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Abstract
Background Technical improvements in magnetic resonance imaging (MRI) acquisition, such as higher field strength and 
optimized sequences, lead to better multiple sclerosis (MS) lesion detection and characterization. Multiplication of 3D-FLAIR 
with 3D-T2 sequences  (FLAIR2) results in isovoxel images with increased contrast-to-noise ratio, increased white–gray-
matter contrast, and improved MS lesion visualization without increasing MRI acquisition time. The current study aims to 
assess the potential of 3D-FLAIR2 in detecting cortical/leucocortical (LC), juxtacortical (JC), and white matter (WM) lesions.
Objective To compare lesion detection of 3D-FLAIR2 with state-of-the-art 3D-T2-FLAIR and 3D-T2-weighted images.
Methods We retrospectively analyzed MRI scans of thirteen MS patients, showing previously noted high cortical lesion 
load. Scans were acquired using a 3 T MRI scanner. WM, JC, and LC lesions were manually labeled and manually counted 
after randomization of 3D-T2, 3D-FLAIR, and 3D-FLAIR2 scans using the ITK-SNAP tool.
Results LC lesion visibility was significantly improved by 3D-FLAIR2 in comparison to 3D-FLAIR (4 vs 1; p = 0.018) and 
3D-T2 (4 vs 1; p = 0.007). Comparing LC lesion detection in 3D-FLAIR2 vs. 3D-FLAIR, 3D-FLAIR2 detected on average 
3.2 more cortical lesions (95% CI − 9.1 to 2.8). Comparing against 3D-T2, 3D-FLAIR2 detected on average 3.7 more LC 
lesions (95% CI 3.3–10.7).
Conclusions 3D-FLAIR2 is an easily applicable time-sparing MR post-processing method to improve cortical lesion detec-
tion. Larger sampled studies are warranted to validate the sensitivity and specificity of 3D-FLAIR2.
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Introduction

Multiple sclerosis (MS) is a chronic inflammatory demy-
elinating disease of the central nervous system (CNS) in 
which magnetic resonance imaging (MRI) is an invaluable 

diagnostic tool in establishing the diagnosis [22]. Improved 
lesion detection either by increasing field strength or improv-
ing acquisition and post-processing techniques possibly ben-
eficially impacts time to diagnosis and disease monitoring 
[2, 25, 26].

While white matter (WM) lesions have long been the 
main focus of research in MS, cortical lesions (CL) are more 
and more recognized as playing an important role [12]. In 
the recent update of the diagnostic imaging criteria, the 
detection of cortical und juxtacortical (JC) lesions received 
additional weight [22]. In contrast to WM lesions, which 
are easily identified using standard MRI techniques [8], less 
than 25% of histopathologically confirmed CL are detect-
able by conventional (FLAIR and T2) clinical MR imaging 
[4]. Furthermore, both white and gray matter lesions have 
been associated with disability accumulation and potential 
outcome parameters in clinical trials [7, 10]. Therefore, there 
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is a specific demand for high sensitivity in lesion detection 
of CL and JC lesions by means of MRI.

Current guidelines for standardized brain and spinal cord 
MRI for the diagnosis and follow-up of MS include 3D-T2-
FLAIR and 3D-T2-weighted images [13, 23]. It was recently 
shown that the combination of 3D-T2 weighted images with 
3D-FLAIR, referred to as 3D-FLAIR2, leads to a better con-
trast-to-noise ratio and white–gray-matter contrast, while 
still suppressing CSF signals and thereby to improved lesion 
visualization without the need for additional scan time [27].

In this monocentric study, we aimed to test the practi-
cability of retrospectively computed 3D-FLAIR2 images 
of routinely acquired MRIs. We tried to prove or reject the 
hypothesis that 3D-FLAIR2 shows a higher sensitivity com-
pared to 3D-T2-FLAIR or 3D-T2-weighted images alone in 
detecting cortical, LC, JC, and WM lesions in MS patients.

Materials and methods

Ethics

The study was approved by the ethics committee of the 
Medical University Vienna (ethical approval number: 
EK1464/2017).

Patients and definitions

This is a retrospective analysis of patients recruited from 
the Department of Neurology, Medical University of Vienna 
between 2017 and 2018. The first thirteen MS patients from 
the dataset from the Vienna MS database (VMSD), with a 
high lesion load noted on previously addressed MRIs, were 
included in this study. All patients fulfilled the McDonald 
MS criteria [22].

Image acquisition

MRI scans were acquired using a 3  T Achieva Philips 
Healthcare MRI scanner using an 8-channel SENSE head 
coil. 3D-FLAIR: voxel size = 0.67 mm × 0.76 mm × 1.34 m
m; TR = 4800 ms; TE = 415 ms; TI = 1650 ms; Fat suppres-
sion: 3D-T2 = TR – 2500 ms, TE = 314 ms, acquired voxel 
size = 0.67 mm × 0.76 mm × 1.34 mm, reconstructed voxel 
size: 0.65 mm × 0.65 mm × 0.65 mm; SPIR; acquired voxel 
size = 0.67 mm × 0.76 mm × 1.34 mm; reconstructed voxel 
size = 0.65 mm × 0.65 mm × 0.65 mm; post sequences were 
reconstructed in three orthogonal planes.

Data processing was performed with Advanced Normali-
zation Tools (ANTs v2.2.0) and FSL (v6.0). Both, T2 and 
FLAIR volumes were bias field corrected using N4 [24], 
and subsequently, image intensities were normalized. FLAIR 
images were co-registered and resampled to the T2 volume 

space using FLIRT [14, 15] (12 degrees of freedom, mutual 
information, sinc interpolation). Finally, the 3-DFLAIR2 
image was obtained by multiplication of the aligned FLAIR 
and T2 volumes.

Image analysis

Image analysis includes total white matter lesion counts of 
WM, JC, and cortical/LC lesions. Lesions were manually 
labeled by two trained raters (TZ, PR) with 5 and 10 years of 
experience in MS imaging, randomly and blinded in 3D-T2, 
3D-FLAIR, and 3D-FLAIR2 with the ITK-SNAP tool [28]. 
In the case of disagreement, a senior neuroradiological rater 
with more than 15 years of experience in MS imaging was 
consulted (GK) to reach consensus. Lesions were defined 
according to previous literature [9].

Statistics

Statistical analysis was performed using IBM SPSS 20.0.0 
(SPSS Inc, Chicago, IL, USA) and R studio (Version 
1.2.5033, RStudio, Inc.). The power analysis was based on 
previous data on WM/CL lesion subtype-specific frequen-
cies in different stages of the disease in individuals with MS 
[12] (p value 0.05, power 80%) [20].

Normal distribution was assessed and rejected for lesion 
count variables with Shapiro–Wilk’s method, which are pro-
vided with median value and interquartile range. Differences 
between two groups were assessed with the Mann–Whitney 
U test. Bland–Altman plots were calculated to quantify the 
amount of agreement in lesion counts derived from different 
sequences (3D-FLAIR2, 3D-FLAIR, and 3D-T2) and dif-
ferent raters (TZ vs. PR TZ vs. TZ) for WM, JC, and LC 
lesions. The mean difference and the limits of agreement, 
which reflect the 95% level as described by Bland and Alt-
man [3] are provided with their 95% CI.

Inter- and intra-rater variability was assessed with intra-
class correlation coefficient for all sequences using a two-
way random-effects model with absolute agreement [17]. 
Intra-rater variability was assessed by two independent 
lesion counts by rater TZ (TZ1 vs. TZ2), while inter-rater 
variability was assessed by calculating lesion assessment of 
(TZ1 vs PR1). Significance was set at a two-sided p value 
of 0.05.

Data availability

Anonymized data not published in the article can be made 
available upon reasonable request from a qualified inves-
tigator after approval from the ethics review board of the 
Medical University of Vienna.
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Results

Patient characteristics

13 patients with a confirmed diagnosis of MS [3 males and 
10 females, mean age 37.3 years ± 13.9 (SD)] were included. 
The median EDSS score was 2.5; 4.5 (IQR). The mean dis-
ease duration was 6.3 years ± 6.0 (SD). Nine patients were 
classified as having a relapsing remittent disease course, 
three patients presented a secondary progressive and one 
patient with a primary progressive disease course.

Lesion detection

A total of 1067 3D-FLAIR2, 809 3D-FLAIR, and 577 
3D-T2-weighted lesions were detected in these 13 patients.

WM lesions were more common on 3D-FLAIR2 
sequences compared to 3D-FLAIR (median 52 vs 40, 

p = 0.37) and 3D-T2-weighted scans (median 52 vs 34, 
p = 0.077) (Figs. 1, 2).

Overall, 70 JC were counted. In 3D-FLAIR2 images more 
JC lesions were counted compared to 3D-FLAIR (median 
2 vs 1; p = 0.54) and 3D-T2-weighted images (median 2 vs 
0; p = 0.11), however not reaching statistically significance.

LC lesion visibility was significantly improved by 
3D-FLAIR2 in comparison to 3D-FLAIR (median 4 vs 1; 
p = 0.018) and 3D-T2 (median: 4 vs 1; p = 0.007). Com-
paring LC lesion detection in 3D-FLAIR2 vs 3D-FLAIR, 
3D-FLAIR2 detected on average 3.2 more cortical lesions 
(95% CI − 9.1 to 2.8) per patient. Comparing against 3D-T2, 
3D-FLAIR2 detected on average 3.7 more LC lesions (95% 
CI 3.3–10.7) (Fig. 3).

We further calculated the interclass correlation coeffi-
cients (ICC) to quantify the amount of correlation adjusted 
for random effects between lesion counts obtained from dif-
ferent sequences (Fig. 4). The highest ICC was calculated 

Fig. 1  3D-FLAIR2 lesion visualization compared to 3D-T2 and 
3D-FLAIR. A-C: Depiction of a cortical/leucocortical lesion on axial 
3D-FlAIR2 (A), 3D-FLAIR (B), 3D-T2 (C) MRI images. D–F Pres-
entation of a large white matter lesion with an adjacent cortical/leu-

cocortical lesion. G–I Juxtacortical lesion involving the right frontal 
superior gyrus; J–L Juxtacortical U-fiber lesion on sagittal view. M–
O Temporal cortical/leucocortical lesion on sagittal view
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for WM lesion followed by those from JC and LC lesion 
metrics.

JC lesions measured on 3D-T2 vs 3D-FLAIR2 (0.30 ICC, 
95% CI − 0.27 to 0.72) or 3D-FLAIR (0.16 ICC, 95% CI 
− 0.40 to 0.64) and LC lesions in 3D-T2 vs 3D-FLAIR2 
(0.41 ICC, 95% CI − 0.15 to 0.78) displayed a 95% CI 
involving zero.

To determine the reproducibility for 3D-FLAIR2 intra-
rater and intra-correlation coefficients were calculated 0.90 
(WM), 0.88 (JC) and 0.86 (LC). Interrater intra-correlation 
for 3D-FLAIR2 were 0.91 (WM), 0.78 (JC) and 0.75 (LC) 
(Suppl. Figure 1/Suppl Table 1).

Discussion

Detection of lesions by MRI is an integral component of 
both diagnosis and disease monitoring in MS [22, 23]. Here, 
we assessed the added diagnostic value of a voxel-wise 
multiplication of 3D-T2 weighted images with 3D-FLAIR 
images, resulting in 3D-FLAIR2 compared to the acquired 
initially standard 3D sequences alone. We demonstrated that 
3D-FLAIR2 increases the detection rate of LC lesions com-
pared with state-of-the-art T2 and FLAIR 3D sequences.

The potential benefit of 3D-FLAIR2 was previously 
shown by demonstrating a higher contrast-to-noise ratio for 
WM and GM lesions in comparison to FLAIR or T2 images 
[27]. It was proposed that this approach produces a similar 
contrast like double inversion recovery (DIR), however, with 
improved image quality and less acquisition time. While 
 FLAIR2 was first proposed with 3D scans, it can also be 
used with 2D-FLAIR and 2D-T2 scans [18]

In line with these data, we provide evidence that 
3D-FLAIR2 outperformed state-of-the-art 3D-FLAIR 
and 3D-T2-weighted sequences in lesion visualization 
of cortical lesions without the need for additional image 
acquisition time. 3D-FLAIR2 is a sensitive and radiologi-
cally feasible tool in clinical routine and clinical studies 
for MS lesion assessment at not cost of imaging time. As 
3D-FLAIR2 may also improve automatic lesion segmenta-
tion, it could easily be implemented in future automatic 
MS lesion detection algorithms [18]. Automatized seg-
mentation and Artificial intelligence (AI) of MRI images 
have great potential in monitoring disease activity in 
demyelinating diseases of the central nervous system and 
guiding diagnostic pathways [1, 16, 19], 3D-FLAIR2 may 
further improve the quality of diagnosing and monitor-
ing these patients non-invasively. Likewise, it will also 

Fig. 2  Quantitative lesion evaluation in 3D-FLAIR2 in comparison to 3D-FLAIR and to 3D-T2. LCL Leucocortical lesion, JCL Juxtacortical 
lesion, WML White matter lesion
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Fig. 3  Difference in the numbers of assessed lesions. Bland–Altman 
plots comparing lesion counts derived from 3D-FLAIR2, 3D-FLAIR 
and 3D-T2 in each patient and each location. For white matter lesion 
(WML), juxtacortical lesion (JCL) and leucocortical lesion (LCL), 
the difference between lesion counts derived from the different 

sequences (3D-FLAIR2, 3D-FLAIR and T2), is plotted relative to 
their mean for each patient with black dots. The black dashed line 
provides the mean difference with the corresponding 95% CI in blue. 
The limits of agreement are provided with their 95% CI, the upper 
bound in green, the lower bound in red

Fig. 4  Interclass correlation 
for 3D-FLAIR2, 3D-T2 and 
3D-FLAIR. ICC provided with 
their 95%CI (gray); WML white 
matter lesion, JCL juxtacortical 
lesion, LCL leucocortical lesion
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increase human capabilities in lesion detection and poten-
tially help in the supervision of machine learning.

As WM lesion load only in part explains clinical dis-
ease progression, conversion and cognitive decline, corti-
cal lesions increasingly become a focus of research [5]. 
Despite advances in imaging, even under optimal condi-
tions, a maximum of 25% of the actual dimension can 
be visualized in histopathology correlation studies [4]. 
Improving cortical lesion detection has the potential to 
improve the prediction of subsequent disease evolution 
and therapeutic response and as well as to improve fulfill-
ing the criterion of dissemination in space [6, 22]. Here, 
we could show that 3D-FLAIR2 can enhance the detection 
of cortical/leucocortical lesions compared to standard rou-
tine sequences and display excellent inter and intra-rater 
variability (Figs. 3,4).

It should be noted that our sample consists of prese-
lected MS patients with previously noted high cortical 
lesion load. Further limitations of this study include its 
retrospective nature. We used 3D images as reference 
images for comparison since they outperform lesion 
detection compared to 2D images [11, 21]. We could not 
compare our findings to PSIR and DIR images, as these 
are not part of the used MS MRI protocols. Therefore, 
future prospective studies should include a larger number 
of subjects, potential histopathological correlations, and 
direct comparison with DIR/PSIR to determine the value 
of 3D-FLAIR2 in improving disease monitoring and MS 
diagnosis.

In summary, we show that combining 3D-T2 and 
3D-FLAIR sequence data to create 3D-FLAIR2 is a feasi-
ble and easily applicable strategy to specifically improve 
cortical/leucocortical lesion detection in MS.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00415- 021- 10833-x.
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