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Abstract

After more than ten years of accumulated efforts, genome-wide association studies (GWAS) have 

led to many findings, most of which have been deposited into the GWAS Catalog. Between 

GWAS’s inception and March 2017, the GWAS Catalog has collected 2,430 studies, 1,818 

phenotypes, and 28,462 associated SNPs. We reclassified the psychology-related phenotypes into 

198 reclassified phenotypes, which accounted for 472 studies and 6,632 SNPs. In total, 1,109 of 

the SNPs reached genome-wide significance. Of these, 133 were replicated for the same 

psychological trait in different studies. Another 379 SNPs were replicated within one original 

study. The SNPs rs2075650 and rs4420638 were linked to the most replications within a single 

reclassified phenotype; both were associated with Alzheimer’s disease (AD). Schizophrenia was 

associated with 76 SNPs. Alzheimer’s disease and schizophrenia were linked to many physical 

phenotypes, including cholesterol and body mass index, through common GWAS signals. 

Alzheimer’s disease also shared risk SNPs with age-related phenotypes such as age-related 

macular degeneration and longevity. Smoking-related SNPs were linked to lung cancer and 

respiratory function. Alcohol-related SNPs were associated with cardiovascular and digestive 

system phenotypes and disorders. Two separate studies also identified a shared risk SNP for 

bipolar disorder and educational attainment. This review revealed a list of reproducible SNPs 

worthy of future functional investigation. Additionally, by identifying SNPs associated with 

multiple phenotypes, we illustrated the importance of studying the relationships among 

phenotypes to resolve the nature of their causal links. The insights within this review will 

hopefully pave the way for future evidence-based genetic studies.

Introduction

The GWAS Catalog is a comprehensive database that archives genome-wide association 

studies (GWAS) investigating associations between single-nucleotide polymorphisms 
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(SNPs) and a variety of phenotypes, ranging from psychiatric disorders (e.g. schizophrenia), 

to physical disorders, to other medical, physical, and psychological traits. GWAS feature 

data-driven, fairly objective designs and often use relatively large sample sizes, making them 

better-powered and less biased than most candidate-gene studies.

Motivation behind this review

The year 2017 marks the 10-year anniversary of psychiatric GWAS. While the first GWAS 

recorded by the GWAS Catalog was published in 2005 on the topic of age-related macular 

degeneration, A GWAS in the field of psychiatry was not published until a WTCCC-funded 

study in 2007. This study examined seven diseases, including bipolar disorder.1

Since then, genotyping costs have dropped dramatically and GWAS have become an 

essential step on the path towards uncovering genetic factors of phenotypes. Research 

concerning psychiatric disorders and relevant traits have accounted for a significant share of 

the accumulated GWAS findings and will be the focus of this review. Such findings are often 

selectively and mistakenly interpreted by the media, the public, clinicians, patients, and even 

some investigators in related fields. We feel the obligation to provide a scholastic, holistic, 

and stringent summary of the GWAS data. In doing this, we have identified SNPs that have 

been repeatedly reported in association with the same disorder and that should thus bear 

better confidence. We also hope to uncover hidden connections between disorders or traits 

by highlighting genomic regions that could be associated with multiple conditions.

Candidate genes have been studied for several decades in psychiatry. They have mostly 

included small sample sizes and often been underpowered. Some frequently-studied genes 

have been included in meta-analyses combining a large collection of studies. However, such 

meta-analyses have thus far reported disappointing results. Candidate genes have been found 

to be non-reproducible or insignificant upon further scrutiny, as in the case of two meta-

analyses on bipolar disorder and schizophrenia candidate genes.2, 3 This article therefore 

focuses on GWAS signals. That being said, as GWAS produce more findings, it will likely 

be increasingly useful to compare results of candidate genes with GWAS signals. 

Furthermore, there will be a greater quantity of robust data from which to make more 

informed decisions about good candidate genes.

It should be noted that, as writing this summary requires some arbitrary decisions regarding 

inclusion criteria for disorders and traits and grouping of phenotypes, the reported results are 

somewhat swayed by bias. Its parameters should thus be refined and improved in future 

reviews.

Data

The data in this summary includes all studies recorded by the GWAS Catalog (https://

www.ebi.ac.uk/gwas/) as of the date of download (March 30, 2017); the most recent study in 

the dataset was published on October 31st, 2016. The dataset includes literature sources, 

phenotype information, p-values, and identified SNPs, among many other pieces of data.
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GWAS utilize stringent significance thresholds as a result of the multiple testing correction 

needed to account for millions of SNPs on the human genome. While the GWAS Catalog 

collected SNPs associated with p-values as large as 1 × 10−5 (with the exception of one 

result, which was linked to 2 × 10−5), the commonly used cut-off for genome-wide 

significance is typically p = 2 × 10−8 or 5 × 10−8.

The GWAS Catalog, as of the date of download, included a total of 2,430 papers, 1,818 

phenotypes, and 28,462 SNPs. In order to redirect the focus of the analysis to psychiatry, we 

limited the set of phenotypes to a list of 198 reclassified psychological phenotypes, many of 

which are also directly related to psychiatric illness (Supplementary Table 1). In addition to 

retaining many phenotypes from the initial dataset, we added some broader phenotypes that 

combined similar traits in order to make parsing and comparison easier and more efficient. 

While many of the reclassified phenotypes are explicitly psychological in nature, we also 

included phenotypes that are not classically psychological but are likely related to or 

correlated with mental functioning. A total of 472 studies and 6,632 unique SNPs remained 

after phenotype reclassification and filtering. Out of these, 1,109 of the SNPs reached 

genome-wide significance. Roughly half of the significant SNPs were reproduced in some 

capacity (see section on reproducibility and Table 1).

Finally, the dataset included a broad range of samples. The paper with the smallest sample 

size among the psychiatry-related studies was a study on clozapine-induced cytotoxicity that 

used 90 European ancestry lymphoblast cell lines.4 The largest sample size included samples 

from 549,935 individuals as part of a study on depression, neuroticism, and subjective well-

being.5

Reproducibility

As in any other scientific discipline, reproducibility is a critical indication of the strength of 

genetic findings. Here, we identified SNPs that have been associated with the same (or very 

similar) reclassified disorders or traits in two or more studies. If the specific risk allele of the 

SNPs of interest were reported consistently for each study, we also included the allele 

(denoted by a hyphen and the base letter following the name of the SNP). We excluded non-

identical reclassified “compound phenotypes” (phenotypes that are a combination of 

multiple disorders or traits) if they only matched with reclassified phenotypes that were part 

of the compound. For example, if the only reclassified phenotypes found to be significant for 

a SNP were schizophrenia and the compound phenotype autism, bipolar disorder, or 

schizophrenia, the SNP was not considered to be replicated. However, a SNP found to be 

related to psychosis and mood in two different studies would be considered replicated. 

Furthermore, we required at least one of the findings corresponding to the phenotype and 

SNP to reach genome-wide significance (p ≤ 2 × 10−8). All further replicated findings for 

the same SNP and the same or very similar reclassified phenotype met the catalog’s p-value 

cut-off of p ≤ 2 × 10−5. In Supplementary Table 2a, we listed the 133 SNPs meeting the 

above criteria (excluding replication samples within a single paper) for reclassified 

phenotypes. Supplementary Table 2b lists 379 SNPs that were significantly replicated in 

samples within a single paper but were not listed in Supplementary Table 2a.
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We consider the 133 SNPs replicated by two or more separate publications arguably more 

reliable than the 379 SNPs replicated by the same publications, so our discussion focuses on 

the former. The SNPs rs2075650 and rs4420638 were linked to the most replications within 

a single reclassified phenotype. Both are brain eQTL (see Supplementary Table 2a). 

rs2075650 was reported in association with Alzheimer’s disease in eight different 

studies6–13 and in association with cognitive decline in one study.14 rs4420638 was linked to 

Alzheimer’s disease in six studies15–20 and cognitive decline in one study.21

rs2075650 is located in an intron of the TOMM40 gene, a mitochondria membrane protein. 

It is a brain eQTL SNP for the gene PPM1N and many other genes (though not for APOE4 
or TOMM40). The G-allele for rs2075650 was reported to confer an odds ratio of two in a 

small case-control study.22 This SNP is also associated with hippocampal atrophy. However, 

there is question as to whether it carries an independent AD risk. One study posits that 

rs2075650’s relationship with AD is more attributable to its modest linkage disequilibrium 

with rs429358.23 rs429358 is on the fourth exon of APOE and, along with rs7412, 

determines the APOE haplotype, where the variant ε4 is the strongest risk factor for AD. 

Similarly, another SNP, rs429358, was associated with AD in three studies (Supplementary 

Table 2a). The SNP rs4420638 is located downstream of the APOC1 gene. rs4420638’s 

association with AD could also be related to its linkage disequilibrium with rs429358 and so 

is likely also not an entirely independent risk locus.24, 25 rs4420638 is a brain eQTL SNP for 

non-APOE genes, according to BRAINEAC. The evidence regarding GWAS signal linkage 

disequilibrium and the link between GWAS signals and brain eQTL may merit further 

investigation to clarify issues of causality.

Narcolepsy and nicotine-related phenotypes were also linked to highly replicated SNPs. 

They were associated with the SNPs rs115415526–29 and rs1051730,30–33 respectively, each 

in four different studies. Additionally, rs1154155 was identified in three studies in 

association with narcolepsy27, 28, 34 and in one study in association with narcolepsy with 

cataplexy.29 rs1154155 is mapped to the downstream region of TRAJ10, a gene in the TRAJ 

(T cell receptor alpha joining) gene cluster. rs1154155 is an eQTL SNP for mir208a in white 

matter. rs1051730 is a coding synonymous variant in CHRNA3 but is also an eQTL SNP for 

CHRNA5 in brain. Both CHRNA3 and CHRNA5 are strong candidates for nicotine 

dependence.

Schizophrenia was the disease with by far the largest number of SNPs replicated within-

phenotype —76— though many of these replications came from the same two studies, 

which shared samples.35, 36 Educational attainment accounted for eleven replicated SNPs, 

and phenotypes including the term “Alzheimer’s” were associated with 24 replicated SNPs.

While, at face value, the aforementioned findings could suggest strong genetic 

underpinnings of Alzheimer’s disease and schizophrenia, it should be noted that some topics 

have been given more attention than others. For example, the search term “GWAS 

Alzheimer’s disease” returns about four times as many results in Google Scholar as “GWAS 

educational attainment.”
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The fact that some studies drew from the same samples as other studies must also be taken 

into account. For example, only four publications from two research groups (from the 

Netherlands and the UK) have studied educational attainment,37–40 and many of the samples 

from the four studies either were shared or came from the same biobank. Because recruiting 

huge samples is difficult, it is common for consortia to publish several studies on the same 

continuously growing sample. Thus, not all of the SNPs we recorded should be considered 

independently replicated. Going forward, it will be important for researchers to be cognizant 

of the limited validity of many reported GWAS findings.

Table 1 summarizes the quantity of SNPs according to criteria of significance, phenotype 

class, and replication status.

Reproducible GWAS Signals as Brain eQTL

We entered the 133 reproduced GWAS signals into the UK Brain Expression Consortium’s 

(UKBEC) expression quantitative trait loci (eQTL) database (http://www.braineac.org/). 

Among the 133 SNPs, a total of 78 SNPs (59%) exceeded the threshold cut-off required to 

reach significance (0.05/133 replicated SNPs = 3.8×10−4, see Supplementary Table 2a). Of 

these, the SNP rs17693963 (associated with schizophrenia, bipolar disorder, or 

schizoaffective disorder41, 42) was the strongest brain eQTL and was associated with 

expression of the gene ZNF389 in white matter (p = 2.8×10−10), among other brain regions. 

GTEx data also reported rs17693963 as an eQTL SNP in many tissues (including brain) and 

as being associated with several genes. The second strongest brain eQTL was rs950169 

(associated with schizophrenia35, 36). This SNP was also associated with SCAND2 in 

cerebellum (p = 1.4×10−8), hippocampus (p = 2.2×10−8), and other brain regions. GTEx also 

confirmed rs950169 as a universal eQTL in many tissue types and as being associated with 

multiple genes.

Cross-Phenotype Analysis

GWAS can help draw attention to psychiatric disorders that may share genomic risk factors. 

The literature with the greatest impact on this topic has largely pointed to shared genetics 

between schizophrenia and other psychiatric conditions, perhaps most notably bipolar 

disorder, intellectual disability, and autism spectrum disorder, based on polygenic risk scores 

and shared rare variants.36, 43–45 In this analysis, we again focused on individual SNPs 

recorded in the GWAS Catalog, which primarily includes common variants. For cases in 

which phenotypes were redundant, they were sometimes summarized or combined (e.g. 

“hematocrit” and “red blood cell traits,” when linked to the same SNP, were condensed to 

“red blood cell traits”).

We identified the SNPs and SNP risk alleles mapped to distinct phenotypes (e.g. excluding 

matches between single phenotypes and compound phenotypes encapsulating that phenotype 

and excluding very similar phenotypes). The cross-phenotype analysis required a more 

stringent threshold cut-off than the reproducibility analysis because, unlike in the case of 

reproducibly, this analysis needed to account for all examined phenotypes. We thus required 

that the associations for all phenotypes reach genome-wide significance (p ≤ 2 × 10−8).
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Because our focus is on psychiatry, we only summarized findings concerning SNPs linked to 

at least one psychological trait, though we also included all significant findings for non-

psychiatric/psychological phenotypes also associated with the same SNPs. The SNPs 

associated with multiple phenotypes are plotted in a network in Figure 1.

Addictive Behavior and Substance Use

Many significant SNPs were mapped to the use of various substances, a phenotype category 

that has been measured in both controls and those affected by addiction. Four SNPs were 

associated with both nicotine-related phenotypes and phenotypes related to respiration. 

rs1051730 was linked to smoking behavior30–33 and nicotine dependence30 (combined into 

“nicotine-related phenotypes”), post bronchodilator FEV1, post bronchodilator FEV1/FVC 

ratio, pre bronchodilator FEV1, pre bronchodilator FEV1/FVC ratio, and lung cancer;46, 47 

rs2036527 was related to smoking behavior,48 post bronchodilator FEV1, post 

bronchodilator FEV1/FVC ratio, pre bronchodilator FEV1, and pre bronchodilator 

FEV1/FVC ratio;49 rs34684276-A was associated with post bronchodilator FEV1, post 

bronchodilator FEV1/FVC ratio,49 and nicotine dependence;50 and rs56113850-T was 

associated with nicotine metabolite ratio in current smokers,51 local histogram emphysema 

pattern,52 post bronchodilator FEV1, and post bronchodilator FEV1/FVC ratio.49 While 

these connections between smoking and respiratory phenotypes are meaningful, there exists 

the strong possibility that respiratory changes are the product of smoking and that these 

SNPs are not organic genetic causes of lung cancer, etc.

Additionally, rs6265 was associated with both body mass index53 and smoking behavior.31

Alcohol use also shared common risk SNPs with many other disorders and traits, 

particularly those related to the circulatory and digestive systems. One meta-analysis of 

“maxdrinks,” an alcohol-related phenotype measuring the greatest number of drinks that an 

individual has ever consumed in a 24-hour period, included the results of two studies.54 

While neither of the two studies yielded a statistically significant association for rs1229984, 

the SNP achieved a p-value of 2.04 × 10−8 for the meta-analysis. Two other studies, one on 

alcohol dependence55 and the other on the effects of alcohol and smoking on esophageal 

cancer risk,56 found evidence for rs1229984 as a risk SNP. Further, this SNP was found to be 

linked to oral cavity and pharyngeal cancer.57 rs671 was associated with drinking behavior,
58 coronary heart disease,59 alcohol consumption (maxi-drinks) and response to alcohol 

consumption (flushing) in small samples of Han Chinese participants,60 esophageal cancer,
56 serum alpha1-antitrypsin levels,61 body mass index,62 mean corpuscular hemoglobin 

concentration,63 serum creatinine,64 and hematological and biochemical traits.63 A study 

assessing Han Chinese drinkers and nondrinkers65 identified rs11066280, a SNP also 

associated with blood pressure phenotypes,66–68 esophageal cancer,69 coronary heart 

disease,70 thoracic-to-hip circumference ratio,71 metabolite levels,72 and triglycerides,73 in 

other studies. The SNP rs1800562 was associated with transferrin glycosylation,74 which is 

relevant to alcohol consumption, as well as with iron status biomarkers,75–78 hematological 

parameters,79 hepcidin levels,80 cardiovascular disease risk factors,81 cholesterol,82, 83 

hemoglobin,84, 85 and red blood cell traits.84, 86 rs12229654 was linked to body mass index,
62 glycemic traits,87 HDL cholesterol, gamma glutamyl transpeptidase,72 and alcohol 
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consumption.88 rs2074356 was linked to alcohol consumption,88 QT interval,89, 90 gamma 

glutamyl transpeptidase, HDL cholesterol,72 esophageal cancer,69 glycemic traits,87 

biomedical quantitative traits,91 and renal function-related traits (BUN),64 and rs3811647 

was linked to hepcidin levels,80 iron status biomarkers,75, 77, 92 alcohol consumption 

(transferrin glycosylation),74 and hereditary hemochromatosis-related traits (HFE mutation 

homozygotes).93

Coffee consumption94, 95 held a genome-wide association with diastolic blood pressure96 at 

rs6495122-A and with blood metabolite levels97 at rs6968554-A.

According to research that has been conducted thus far, SNPs mapped to the use of 

substances overlap almost exclusively with SNPs related to physical, non-psychological 

phenotypes, which could either reflect the physical consequences of excessive substance use 

or indicate common genetic predispositions. Surprisingly, there were no significant 

associations between substance use phenotypes and psychiatric disorders that are frequently 

comorbid with substance abuse.

Educational Attainment

Findings pertaining to educational attainment also appeared multiple times in cross-

phenotype analysis. The term “educational attainment” had different implications depending 

on the study. For example, “educational attainment,” in some research, indicated years of 

education, while other research measured “educational attainment” according to 

performance on a reasoning task. rs10761741-T has been identified as a SNP risk allele for 

vascular endothelial growth factor levels98 and years of education.37 In the case of the 

former, the T allele at this locus seemed to indicate greater epinephrine-induced platelet 

aggregation and higher circulating VEGF levels. Serum VEGF levels have been reported as 

being associated with prefrontal cortex volume in schizophrenia patients.99 Therefore, there 

is a possibility that this SNP might be related to educational attainment as a result of its 

contribution to brain structure.

rs2456973 was associated with vitiligo,100 a skin disorder, and educational attainment.37 

There is no obvious connection between the two phenomena.

One meta-analysis reported rs12193446-A as the strongest SNP risk allele for refractive 

error × education interaction.101 Another study also revealed rs12193446-A as the SNP 

allele most strongly determining ocular axial length.102 Similarly, a study of a rural 

population in India reported a positive correlation between ocular axial length and 

education; the same result was found in two other studies—one with a Chinese population 

and one with an elderly White population.103–105

The SNP rs12553324 was found to be associated with level of educational attainment40 and, 

in a separate study, was also identified as an area of interest for bipolar disorder.106 Glahn et 

al., in a non-genetic 2006 study predating both of the former, found that bipolar patients had 

fewer years of educational attainment.107 On the contrary, when measuring academic 

achievement in terms of performance rather than years in school, MacCabe et al. found 

somewhat mixed results.108 While there was a relationship between bipolar disorder and low 
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grades, there was also a very increased rate of eventual bipolar disorder diagnosis amongst 

those with high grades, compared to those with average grades. A genetic study reported a 

positive genetic correlation, achieved through linkage disequilibrium score regression, 

between bipolar disorder and years of education.109 One paper studying polygenic risk score 

results, which represent combined contribution of many common SNPs to risk, found that 

high risk score of bipolar disorder and schizophrenia are predictive of high educational 

attainment.110 There appears to be a relationship between bipolar disorder and educational 

attainment; the specific nature of this link should be further studied.

Alzheimer’s Disease

Several studies mapped common SNPs to Alzheimer’s disease and many other phenotypes.
6–12, 14–16, 21, 23, 25, 73, 81–83, 111–146 More than one SNP was mapped to both Alzheimer’s 

disease and each of the following traits:

• Verbal declarative memory

• Cingulate cortical amyloid beta load (covariate in one study)

• C-reactive proteins

• Longevity

• Cholesterol

• Cognitive decline

• Age-related macular degeneration

• Triglycerides

Given that both Alzheimer’s disease and these phenotypes are largely related to aging, the 

findings are not surprising. Inflammation, as it relates to Alzheimer’s, could also be an 

interesting further topic of study because of inflammation’s link to C-reactive protein.

Schizophrenia

Schizophrenia-focused GWAS findings also attained cross-phenotype significance. In 

particular, rs13107325-T was linked to schizophrenia,35 as well as to body mass index,
117, 147, 148 HDL cholesterol,82, 83 blood pressure,149, 150 and N-terminal pro b-type 

natriuretic peptide in acute coronary syndrome.151 Some of these findings are congruent 

with research that has found higher rates of cardiovascular diseases in schizophrenia.152, 153 

rs8042374 was associated with schizophrenia35, 36 and lung cancer,154 a finding that is not 

incredibly surprising given the high rates of smoking in schizophrenics.155

While some SNPs associated with both schizophrenia only and cohorts with schizophrenia 

and other disorders (e.g. autism, bipolar disorder) were excluded from the results due to the 

complications of linking a compound trait to a single finding, the high volume of SNPs 

associated with such combined effects suggests heretofore uncovered genetic commonalities 

between schizophrenia and other psychiatric disorders. Although polygenic analysis 

indicates that bipolar and schizophrenia share genetic risk factors, they did not share any 

significant individual SNP associations according to our analysis. This may be related to 
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imbalance in sample sizes. Schizophrenia GWAS typically have much larger sample sizes 

than bipolar disorder GWAS. Still, there was some evidence for shared GWAS signals 

between the two disorders. For example, the SNP rs1006737 in the CACNA1C gene was 

linked to schizophrenia, with a p of 2 × 10−8, but with bipolar disorder at p = 7 × 10−8.42 

Thus, the bipolar association did not meet the significance threshold for our analysis. 

However, both schizophrenia and bipolar disorder were associated with several different 

SNPs reaching genome-wide significance in CACNA1C.

Supplementary Table 3 summarizes the cross-phenotype SNPs and their associated 

phenotypes, with the phenotypes that were later transformed into reclassified phenotypes 

listed under the name of the reclassified phenotypes.

Limitation of the current review

We acknowledge that there are many areas of GWAS that were not deeply addressed within 

this paper. In writing this review, we relied primarily on the data as it was presented in the 

GWAS Catalog. Certain statistical parameters such as effect size could not be easily 

summarized and compared, as not all studies used the same criteria. Also, as the GWAS 

Catalog includes only genome-wide association studies, our analysis did not take candidate 

gene studies into account, meaning that our points of comparison were not exhaustive.

The present review is intended to serve as a broad summary and analysis of psychiatric 

GWAS. We believe that future studies and reviews that approach GWAS from a different 

angle or that focus on finer statistical details, even going so far as to scrutinize raw data from 

individuals, could lead to interesting and important findings.

Conclusion

GWAS research has yielded many discoveries in both psychiatry and physical pathology. 

Further research and improvement in big data parsing methods will be an imperative part of 

fully legitimizing the field, but there already exist strong bases for forming theories about 

genome-wide associations.

Most psychiatric disorders appear to share specific risk loci with physical disorders or 

phenotypes instead of other psychiatric disorders or psychological traits. This could perhaps 

be because many psychiatric disorders are characterized by a rather wide assortment of sub-

phenotypes, some of which may be more linked to physical phenotypes from a biological 

perspective. Perhaps most notably, GWAS research on substance use has led to many 

associations with physical traits, which may harbor implications for addiction research.

More validation is needed

As shown in Table 1, only about half of the psychological genome-wide significant 

associations have been validated, either in an independent study or in a replication sample. 

Because of the possibility of false discovery, the likelihood of a GWAS signal being a true 

marker of the tested phenotype holds fairly limited promise prior to replication.
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Heterogeneity issues across studies

Any discrepancies between individual studies must be taken into consideration as 

confounding variables. For example, studies included a broad range of sample sizes, some of 

which only included a single racial or ethnic group; these studies should be replicated within 

different populations. It should also be noted that some studies drew from the same 

consortia, meaning that many samples likely shared participants. Additionally, some of the 

papers in the database were meta-analyses of other GWAS, which creates another 

opportunity for sample overlaps.

Differentiating causal associations from indirect correlational relationships

In assessing the data, it is important to beware of tempting but potentially false causal 

conclusions. For example, rs1051730 was mapped to smoking and some related physical 

conditions, including lung cancer. In order to find evidence that the listed physical health 

risks are governed by the same genomic regions (rather than just being a result of smoking 

behavior), it would be important to compare smokers to non-smokers, a variable that was not 

stringently controlled with respect to the loci of interest.

Despite these caveats, the relationships drawn between non-pathological phenotypes and 

psychiatric disorders is an important area of study. The findings linking the two types of 

traits promote the idea that physical phenotypes may eventually be able to serve as valid 

biomarkers of psychopathology. Going forward, it will be important to make efforts to 

distinguish between shared genetic roots and phenotypes that co-occur but which are not the 

results of a common genetic cause.

Future Directions

Revealing the functionality of GWAS-associated SNPs and resolving the causal nature of the 

relationship between SNPs and their associated traits should be one of the major objectives 

of post-GWAS conducted in the coming years. The CRISPR/Cas9 editing of risk alleles in 

induced pluripotent stem cells (iPSC),156 as well as gene knockdown and knockout studies, 

promise to bring exciting new insights to the discipline of GWAS.

The study of genetic relationships between various phenotypes is a vast new field of research 

with possibilities that will only increase as the rate of research accelerates and the GWAS 

database grows. Such research is giving us a new perspective on the etiology and pathology 

of disorders.

GWAS, while still in its infancy, has led to a prodigious quantity of publications and areas of 

study. We hope the insights gleaned in this investigation will help to guide future research in 

psychiatric genomics by highlighting worthwhile areas of investigation, ultimately 

enhancing our understanding of psychiatric disorders.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
SNP-Phenotype Network. All the SNPs (in red) showed a significant association (p ≤ 2 × 

10−8) with psychological/psychiatric phenotypes (in yellow) and at least one other 

psychological/psychiatric phenotype or a non-psychological phenotype (in turquoise).
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Table 1

Number of total and genome-wide significant SNPs in the entire GWAS Catalog and within the reclassified 

phenotypes. Also listed are the SNPs found in more than one study that reached genome-wide significance in 

at least one of the studies (Supplementary Table 2a) and those not in 2a but which are significant for multiple 

samples within the same study (Supplementary Table 2b).

Total # of SNPs # of Genome-wide 
Significant SNPs

# of Replicated SNPs

Entire GWAS Catalog 28,462 8,740 —

Reclassified Psychiatry-Related Phenotypes 6,632 1,109 Total 512, including 133 (replicated across 
studies) + 379 (replicated in the same study)
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