produced by strain GA1 was demon-

strated by the very effective disease control provided by
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treatment of fruits with CLP-enriched extracts and by in
situ detection of fengycins in inhibitory amounts [15].
Another recently established role for lipopeptides from
beneficial Bacillus isolates is the stimulation of the plant
immune system [37]. Surfactins and, to a lesser extent,
fengycins can induce a priming state in host plant which
allows an accelerated activation of defense responses
upon pathogen or insect attack, leading to an enhanced
resistance to the attacker encountered [38]. Surfactins can
be considered as a novel class of microbial-associated
molecular patterns that can be specifically perceived by
plant cells as signals to activate defense mechanisms [39].
The use of single strains evolving diverse mechanisms to
reduce disease incidence is thus of prime interest. Bacillus
isolates such as strain GA1 that co-produce the three CLP
families should display such a multi-faceted biocontrol
activity. That said, in strain GA1 the itu operon directing
the synthesis of iturin A in B. subtilis RB14 [40] was sur-
prisingly found inserted at exactly the same position as the
expected bacylomycin D gene cluster from B. amyloliquefa-
ciens FZB42 [32]. This suggests that an inter-species hori-
zontal transfer of genes could have occurred between B.
subtilis and B. amyloliquefaciens.

Besides lipopepides, a functional dhb gene cluster was
shown in strain GA1 to direct the synthesis of the catecho-
lic siderophore bacillibactin, a cyclic trimeric lactone of
the 2,3-dihydroxybenzoyl-Gly-Thr monomer unit.
Siderophores are high affinity ferric iron chelators that
enhance the microbial acquisition of this element in envi-
ronments where its bioavailability is extremely low, e.g. in
soils. Thus, the presence of siderophore-producing micro-
organisms in the rhizosphere contributes to plant health
by complexing iron and making it less available to phy-
tophathogens that are generally not able to produce com-
parable Fe-transport systems [40].

In addition to peptides, polyketides are the other domi-
nant family of secondary metabolites having revelant bio-
activities. Similarly to B. amyloliquefaciens FZB42, three
functional gene clusters directing the synthesis of diffici-
din, macrolactin and bacillaene were identified in strain
GALl. Difficidin is an unsaturated 22-membered macro-
cylic polyene lactone phosphate ester [41] with broad
spectrum antibacterial activity [42]. It inhibits protein
biosynthesis [43] and was recently shown promising in its
suppressive action against Erwinia amylovara, a devasting
plant pathogen causing necrotrophic fire blight disease of
apple, pear and other rosaceous plants [6]. By contrast,
macrolactin and bacillaene have not yet been demon-
strated to be directly related to biocontrol, although they
are both antimicrobial agents that could be potentially
useful in human medicine. Macrolactin, which consists of
a 24-membered ring lactone, had the ability to inhibit
murine melanoma cancer cells as well as mammalian her-

http://www.microbialcellfactories.com/content/8/1/63

pes simplex viruses. It was also shown effective in protect-
ing lymphoblast cells from HIV [44]. Similarly to
difficidin, bacillaene is an inhibitor of prokaryotic protein
synthesis constituted by an open-chain enamine acid with
an extended polyene system. This compound displays
antimicrobial activity toward human pathogens such as
Serratia marcescens, Klebsiella pneumoniae and Staphylococ-
cus aureus [45].

Bacilysin is a dipeptide composed of an L-alanine and the
unusual amino acid L-anticapsin and represents one of
the simplest peptide antibiotics known with antifungal
and antibacterial activities [46]. L-anticapsin, released
after uptake in susceptible cells, is an inhibitor of the glu-
cose amine-6-phosphate synthetase, an enzyme essential
in cell wall biosynthesis [47]. Due to its antibacterial activ-
ity, bacilysin is effective as a biocontrol agent, notably by
inhibiting the growth of E. amylovora, the causative agent
of fire blight disease [6]. It is also effective on the Absidia
ssp., which is responsible for cutaneous and invasive zygo-
mycosis in immunocompromised patients [48]. Besides
bacilysin, some strains of B. subtilis also co-produced chlo-
rotetaine, a chlorinated derivative of bacilysin with simi-
lar antibacterial activity [20,49]. Although no direct
evidences are available, some experimental data suggest
that the two compounds could share the same biosyn-
thetic pathway [50]. Here, mass spectrometry analysis
demonstrated that B. amyloliquefaciens GA1 synthetises
only chlorotetaine as dipeptide antibiotic. While this
behaviour is not clearly understood, this is to our knowl-
edge the first B. amyloliquefaciens strain reported to pro-
duce chlorotetaine and the first strain to produce
chlorotetaine and not bacilysin.

Conclusion

In conclusion, the genetic and biochemical characterisa-
tion of the plant-associated B. amyloliquefaciens GAI dem-
onstrated that the strain possesses a huge potential for
biocontrol and plant growth promotion. Its natural com-
petence and its possible genetic manipulation render
strain GA1l attractive for further investigations for the
development of green pesticides.

Methods

Strain indentification

Strain GA1 was identified by recA and recN sequence anal-
ysis [22]. Extraction and amplification of genomic DNA
were performed as described elsewhere [51]. Fragments of
recA and recN were amplified using primer pairs recAf/
recAr and recNf/recNr, respectively (Table 2) and
sequenced at the GIGA Genomics Facility (University of
Liege, Liege, Belgium). Based on the 372 bp and 849 bp
partial sequences of recN and recA, phylogenetically
related bacteria were aligned using BLAST search against
the GenBank data base. Multiple alignments with the
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Table 2: Oligonucleotides used in this study
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Name Sequence 5'-3' Metabolite, gene or flanking region
bacAFI GTGAAGGCCGTACTTTTGTCTGGC Bacilysin, right
bacARI GGGGGGAAATACAGCTTCAGGGC Bacilysin, right
beaBF| GCCCGAAACGGCAGCGCCTG Bacillaene, left
beaBR| CGGAATGGAGGCTTTGATCCTCTG Bacillaene, left
beaSF|1 CGCAAAAGCTCTTCGACCGCCGTC Bacillaene, right
beaSR| CTCTCGTGCCGTCGGAATATCCGC Bacillaene, right
dfnMF|1 CGGAGTGAAACCGTGCCGGGATAAAGA Difficidin, left
dfnMRI GACCATTCAGAGCGGAAAGCTCC Difficidin, left
dfnAFI GGTGCGGCATGAAGATTTGAGATCACCG Difficidin, right
dfnARI GGAGAGCACTTCAATTCCGACGTTGACC Difficidin, right
dhbFF3 GCCTAGATGACATGGCGGCGG Bacillibactin, left
dhbFR2 GCCGCCGTAGTCGTCCGTGAAGACCG Bacillibactin, left
dhbAFI CGCCTAAAGTAGCGCCGCCATCAACGC Bacillibactin, right
dhbAR2 CCGCGATGGAGCGGGATTATCCG Bacillibactin, right
fenAF| CCTCGCTCCGCATGATCTTTTGG Fengycin, left
fenAR| CGGGAGCACGGTGGCAATGTG Fengycin, left
fenEF| GTTTCATGGCGGCGAGCACG Fengycin, right
fenER | GATTCGCGGGAAGCGGATTGAGC Fengycin, right

ituF4 CTGCCTGCGTATATGATTCCGGC Iturin A, left

ituR3 CCGTGATGATGCCGTTCTTCAATCC lturin A, left

ituF | CGCCCGTGAAGGAGCAGCCG Iturin A, right

ituR | GCCAGGAAGCGGGGCTTCAC Iturin A, right
minAF| CGGCTGCGGGGGAAAAGATCCG Macrolactin, left
minAR | CAGCATCAGGGCGTGTATGACCTTC Macrolactin, left
minlFl GGAAGAAAAACAGTCGAGGCGATGCTG Macrolactin, right
minlIR| GAGAAGCTCCGCCGTCACCAGTG Macrolactin, right
srfAAF| GCCCGTGAGCCGAATGGATAAG Surfactin, left
srfAAR CCGTTTCAGGGACACAAGCTCCG Surfactin, left
srfADF| CCGTTCGCAGGAGGCTATTCC Surfactin, right
srfADRI CGCCCATCCTGCTGAAAAAGCG Surfactin, right
ywfGFI GAAGAGATCCTCGCCAAACATCCGG Bacilysin, left
ywfGRI GAGCGGATTGATCCCGCCGTC Bacilysin, left
nrsAR | GGAGGAGCTAATGACCCATCC nrsAB

nrsBF2 CTCCTATGGAGCACGATCCAAC nrsAB

nrsCF1 GGAATGCTGGTCCATTCAGCC nrsC

nrsCR1 CAATCGCCAGTATCCTCGCAG nrsC

nrsDFI CCCAACTTATTTCACCGCCC nrsD

nrsDRI GTAAGGCTCGGCATTGAATCGAG nrsD

nrsEF| GGTGTGAAATCGTTGCGTTGG nrsED

nrsER| CAACAGGTAGCGTATGCGTGC nrsED

nrsFFI CGTACAGCCGGGCCAACTTCAAC nrsF

nrsFRI GGGCGTGCATATTAGGTGGAATC nrsF

recAf TGAGTGATCGTCAGGCAGCCTTAG recA

recAr TTCTTCATAAGAATACCACGAACCGC recA

recNf CTTTTGCGATCAGAAGGTGCGTATCCG recN

recNr GCCATTATAGAGGAACTGACGATTTC recN

mrsF2 CTTGTGCCAATTCCCGGCTGAC mrsK2

mrsR1 GGATGGCCGGTGTCTCACATG mrsK2

mrsF3 CCATCGGTTTTCCCCATACCCATG mrsK2R2

mrsR2 GTGGGGGGAGTTTTATGGCGGAG mrsK2R2

mrsF4 GGTGAAGCCATCAGTGTCCGG mrsR2

mrsR3 CCAGCACCATTCGGTCCAAGAAAACC mrsR2

mrsF5 GTGGCTGTCTCAAACAGAACCGG mrsG

mrsR4 GTTGCGGCTAATGGAAAACCCAGACC mrsG

mrsFé GGGCCTTTGTTAGGTGTATCCCTGG mrsE

mrsR5 GGAAGACTCCCGCTTATGCCTAAC mrsE

mrsF7 CCAGTGAACATGAGGAGCCC mrsE-fbabB
mrsRé CGCGATGACAAAAGAAGTCGCCG mrsE-fbabB
sboAl CTTCATTTGTTCCGCAATGTTCA sboA

sboA2 CCCAGTGGGCCAATTGAATCCTCCC sboA

ablBI CGCGCAAGTAGTCGATTTCTAACA albA

ablB2 CAAGTTTGGGCAAAAGAGCTTTTTC albA
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recN-recA concatenated sequences of related species of the
genus Bacillus were implemented using MUSCLE software
[52]. A maximum likelihood phylogenetic tree was con-
structed by the parsinomy method using PAUP* software
(version 4.0b8, [53]) and the sequence from Clostridium
botulinum KBAB4 as outgroup. The parameters used for
tree construction were as follows: (i) model of nucleotide
substitution: GIR plus gamma distribution; (ii) number
of substitution rate categories: 6; (iii) rate matrix parame-
ter: estimated by program; (iv) number of bloodstrap rep-
licates: 100.

Genome characterisation

For partial genome sequencing, a random shotgun
approach was used. Total genomic DNA from strain GA1
was shared by nebulisation according to Surzycki [54].
DNA fragments of 2-3 kb in size were cloned into pMOS-
blue (GE Healthcare, Uppsala, Sweden) to establish a
shotgun library. The inserts of 500 recombinant plasmids
were sequenced from both ends. Sequences were proc-
essed with Vector NTI software (Invitrogen) and similarity
search was performed using BLAST algorithm against the
GenBank database. The chromosomic location of the dif-
ferent gene clusters identified in strain GAI was performed
by sequencing their flanking regions using the FZB42
genomic sequence [13] as a template for PCR primer
design (Table 2). The nrsF, nrsE, nrsD, nrsC, nrsAB, mrsK2,
mrsR2, mrsG, mrsE, fbaB, sboA and albA gene fragments
were amplified by PCR using the primer pairs listed in
Table 1 and genomic DNA from B. amyloliquefaciens
strains FZB42 and GA1 or from B. subtilis 168 as a tem-
plate.

Identification of NRPS and PKS metabolites

For polyketide and lipopeptide production, B. amylolique-
faciens GAI was grown in Landy medium [55] at 37°C for
12 h and 72 h, respectively. Samples were extracted from
the culture supernatant by solid phase extraction using
Chromafix C18ec cartridge (Machery-Nagel, Duren, Ger-
many). After binding and subsequent washing steps with
MilliQ water (5 bed volume), metabolites were eluted
with methanol (2 bed volume), dried under vacuum and
resuspended in 100 pl of methanol. The resulting samples
were analysed by reverse-phase high pressure liquid chro-
matography (Waters Alliance 2695/diode array detector)
coupled with single quad mass spectrometer (Waters SQD
mass analyser) on an X-Terra MS 150*2.1 mm, 3.5 pm
column (Waters). Lipopeptides were eluted as described
elsewhere [15] whereas polyketides were eluted in a
binary solvent system (solvent A: water-0.1% formic acid,
solvent B: acetonitrile-0.1% formic acid) as follows: 30%
B for 5 min followed by a 5 min gradient from 30% B to
45% B and a subsequent 25 min gradient from 45% B to
100% B at a flow rate of 0.5 ml/min at 40°C. The identity
of each metabolite was obtained on the basis of the mass

http://www.microbialcellfactories.com/content/8/1/63

of molecular ions detected in the SQD by setting electro-
spray ionisation (both positive and negative mode) con-
ditions in the MS as source temperature, 150°C;
desolvatation temperature, 325°C; nitrogen flow, 550 1/
min; cone voltage 80 V. Matrix-assisted laser desorption
ionisation time of flight (MALDI-TOF) mass spectrometry
was performed on the crude culture supernatant on a
Bruker Ultraflex TOF spectrometer (Bruker Daltonics) as
described elsewhere [56]. Siderophore production was
evaluated using the chrome-azurol-sulphonate (CAS) agar
plate assay [57] using the growth medium described pre-
viously [58].

Indentification of ribosomaly synthetised peptide

The ribosomaly synthetised peptide antibiotics were
obtained by growing strain GA1 in Basic 77 medium [59]
for 22 h. Peptides were extracted from freeze-dried culture
filtrate with 30% acetonitrile-0.1% formic acid before
being analysed by HPLC-ESI mass spectrometry. Molecule
were eluted at a flow rate of 0,2 ml/min of a water/ace-
tonitrile/formic acid mixture (87/12,9/0,1 v/v/v) and
their identity was obtained on the basis of the mass of the
molecular ions detected in the SQD by setting electro-
spray ionization (positive mode) condition in the MS as
source temperature, 150°C; desolvatation temperature,
300°C; nitrogen flow, 550 l/min; cone voltage, 80 V.
MALDI-TOF mass spectrometry was used in the reflectron
mode of detection and with a-cyano-4-hydroxy-cinnamic
acid as matrix.
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