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Abstract

The study of microbial communities and their interactions has attracted the interest of the

scientific community, because of their potential for applications in biotechnology, ecology

and medicine. The complexity of interspecies interactions, which are key for the macro-

scopic behavior of microbial communities, cannot be studied easily experimentally. For this

reason, the modeling of microbial communities has begun to leverage the knowledge of

established constraint-based methods, which have long been used for studying and analyz-

ing the microbial metabolism of individual species based on genome-scale metabolic recon-

structions of microorganisms. A main problem of genome-scale metabolic reconstructions

is that they usually contain metabolic gaps due to genome misannotations and unknown

enzyme functions. This problem is traditionally solved by using gap-filling algorithms that

add biochemical reactions from external databases to the metabolic reconstruction, in order

to restore model growth. However, gap-filling algorithms could evolve by taking into account

metabolic interactions among species that coexist in microbial communities. In this work, a

gap-filling method that resolves metabolic gaps at the community level was developed. The

efficacy of the algorithm was tested by analyzing its ability to resolve metabolic gaps on a

synthetic community of auxotrophic Escherichia coli strains. Subsequently, the algorithm

was applied to resolve metabolic gaps and predict metabolic interactions in a community of

Bifidobacterium adolescentis and Faecalibacterium prausnitzii, two species present in the

human gut microbiota, and in an experimentally studied community of Dehalobacter and

Bacteroidales species of the ACT-3 community. The community gap-filling method can facil-

itate the improvement of metabolic models and the identification of metabolic interactions

that are difficult to identify experimentally in microbial communities.

Author summary

Microbes are the most abundant form of life on earth and they are almost never found in

isolation as they live in close association with one another and with other organisms. The

metabolic capacity of individual microbial species dictates their ways of interacting with
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other species as well as with their environment. The metabolic interactions among micro-

organisms has been recognised as the driving force for the properties of microbial com-

munities. For this reason, understanding the effect of microbial metabolism on

interspecies metabolic interactions is essential for the study of microbial communities.

This study can benefit from metabolic modeling and the insights offered by constraint-

based methods which have been developed for interrogating metabolic models. In this

paper, we present an algorithm that predicts cooperative and competitive metabolic inter-

actions between species while it resolves metabolic gaps in their metabolic models in a

computationally efficient way. We use our community gap-filling algorithm to study

microbial communities with interesting environmental and health-related applications.

Introduction

Microorganisms form the most abundant group of living organisms on our planet. In nature

microorganisms do not live in isolation, but in close association with one another, forming

microbial communities. The value of microbial communities for biotechnology, the environ-

ment and human health has been profound due to their potential for use in industrial biopro-

cesses for the production of valuable chemicals [1], their role in biogeochemical cycles [2], and

their effects on human health through the human microbiome [3].

The study of microbiomes has been extensively limited to the taxonomic classification of

species and their correlation with different phenotypes. However, such correlations do not

offer any mechanistic explanation on how the interactions among microbes and their environ-

ment form the observed phenotypes of the ecosystem [4]. A way to elucidate metabolic interac-

tions in microbial communities comes from the use of a set of mathematical and

computational techniques, called constraint-based methods, that make use of genome-scale

metabolic models [5, 6]. Constraint-based methods have been used extensively for the study of

the metabolic functions of individual microorganisms as well as for strain design in metabolic

engineering [7]. In the context of microbial communities, methods like SteadyCom [8], Opt-

Com [9], d-OptCom [10], DMMM (Dynamic Multispecies Metabolic Modeling) [11], and

COMETS (Computation Of Microbial Ecosystems in Time and Space) [12] give the opportu-

nity to evaluate growth rates and metabolic interactions of community members under various

conditions.

Genome-scale metabolic models (GSMMs) can be reconstructed automatically from iso-

lated genomes or pangenomes of specific organisms with a variety of tools [13], like Model-

SEED [14] and Kbase [15], that create gene—protein—reaction (GPR) associations. However,

genomes are often fragmented and contain misannotated genes [16], while the databases with

information about enzyme functions and biochemical reactions used in the reconstruction

process are not highly curated [13]. These problems lead to the creation of models with meta-

bolic gaps, mass and charge imbalances and thermodynamic infeasibilities. Metabolic gaps are

solved with the use of gap-filling methods, which are an indispensable part of the reconstruc-

tion process of organism-specific metabolic models [17]. The first published gap-filling algo-

rithm was GapFill [18], which was formulated as a Mixed Integer Linear Programming

(MILP) problem that identified dead-end metabolites and added reactions from the MetaCyc

database [19] in the metabolic network. Based on this algorithm more efficient and user-

friendly gap-filling tools have been developed [20, 21]. Some platforms for metabolic network

reconstruction and curation, like gapseq [22] and AMMEDEUS [23], make use of more com-

putationally efficient gap-filling algorithms formulated as Linear Programming (LP) problems.
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Other methods [24–26], including gapseq [22] and CarveMe [27], take into account genomic

or taxonomic information in order to decide which biochemical reactions to add to the meta-

bolic network. Other notable methods are OMNI [28] and GrowMatch [29], that try to maxi-

mize the consistency of the model with experimentally observed fluxes and growth rates

respectively, while OptFill [30] is a method formulated to simultaneously solve metabolic gaps

and thermodynamically infeasible cycles. Overall, most of the gap-filling methods to date are

constraint-based methods that resolve metabolic gaps by adding biochemical reactions from a

reference database, like ModelSEED [31], MetaCyc [19], KEGG [32], or BiGG [33], to the met-

abolic reconstruction of a specific organism.

Curated GSMMs of individual organisms can be combined in order to create a community

model. However, GSMMs of organisms that naturally live in complex microbial communities,

cannot be easily curated individually, and they often do not realistically represent the organ-

ism’s metabolic potential after the gap-filling process is completed. This problem is mainly cre-

ated because of the restricted amount of physiological information that can be collected

experimentally for members of complex microbial communities. Microorganisms cannot be

easily cultivated individually due to their complex metabolic interdependencies with other

community members. This lack of physiological information is especially acute in the case of

metagenomes from the environment or from enrichments. In this paper, we propose a gap-fill-

ing algorithm that resolves metabolic gaps in microbial communities, while considering meta-

bolic interactions in the community. The proposed community gap-filling method combines

incomplete metabolic reconstructions of microorganisms that are known to coexist in micro-

bial communities and permits them to interact metabolically during the gap-filling process.

Therefore, community gap-filling can be a useful method not only for resolving metabolic

gaps of GSMMs, but also for predicting non-intuitive metabolic interdependencies in micro-

bial communities. The accuracy of alternative community gap-filling strategies has already

been explored with the help of metabolic models of a bacterial photoautotroph–heterotroph

consortium composed of a Thermosynechococcus elongatus and a Meiothermus ruber strain,

reconstructed using the KBase platform [34]. Here, we are offering an explicit formulation for

an algorithm that builds compartmentalized metabolic models of microbial communities from

GSMMs of individual microorganisms, and ensures decreased solution times for the commu-

nity gap-filling problem. Considering the unexplored metabolic potential of many natural

microbial communities, as well as the difficulty to produce highly-curated metabolic recon-

structions for microorganisms, we believe that this method will benefit the study of complex

microbial consortia.

The described community gap-filling method was applied to three independent case studies

that demonstrate its ability to restore growth in metabolic models and predict both cooperative

and competitive metabolic interactions between them by adding the minimum possible num-

ber of biochemical reactions from a reference database to the models. The three case studies

involve a community of two Escherichia coli strains created for testing purposes, and the more

complex communities of Bifidobacterium adolescentis with Faecalibacterium prausnitzii, and

Dehalobacter with Bacteroidales species, which have interesting applications.

First, we demonstrate that our method successfully restores growth in a synthetic commu-

nity comprised of two auxotrophic Escherichia coli strains: an obligatory glucose consumer

and an obligatory acetate consumer. This community represents the well-known phenomenon

of acetate cross-feeding that emerges among E. coli strains which grow in homogeneous envi-

ronments containing glucose as the sole carbon source [35, 36].

The community gap-filling method was also used to study the codependent growth of Bifi-
dobacterium adolescentis and Faecalibacterium prausnitzii, two well-known bacterial members

of the human gut microbiome, the most diverse group of microorganisms found in the human
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body [37, 38]. One of the main functions of the intestinal microbiota is the anaerobic saccharo-

lytic fermentation of complex carbohydrates such as dietary fibers [39], which leads to the pro-

duction of short chain fatty acids (SCFAs) like acetate, propionate and butyrate. SCFAs are

known for their various beneficial effects on the mammalian gut and metabolism [40, 41], and

in particular butyrate is known for its ability to function as an energy source for the epithelial

cells of the gut and works against oxidative stress and inflammation [42]. A major butyrate

producer in the gut of healthy adults is the bacterium Faecalibacterium prausnitzii [43, 44].

The presence of F. prausnitzii has been connected with anti-inflammatory effects in mice [45],

while its abundance is significantly decreased in some diseases of the gastrointestinal tract

[46–48]. For these reasons, it is believed to have the ability to function as a probiotic and as a

marker for inflammatory bowel diseases and colon cancer [49]. F. prausnitzii has been identi-

fied as a commensal, strictly anaerobic bacterium of the human gut that performs saccharolytic

fermentation. It can utilize a variety of carbon sources from glucose, fructose, and fructo-oligo-

saccharides to complex molecules such as pectin and N-acetylglucosamine [50], and its typical

fermentation products are butyrate, formate, lactate, and acetate [51]. F. prausnitzii is known

for developing both competitive and syntrophic interactions with other species that live in the

gut, as it competes for common carbon sources, but also has the ability to consume acetate

produced by other species and convert it to butyrate. These interactions have been observed in

cocultures of F. prausnitzii with bacterial species of the genus Bifidobacterium [52, 53]. Bifido-

bacterial species belong to the phylum Actinobacteria, and are commensal, obligate anaerobes

of the human gut, that perform saccharolytic fermentation. They can metabolize a variety of

carbohydrates [54], and their most common fermentation products are acetate, formate, lac-

tate, succinate, and ethanol [55–57]. The cogrowth of the species Faecalibacterium prausnitzii
and Bifidobacterium adolescentis has been studied both experimentally [58, 59] and computa-

tionally [60], and it has been shown that their metabolic interaction has the potential to

enhance butyrate production [58]. For the community of F. prausnitzii and B. adolescentis, the

community gap-filling method managed to predict metabolic interactions and SCFA produc-

tion that were previously reported [58].

Finally, the community gap-filling method was used to replicate experimental results for

the interaction between Dehalobacter sp. CF and Bacteroidales sp. CF50, which are the two

main members of the ACT-3 community. The ACT-3 community is a microbial community

found in soils and underground waters that are usually contaminated with chlorinated com-

pounds. The study of this community has garnered scientific interest in recent years, as it has

the ability to degrade chlorinated environmental pollutants [61–63]. The ACT-3 community is

mainly composed of bacterial species that belong in the genera Dehalobacter, with relative

abundance up to 80%, Bacteroides, and Clostridium [64]. The dechlorinating ability of the

community mainly comes from the ability of Dehalobacter species to perform dehalogenation,

i.e., anaerobic respiration with the use of chloroform or other chlorinated compounds as elec-

tron acceptors [65–69]. In this study, we use our metabolic reconstructions for Dehalobacter
sp. CF and Bacteroidales sp. CF50, in order to simulate experimental results for the cogrowth

of the two most abundant species of the ACT-3 community [64] and improve our models.

Materials and methods

The community gap-filling method

The general principle behind the proposed method is demonstrated in Fig 1. Our algorithm

creates a compartment for each organism of the simulated microbial community, by combin-

ing the biochemical reactions of the organism’s metabolic model with those that come from a

reference database. In this study, we created a curated database using the biochemical reactions
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available in BiGG [33]. While continuing to use the BiGG nomenclature, we removed all the

biomass equations, reactions found only in eukaryotic organisms, and reactions with mass

imbalances. Then, the organism compartments were allowed to exchange metabolites with

one another and with their environment through a common metabolite pool where extracellu-

lar compounds can accumulate or deplete. In this way, each organism can synthesize biomass

only by using its intracellular metabolites, and metabolites defined in the growth medium or

produced by the other organisms of the community.

As we can see in Fig 1, our community model consists of the organism compartments and

an exchange compartment which is the common metabolite pool. This community model is

used to formulate an MILP problem that predicts the minimum number of reactions that need

to be added from the reference database to the community model in order to achieve a user-

determined growth rate for the organisms that make up the community. The mathematical

Fig 1. Graphical representation of the community gap-filling method. The metabolic reconstructions of two individual organisms (blue and orange

respectively) are allowed to exchange metabolites and interact with the environment through a common metabolite pool (green). (a) The algorithm

adds biochemical reactions from a reference database (dark purple) to the community model. (b) The community gap-filling algorithm is an MILP

problem with the objective to add the minimum number of database reactions to the community model in order to restore biomass production in the

individual metabolic models, while it satisfies some constrains for the reaction fluxes. In each compartment of the community model, the metabolite

pools are assumed to be in steady state. The addition of each database reaction is controlled by a binary variable, which takes the value of 1 if the

database reaction is added to the community model, and 0 otherwise.

https://doi.org/10.1371/journal.pcbi.1009060.g001
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formulation of our community gap-filling algorithm for a microbial community of N organ-

isms is:

minimize
X

n2N
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j2 JnDatabase

ynj
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vnexðiÞ ¼ 0; 8 i 2 Ic ; ð7Þ

where In and Jn represent the number of metabolites and reactions, respectively, in the nth

microorganism compartment, while Ic represents the exchanged metabolites in the common

metabolite pool.

Eq (1) is the objective function of the MILP problem which minimizes the total number of

biochemical reactions that are added from the database to the metabolic models of the organ-

isms composing the community. Eqs (2)–(7) are the constraints of the optimization problem.

Specifically, Eqs (2) and (7) show that the metabolite pools belonging to each organism com-

partment and to the common exchange compartment respectively, are at steady state. Eq (3)

shows the constrained fluxes of the reactions originally belonging to the organism models. The

lower and upper bounds for the model reactions are selected in order to represent the growth

of the organism under the desired conditions. Eq (5) represents the constraints for the fluxes

through the biomass reactions of the organism models. The minimum threshold for the

growth rate of each organism is defined based on existing information for the growth of the

microorganism under the simulated conditions. Eq (4) implies that the fluxes of the reactions

coming from the database are constrained between a lower and an upper bound, but a binary

variable controls whether each database reaction will be added to the corresponding model.

The binary variables, which are also used in the objective function, are defined in Eq (6). Each

binary variable takes the value 1 if the database reaction is added to the community model,

and the value 0 otherwise. It is noted that all the reactions from the database are initially con-

sidered reversible. Then, the minimum and maximum possible fluxes for these reactions are

calculated from Flux Variability Analysis (FVA) [70] when the organism compartment is

made. The FVA results are used as constraints for the database reaction fluxes, which also

gives the opportunity to remove the reactions with both minimum and maximum flux zero.

Using this approach, the solution space and time of the final gap-filling problem is reduced.

It is noted that the reaction fluxes in each one of the N organism compartments are

reported per gram dry weight of the cells of the respective organism. In order to correct the

mass balance in the community, we are discussing in S3 Appendix an alternative community

gap-filling formulation which takes into account the relative abundances of the organisms in

the microbial community.
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The simulations were performed on a machine with two 22-core Intel(R) Xeon(R) Gold

6238 @ 2.10GHz and 768GB of RAM, running CentOS 7. For the generation of the results pre-

sented in this paper, the MILP problem was formulated and solved in MATLAB 2017b with

CPLEX Interactive Optimizer 12.8 and CobraToolbox 3, and alternative solutions for the

problem were calculated with the populate procedure of CPLEX and an upper time limit of

two hours. The alternative solutions are used in each of the presented case studies in order to

identify reactions added to the metabolic models of the participating microorganisms as well

as metabolic interactions that appear more frequently in the solutions.

Sources of metabolic models

Toy E. coli community. S1 Appendix explains how we used the E. coli core model from

BiGG [71] for the creation of two E. coli strains, one with the ability to use glucose as a sub-

strate and another with the ability to use only acetate excreted from the first strain. S1 and S2

Tables contain information about reactions that were deleted from our core model and con-

straints for the exchange reactions that were implemented in order to create the models of the

E. coli glucose utilizer and the E. coli acetate utilizer respectively. In this study, the selected

lower bounds for the growth rates of the E. coli glucose utilizer and the E. coli acetate utilizer,

were 0.9 and 0.09 h-1, respectively, based on existing information about acetate cross-feeding

between E. coli strains [35, 72, 73]. We also created an E. coli strain with the ability to consume

glycerol by deleting and constraining reactions from our E. coli core model as shown in S3

Table. Then, we made a microbial community of three organisms with the models of the E.
coli glucose utilizer, which was allowed to import or export glycerol, the E. coli acetate utilizer,

and the E. coli glycerol utilizer, whose lower growth rate bound was set to 0.09 h-1. This com-

munity was used for measuring the solution time of our community gap-filling algorithm as

described in the Results section.

Bifidobacterium adolescentis and Faecalibacterium prausnitzii community. For our

simulations, we downloaded the metabolic models for the strains Bifidobacterium adolescentis
ATCC 15703 and Faecalibacterium prausnitzii A2–165 from the Virtual Metabolic Human

Database [74]. The models are part of the AGORA version 1.03 [75], a collection of metabolic

reconstructions of 773 members of the human gut microbiota. Both models are known to con-

tain gaps in the pathways for the biosynthesis of some amino acids and vitamin B, as well as in

their central carbon metabolism [74]. In this study we simulate the ability of the two models to

use glucose as a substrate and exchange acetate and amino acids under anaerobic conditions.

The applied constraints for the exchange reactions of the two models can be seen in S4 and S5

Tables respectively. The lower bounds for the growth rates of the B. adolescentis ATCC 15703

and the F. prausnitzii A2–165, were set to 0.6 and 0.4 h-1, respectively. The constraints used for

the exchange reactions of the organic acids, the amino acids, and the growth rates are based on

experimental observations of B. adolescentis and F. prausnitzii strains cogrowth [58], and the

study of the metabolic potential of the strain F. prausnitzii A2–165 [51].

ACT-3 community. For this case study, we reconstructed the metabolic models of the

two most abundant species of the ACT-3 community, Dehalobacter sp. CF and Bacteroidales
sp. CF50. S2 Appendix contains information about the reconstruction process for the two

models. We allowed Dehalobacter sp. CF to consume chloroform and Bacteroidales sp. CF50

to consume lactate, while the two models grow anaerobically in the same medium and are

allowed to exchange organic acids and amino acids. Based on the experimental study for the

coculture [64], after 18 days, the community consumes 0.5 mM of chloroform and 0.75 mM of

lactate, while the total cell density is around 6�107 cells�mL-1, and the relative abundance of the

Dehalobacter in the community is 66% on average. This information was used in order to
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calculate the uptake rates of chloroform and lactate by the community as shown in S6 Table.

The reaction constraints for the two models are shown in S7 and S8 Tables. For our simula-

tions, we used 0.1 and 0.01 d-1 as lower bounds for the growth rates of the Dehalobacter sp. CF

and the Bacteroidales sp. CF50, respectively. All the constraints applied for the exchange reac-

tions and the growth rates are representing experimental data from the cogrowth of the Deha-
lobacter and Bacteroidales species [64].

Results

We used our community gap-filling method in order to add biochemical reactions to meta-

bolic models of organisms that contain incomplete pathways. Since the method simulates the

cogrowth of organisms that are known to coexist in microbial communities, it is used for iden-

tifying both expected and unexpected metabolic interactions in the community. In this paper,

we tested the potential of the method on an artificial E. coli community, and then, we applied

it to two communities with significance for the health of the human gut and for the bioremedi-

ation of soil and water, respectively. For each microbial community, we discuss the best solu-

tion calculated by the algorithm, i.e. the solution that adds the minimum number of

biochemical reactions to the models, as well as the patterns emerging from the ten best alterna-

tive solutions suggested by the algorithm. The MATLAB files with all the solutions calculated

by the community gap-filling for each one of the studied microbial communities can be found

in S1–S4 Files. The files of all the used models and the used community media are available on

our GitHub.

A summary of the characteristics of the used metabolic models before and after the applica-

tion of the community gap-filling can be seen in Table 1. Table 2 compares the number of

reactions that are added to the metabolic models by the community gap-filling method and by

gap-filling methods for individual GSMMs. For each metabolic model the individual-organism

gap-filling methods add more reactions than the community gap-filling method, with the

exception of the E. coli glucose utilizer model which was able to synthesize biomass before the

gap-filling process, as we can see from Table 1. The function fastGapFill [20] from CobraTool-

box 3 [21] adds the most reactions to all the models, since it tries to resolve all the blocked

reactions and dead-end metabolites in a metabolic network. The reactions that are added to

each one of the metabolic models by the individual-organism gap-filing methods are reported

in S9–S14 Tables.

Table 1. Characteristics of the metabolic models used in the study before and after the application of the community gap-filling method. The algorithm simulated

the aerobic growth of a community of an E. coli glucose utilizer and an E. coli acetate utilizer on glucose, the anaerobic growth of a community of the strains B. adolescentis
ATCC 15703 and F. prausnitzii A2–165 on glucose, and the anaerobic growth of a community of the species Dehalobacter sp. CF and Bacteroidales sp. CF50 on media with

lactate and chloroform.

Model Before community gap-filling After community gap-filling

metabolites reactions growth rate� metabolites reactions growth rate�

E. coli glucose utilizer 72 85 1.15 h-1 72 86 0.9 h-1

E. coli acetate utilizer 72 83 0 h-1 72 85 0.09 h-1

B. adolescentis ATCC 15703 991 1129 0 h-1 991 1134 0.6 h-1

F. prausnitzii A2–165 1047 1225 0 h-1 1055 1233 0.4 h-1

Dehalobacter sp. CF 978 1087 infeasible 978 1088 0.1 d-1

Bacteroidales sp. CF50 964 967 0 d-1 965 969 0.01 d-1

�in the community conditions

https://doi.org/10.1371/journal.pcbi.1009060.t001

PLOS COMPUTATIONAL BIOLOGY Metabolic pathway gap filling in microbial communities

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009060 November 1, 2021 8 / 26

https://doi.org/10.1371/journal.pcbi.1009060.t001
https://doi.org/10.1371/journal.pcbi.1009060


Toy E. coli community

In the beginning, we tested if our community gap-filling method can restore growth in an arti-

ficial microbial community of an E. coli glucose utilizer and an E. coli acetate utilizer strain,

that is allowed to grow aerobically on glucose. Our community was made after the deletion of

12 reactions from the original models of E. coli core metabolism (Fig 2) as discussed in S1

Appendix. As expected, the community gap-filling algorithm, instead of adding back all the

knockouts that we made, suggested the addition of the minimum possible number of reactions

in the community in order to restore its function. The first solution calculated by the algorithm

suggested the addition of one reaction to the E. coli glucose utilizer model and two reactions to

the E. coli acetate utilizer model (Fig 2). More specifically, the pyruvate oxidase (POX) reaction

was added to the model of the E. coli glucose utilizer to produce acetate from pyruvate. The

additions to the model of the E. coli acetate utilizer include citrate synthase (CS), which was

one of the initial knockouts, and fructose-6-phosphate utilizing phosphoketolase (PKETF),

which converts acetyl-phosphate to fructose-6-phosphate. Apart from the reactions that were

added from the database to the models, the community gap-filling algorithm suggested the

activation of reactions that were already present in the models, but did not carry flux in the

FBA solution of the original core model. More specifically, in order to sustain growth in the

glucose utilizer the reactions of 6-phosphogluconate dehydratase (EDD) and 2-dehydro-

3-deoxy-phosphogluconate aldolase (EDA) were activated to produce pyruvate from gluconate

6-phosphate, while pyruvate dehydrogenase (PDH) was also activated to convert pyruvate to

acetyl-CoA. In the acetate utilizer the preexisting reactions of acetyl-CoA synthetase (ACS)

and acetate kinase (ACKr) were activated in order to convert acetate to acetyl-CoA and acetyl-

phosphate respectively, and malic enzyme (ME1) converted malate to pyruvate. The fluxes for

all the reactions of the community, as well as a summative table of the reactions that were

added from the database to the community can be found in S15 Table. A post gap-filling FBA

for the two models shows that all the biomass precursors are replenished in both models. How-

ever, both of the models grow at suboptimal rates compared to the original core model (S1

Appendix and Table 1). For the glucose utilizer, the suboptimal growth rate of 0.9 h-1 was due

to the export of acetate that led to a reduction in resources directed towards growth, whereas

for the acetate utilizer the growth rate of 0.09 h-1 was caused by the use of reduced acetate as

the only substrate.

Table 2. Comparison of the number of reactions added to the metabolic models used in the study after the application of the community gap-filling method and

individual-organism gap-filling methods. The metabolic models of the E. coli glucose utilizer, the E. coli acetate utilizer, the B. adolescentis ATCC 15703, the F. prausnitzii
A2–165, the Dehalobacter sp. CF and the Bacteroidales sp. CF50 were gap-filled individually with the use of our community gap-filling algorithm for single organisms and

with the function fastGapFill which is incorporated in CobraToolbox 3 and is a standard method for gap-filling of individual GSMMs.

Model Reactions added by community gap-

filling

Reactions added by community gap-filling for single

organism�
Reactions added by

fastGapFill

E. coli glucose utilizer 1 0 8

E. coli acetate utilizer 2 10 11

B. adolescentis ATCC

15703

5 8 107

F. prausnitzii A2–165 8 12 143

Dehalobacter sp. CF 1 7 87

Bacteroidales sp. CF50 2 3 171

�in order to achieve the growth rate reported in Table 1 on the community media

https://doi.org/10.1371/journal.pcbi.1009060.t002
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The fluxes from the ten best solutions calculated by the community gap-filling algorithm

for the exchange reactions of the community (S16 Table) show that all the solutions predicted

the ability of the E. coli glucose utilizer model to uptake glucose and produce acetate that is

used by the E. coli acetate utilizer model for aerobic or anaerobic growth. We can see that the

acetate utilizing strain either shares oxygen with the glucose utilizing strain or ends up growing

anaerobically due to oxygen depletion by the glucose utilizing strain in different solutions.

Moreover, all the reactions that were added from the database to the community in the ten

best solutions (S17 Table), carry realistic fluxes with values ranging from -10 to 15

mmol�gDW-1�h-1.

We further used our artificial E. coli community in order to estimate the computational effi-

ciency of our method. One major innovation of our community gap-filling method is the use

of FVA before the solution of the main MILP problem. FVA is performed in order to identify

the minimum and maximum fluxes that are possible for every database reaction in each organ-

ism compartment of the community. The fluxes calculated by FVA are used as constraints for

Fig 2. Graphical representation of the toy E. coli community after the application of the community gap-filling method. The central carbon

metabolism of an E. coli core model (blue rectangular: Glycolysis, pink square: Pentose Phosphate Pathway, yellow circle: TCA cycle) was used in order

to create two E. coli strains: one that consumes glucose (left) and one that consumes acetate (right), after the deletion of the reactions marked with red

crosses. The best solution of the community gap-filling algorithm predicted the addition of the reactions represented by continuous blue arrows and the

activation of the existing reactions represented by dashed blue arrows, in order to restore biomass production in the two models. The dashed black

arrows show the exchange reactions for glucose and acetate in the community. The metabolites in bold represent biomass precursors. The numbered

deleted reactions are: (1) PGM, (2) MALS, (3) SUCOAS, (4) PFL, (5) PTAr, (6) GLCpts, (7) CS. The numbered added and activated reactions are: (1)

POX, (2) CS, (3) PKETF, (4) EDD and EDA, (5) PDH, (6) ACS, (7) ACKr, (8) ME1.

https://doi.org/10.1371/journal.pcbi.1009060.g002
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the database reactions before building the community model. As a result, the solution space of

the community gap-filling MILP problem is smaller and therefore, it can be solved faster.

Many of the gap-filling methods to date solve MILP problems, but have not made an effort to

reduce the solution space. From a computational perspective, the search of optimality can be

tedious for MILP problems, and it is known that smaller feasible solution spaces can accelerate

the solution of the optimization problem. Regarding the community gap-filling algorithm, the

solving time increases when bigger databases are used and more importantly when the meta-

bolic models of more organisms are added to the problem. As we can see from S1 Fig, the solv-

ing time of the MILP problem after the application of FVA is increasingly smaller as more

organisms are added in the community, compared to the problem that was formulated imme-

diately without the use of FVA. These results suggest that the FVA preprocessing step can

reduce the solution time up to 84% (from 28 min to 4.5 min for a microbial community of two

organisms, and from 83 min to 18 min for a microbial community of three organisms). It is

noted that in order to measure the solution time of our MILP problem for a microbial commu-

nity of three organisms, we added an E. coli glycerol utilizer strain to our artificial E. coli com-

munity (see Materials and methods section). The community gap-filling algorithm restored

growth in this three-member community, and predicted that the E. coli glucose utilizer model

provide acetate and glycerol to the models of the E. coli acetate utilizer and the E. coli glycerol

utilizer respectively. The fluxes of the community reactions according to the first solution cal-

culated by the algorithm are reported analytically in S18 Table.

Bifidobacterium adolescentis and Faecalibacterium prausnitzii community

In this case study, we applied the community gap-filling method to a community made from

the models of the strains Bifidobacterium adolescentis ATCC 15703 and Faecalibacterium
prausnitzii A2–165. The interaction between these two species has been studied experimentally

and is considered beneficial since it promotes the production of the SCFA butyrate, which has

antinflammatory effects in the gut [58]. Here, we simulated the anaerobic cogrowth of B. ado-
lescentis and F. prausnitzii with glucose as the sole carbon source. None of the models can syn-

thesize biomass in the simulated conditions, and the two models are allowed to produce

SCFAs and exchange amino acids. The model of F. prausnitzii was permitted to either uptake

or excrete acetate.

The community gap-filling algorithm restored community growth by predicting both com-

petitive and cooperative metabolic interactions and by adding database reactions to the mod-

els. The first calculated solution added five reactions to the model of B. adolescentis ATCC

15703 and eight reactions to the model of F. prausnitzii A2–165 (Table 3 and S19 Table). The

reactions added to the models of B. adolescentis and F. prausnitzii participated in the biosyn-

thesis of cofactors and amino acids necessary for growth. The first solution predicted that B.
adolescentis and F. prausnitzii share the available glucose from the community medium, while

F. prausnitzii uses part of the acetate exported from B. adolescentis (Fig 3). Moreover, both

models export CO2, B. adolescentis exports lactate and formate in addition to acetate, and F.
prausnitzii exports butyrate, lactate and formate (Fig 3). This correlates with experimental

observations [58]. Interestingly the model of B. adolescentis ATCC 15703 uses the bifid shunt

pathway, which is centered around the key enzyme frutose-6-phosphate erythrose-4-phos-

phate-lyase (F6PE4PL) in our model. The bifid shunt pathway is unique in Bifidobacteria spe-

cies that commonly use it for the efficient conversion of carbohydrates, like glucose, to acetate

and lactate [55, 56]. The biosynthesis of butyrate from the model of F. prausnitzii A2–165 hap-

pens through the reaction of butyryl-CoA:acetate CoA-transferase (BTCOAACCOAT) that

converts acetate to butyrate. Beyond the expected behavior of the community regarding the
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use of carbon and energy sources, and the production of SCFAs, the best solution also predicts

the exchange of numerous amino acids between the two community members (Fig 3). After

adding the reactions suggested by the community gap-filling algorithm, FBA for the two mod-

els shows that the growth is restored, with growth rates of 0.6 h-1 and 0.4 h-1 under the simu-

lated conditions, for the models of B. adolescentis and F. prausnitzii respectively.

We also evaluated the ten best alternative solutions calculated by the community gap-filling

algorithm and found several interesting interactions. First, in almost all the solutions (S20

Table), the models of B. adolescentis and F. prausnitzii shared the glucose provided in the com-

munity medium. Also, four out of ten solutions predicted that F. prausnitzii consumes the ace-

tate produced by B. adolescentis, while the rest of the solutions predicted that F. prausnitzii
consumes glucose from the media and produces acetate (S2 Fig). This behavior is consistent

with previous studies that show the ability of F. prausnitzii A2–165 to function both as a con-

sumer and a producer of acetate depending on the conditions [51]. However, to our current

knowledge, acetate production from F. prausnitzii in the presence of B. adolescentis has not

been observed experimentally. For this reason, more detailed research into the conditions that

could affect the acetate production in cocultures of F. prausnitzii with B. adolescentis could

yield interesting results.

We can see that in most of the solutions in which F. prausnitzii consumes acetate, it also

produces CO2 (S20 Table and S2 Fig, Solutions 1, 3, 5), while it does not produce CO2 when it

produces acetate (S20 Table and S2 Fig, Solutions 4, 6, 8, 9, 10). This observation is in agree-

ment with existing information about the acetate consumption and production from F. praus-
nitzii A2–165 [51]. It is noted that in most of the solutions, CO2 production from F.
prausnitzii is accompanied by CO2 consumption from B. adolescentis, while in the rest of the

cases the reverse CO2 crossfeeding is observed. The exchange of CO2 between the two models

could be an indication that F. prausnitzii and B. adolescentis can use CO2 fixation to cover

Table 3. Reactions added from the database to the community model according to the best solution calculated by

the community gap-filling algorithm. The reactions (1)–(5) are added to the metabolic model of B. adolescentis
ATCC 15703, while the reactions (1) and (6)–(12) are added to F. prausnitzii A2–165.

Reaction Formula Reaction (BiGG

ID)

(1) 2 H+[c] + SO4
2-[c]!H2S[c] + 2 O2[c] H2SO

(2) L-Homocysteine[c] + 5-Methyltetrahydrofolate[c]! L-Methionine[c] + THF[c] METS_1

(3) CMP[c] + PPi[c] + H+[c]! CTP[c] + H2O[c] NTPP4

(4) 3-Carboxy-4-methyl-2-oxopentanoate[c] + H+[c]! 4-Methyl-2-oxopentanoate[c]

+ CO2[c]

OMCDC

(5) L-Glutamate[c] + PLP[c] + Pi[c] + H+[c] + 3 H2O[c]! L-Glutamine[c] + D-Ribulose-

5-phosphate[c] + Dihydroxyacetone phosphate[c]

PDBL_3

(6) SAM[c] + 2-Octaprenyl-3-methyl-6-methoxy-1,4-benzoquinol[c]! SAH[c] + UQ8[c]

+ H+[c]

ABAH

(7) trans-Octaprenyl-diphosphate[c] + 4-Hydroxybenzoate[c]! 3-Octaprenyl-

4-hydroxybenzoate[c] + PPi[c]

HBZOPT

(8) SAM[c] + 2-Octaprenyl-6-hydroxyphenol[c]! SAH[c] + 2-Octaprenyl-

6-methoxyphenol[c] + H+[c]

OHPHM

(9) SAM[c] + 2-Octaprenyl-6-methoxy-1,4-benzoquinol[c]! SAH[c] + 2-Octaprenyl-

3-methyl-6-methoxy-1,4-benzoquinol[c] + H+[c]

OMBZLM

(10) 3-Octaprenyl-4-hydroxybenzoate[c] + H+[c]! 2-Octaprenylphenol[c] + CO2[c] OPHBDC

(11) 2 SAM[c] + Fe2+[c] + NAD[c] + Uroporphyrinogen-3[c]! 2 SAH[c] + Siroheme[c]

+ NADH[c] + 5 H+[c]

SHS1

(12) Hydroxymethylbilane[c]! Uroporphyrinogen-3[c] + H2O[c] UPP3S

https://doi.org/10.1371/journal.pcbi.1009060.t003

PLOS COMPUTATIONAL BIOLOGY Metabolic pathway gap filling in microbial communities

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009060 November 1, 2021 12 / 26

https://doi.org/10.1371/journal.pcbi.1009060.t003
https://doi.org/10.1371/journal.pcbi.1009060


their carbon needs especially in environments with limited amounts of carbohydrates. This

possibility is supported by an experimental study that shows that the presence of CO2 in the

medium promotes the anoxic growth of B. adolescentis species [76]. However, it is unclear if

CO2 fixation that leads to acetogenesis can be performed through the Wood–Ljungdahl path-

way in B. adolescentis and in F. prausnitzii, as it happens in other species of the gut micro-

biome [77, 78].

Furthermore, the production of SCFAs from the models complies with what is expected

from literature [58] being that for most of the alternative solutions B. adolescentis produces

acetate, lactate, ethanol and formate, while F. prausnitzii produces butyrate, fromate and succi-

nate (S20 Table and S2 Fig). Finally, we observed patterns in the amino acid exchanges with

alanine, leucine, serine and tryptophan transferred from B. adolescentis to F. prausnitzii, and

aspartate and cysteine transferred from F. prausnitzii to B. adolescentis in the majority of the

alternative solutions (S20 Table and S3 Fig).

Apart from the patterns that emerged regarding the exchanged metabolites in the commu-

nity, the alternative solutions to the problem also indicate a consistency in the reactions that

are added from the database to the model of F. prausnitzii A2–165 (S21 Table). However, this

is not the case for B. adolescentis, since the reactions added from the database to the model of

B. adolescentis ATCC 15703 are not the same through different solutions (S21 Table). Even

though most of the added reactions carry realistic fluxes, some of the reactions added to B.
adolescentis carry unrealistically high fluxes (in the order of 102 mmol�gDW-1�h-1) and partici-

pate in thermodynamic infeasible cycles (S21 Table, Solutions 1 and 4, reaction PDBL_3).

Fig 3. Graphical representation of the community of B. adolescentis ATCC 15703 and F. prausnitzii A2–165 after the application of the

community gap-filling method. The best solution calculated by the community gap-filling algorithm predicted that the metabolic models of the strains

B. adolescentis ATCC 15703 and F. prausnitzii A2–165 share the available Glucose from the common medium and produce lactate (LAC), formate

(FOR), and butyrate (BUT), while they exchange acetate (AC), and amino acids (3 letter code). The non-dashed arrows represent intracellular

metabolite flow and the dashed arrows represent the exchange reactions of SCFAs and amino acids. The thickness of the dashed arrows represents the

relative order of magnitude of the calculated fluxes for the exchange reactions.

https://doi.org/10.1371/journal.pcbi.1009060.g003
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ACT-3 community

In this case study, we simulated the cogrowth of Dehalobacter sp. CF and Bacteroidales sp.

CF50 that represent the most abundant bacterial species of the dehalogenating ACT-3 commu-

nity [64]. Our simulation is set up in order to represent the conditions of a previous experi-

mental study on the interaction between Dehalobacter and Bacteroidales [64]. More

specifically, our community is allowed to grow anaerobically on chloroform, that can be used

by the model of Dehalobacter sp. CF as an energy source, and lactate, that can be used by the

model of Bacteroidales sp. CF50 as a carbon and energy source. The two models are allowed to

exchange organic acids and amino acids. We show that the growth in the community of Deha-
lobacter sp. CF and Bacteroidales sp. CF50 can be restored by the community gap-filling

algorithm.

The first solution calculated by the community gap-filling algorithm suggested the addition

of one reaction to the model of Dehalobacter sp. CF and two reactions to the model of Bacteroi-
dales sp. CF50 (Table 4 and S22 Table). More specifically, the reaction of calcium transport via

the ABC system (CA2abc) was added in the model of Dehalobacter sp. CF. The model uses the

export of Ca2+ through the ABC system as a proton exchange pump to generate ATP. The

additions to the model of Bacteroidales sp. CF50 include the reactions of ammonia transport

(NH4ti) and anthranilate synthase (ANS2) that are used in the model in order to import

ammonia and use it to produce pyruvate from chorismate. Moreover, the first solution also

predicts the ability of Bacteroidales sp. CF50 to uptake lactate from the medium and produce

hydrogen, CO2, acetate, and malate that are used by Dehalobacter sp. CF. In parallel, Dehalo-
bacter sp. CF consumes the hydrogen produced by Bacteroidales sp. CF50 and chloroform

from the medium, and produces chlorine and dichloromethane as it performs dechlorination.

In addition, Dehalobacter sp. CF provides pyruvate to Bacteroidales sp. CF50. Overall, we see

that the gap-filling algorithm was able to predict the experimentally observed behavior of the

community [64], and it also predicted the exchange of amino acids between the two commu-

nity members, which remained elusive in the experimental study. The exchanges between the

two models are depicted in Fig 4. A post gap-filling analysis shows that all biomass precursors

are replenished in both models, and FBA calculated a growth rate of 0.1 d-1 for Dehalobacter
sp. CF, and 0.01 d-1 for Bacteroidales sp. CF50.

An analysis of the ten best solutions calculated by the community gap-filling algorithm

shows that the model of Bacteroidales sp. CF50 consistently uptakes lactate, the only carbon

and energy source in the medium, and ferments it into CO2, hydrogen, acetate, malate, fuma-

rate and succinate, while the model of Dehalobacter sp. CF consistently performs dechlorina-

tion by reducing chloroform and producing dichloromethane and chlorine (S23 Table).

Moreover, all the alternative solutions predicted the ability of Dehalobacter sp. CF to consume

part of the acetate and all the malate and hydrogen produced by Bacteroidales sp. CF50, while

providing Bacteroidales sp. CF50 with pyruvate (S23 Table and S4 Fig).

In most of the solutions Dehalobacter sp. CF consumes part of the CO2 produced by Bacter-
oidales sp. CF50 (S23 Table and S4 Fig, Solutions 1–5, 8, 10). This exchange could indicate that

Table 4. Reactions added from the database to the community model according to the best solution calculated by

the community gap-filling algorithm. Reaction (1) is added to the metabolic model of Dehalobacter sp. CF, while

reactions (2) and (3) are added to Bacteroidales sp. CF50.

Reaction Formula Reaction (BiGG ID)

(1) Ca2+[c] + Pi[c] + H+[c] + ADP[c]! Ca2+[e] + H2O[c] + ATP[c] CA2abc

(2) NH4+[e]! NH4+[c] NH4ti

(3) NH4+[c] + Chorismate[c]!H+[c] + H2O[c] + Anthranilate[c] + Pyruvate[c] ANS2

https://doi.org/10.1371/journal.pcbi.1009060.t004
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Dehalobacter sp. CF performs CO2 fixation, which is possible since the species is known to

possess the Wood–Ljungdahl pathway [64]. Furthermore, we observed patterns in the amino

acid exchanges between the two community members, with arginine, asparagine, isoleucine,

lysine, phenylalanine, threonine, and tyrosine transferred from Bacteroidales sp. CF50 to

Dehalobacter sp. CF, and alanine and glutamate transferred from Dehalobacter sp. CF to Bac-
teroidales sp. CF50 in the majority of the alternative solutions (S23 Table and S5 Fig).

More information about the quality of the solutions calculated by the community gap-fill-

ing algorithm can be retrieved by closer inspection of the reactions that were added from the

database to the models in the ten best solutions. We can see that in most of the solutions (S24

Table, Solutions 1–6, 8, 10), even though the reactions added to the model of Bacteroidales sp.

CF50 have realistic fluxes, those added to the model of Dehalobacter sp. CF carry unrealistically

high fluxes (close to the infinite reaction bounds). For example, the already discussed reaction

of calcium transport via the ABC system (CA2abc), which is used for ATP production in the

model, has unrealistically high fluxes and forms a cycle with the reaction calcium transport in/

out via proton antiporter (CAt4) that already exists in the Dehalobacter sp. CF model (S24

Table, Solutions 1, 2, 3).

In order to further investigate the ability of our community gap-filling method to properly

simulate the cogrowth of Dehalobacter sp. CF and Bacteroidales sp. CF50, we repeated the sim-

ulation of the community after opening the constraints for all the exchange reactions of the

two models. It is noted that if we set infinite lower and upper bounds for all the exchange reac-

tions of the two models, then the community gap-filling algorithm calculates irrationally high

fluxes for some of the exchange reactions and does not predict with high accuracy the

Fig 4. Graphical representation of the community of Dehalobacter sp. CF and Bacteroidales sp. CF50 after the application of the community gap-

filling method. The best solution calculated by the community gap-filling algorithm predicted that the metabolic model of Dehalobacter sp. CF

consumes chloroform (CF), while the metabolic model of Bacteroidales sp. CF50 consumes lactate (LAC) from the common medium. Dehalobacter sp.

CF consumes H2 and CO2 produced by Bacteroidales sp. CF50, and uses part of the consumed H2 in order to respire chloroform (CF) to chlorine (Cl)

and dichloromethane (DCM). The two models exchange acetate (AC), malate (MAL) and pyruvate (PYR) as expected from experimental studies. The

algorithm also predicted the exchange of specific amino acids (3 letter code) between the models. The non-dashed arrows represent intracellular

metabolite flow, while the dashed arrows represent exchange reactions. The thickness of the dashed arrows represents the relative order of magnitude of

the calculated fluxes for the exchange reactions.

https://doi.org/10.1371/journal.pcbi.1009060.g004
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experimentally identified metabolic interactions in the community. However, if we set a

proper order of magnitude for constraining the exchanges of organic acids and amino acids in

the community, as shown in S25 Table, our algorithm results to more realistic solutions. In

this case, the first solution of the community gap-filling algorithm adds one reaction to the

model of Dehalobacter sp. CF, which stimulates a proton pump used for ATP production, and

only one reaction to the model of Bacteroidales sp. CF50, which participates in the amino acid

metabolism of the model (S26 Table). A quick view of the ten best solutions calculated by the

community gap-filling algorithm (S27 Table) shows that the model of Bacteroidales sp. CF50

ferments lactate to CO2, hydrogen, acetate, and malate, which are consumed by the model of

Dehalobacter sp. CF that performs dechlorination and provides pyruvate to the Bacteroidales
sp. CF50, as expected. The model of Dehalobacter sp. CF also demonstrates the ability to pro-

duce fumarate (S27 Table, Solutions 1–3, 6–9) which is consumed by the model of Bacteroi-
dales sp. CF50. Regarding the amino acid exchanges, some slightly modified patterns are

observed with isoleucine, phenylalanine, proline, threonine, and tyrosine transferred from

Bacteroidales sp. CF50 to Dehalobacter sp. CF, and alanine, glutamate, and tryptophan trans-

ferred from Dehalobacter sp. CF to Bacteroidales sp. CF50 (S27 Table). From the ten best solu-

tions of the community gap-filling algorithm (S28 Table, Solutions 1, 2, 4, 5, 7, 8, 9), we can

see once again that the reactions added to the model of Dehalobacter sp. CF carry unrealisti-

cally high fluxes.

Discussion

Our results demonstrate the ability of the community gap-filling method to resolve metabolic

gaps and restore growth in metabolic models by adding the minimum possible number of bio-

chemical reactions from a reference database to the models and activating already existing

reactions of the models, while the models are allowed to interact metabolically. In the first test

case study, the algorithm restored community growth and predicted the exchange of acetate

between the two E. coli strains. For the community of B. adolescentis and F. prausnitzii in the

second case study, the algorithm calculated the competitive consumption of glucose present in

the common medium, the syntrophic exchange of acetate, CO2 and amino acids, and the pro-

duction of SCFAs. The algorithm also identified the exchange of organic acids, amino acids,

CO2 and H2 for the community of Dehalobacter and Bacteroidales. In all three case studies, the

metabolic exchanges were not strictly forced with constraints, but they emerged from the algo-

rithm. Moreover, we proved that the community gap-filling algorithm adds less reactions to

the metabolic models used in our three case studies compared to individual-organism gap-fill-

ing methods and therefore, it is less prone to false positive predictions about the metabolic

functions of GSMMs. We also showed that the implementation of FVA in our algorithm

resulted in significantly decreased solution time of the MILP community gap-filling problem.

In general, the community gap-filling method could facilitate the study of complex commu-

nities where the existing information for the involved species is incomplete. A method like this

can be used at the last steps of the metabolic reconstruction process, and it can also become

part of the efforts for the creation of a microbiome modeling toolbox [79]. However, like every

other constraint-based method, our community gap-filling method has some weaknesses. One

of the most prominent challenges is that the performance of the algorithm depends highly on

the quality of the input models and databases being used. More specifically, the absence of

some important reactions from the models can lead to poor predictive power, while uncon-

strained reaction directionality, especially for exchange reactions, can affect the predicted met-

abolic interactions and give birth to flux-carrying cycles between the community members.

The algorithm performs better with highly curated models, but even then it shows preference
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over specific pathways. This bias comes from the fact that the process of manual curation and

gap-filling for a model is based on the use of specific media and requires knowledge about the

growth of the organism under specific conditions. In addition, the composition and the quality

of the database reactions is important. Ideally the database should contain balanced biochemi-

cal reactions that represent a diversity of metabolic functions observed in prokaryotic organ-

isms, or any type of organisms that represents the models being used. Regarding the solutions

of the algorithm that predict reactions with unrealistically big fluxes and reactions that form

thermodynamically infeasible cycles, they can either be excluded completely from the analysis

of results as they are not trustworthy, or they could be avoided by further constraining the

reactions of the metabolic models based on thermodynamic information [80, 81]. From the

perspective of computational efficiency, the total running time of the algorithm can be further

decreased with the use of newer and faster parallel implementations of FVA, such as VFFVA

[82].

Conclusion

In this work, we presented an algorithm that performs gap-filling while permitting metabolic

interactions in microbial communities. Metabolites produced from one organism can either

be released to the environment or used by another member of the community. Therefore, one

of the key characteristics of the community gap-filling method is that it attempts to identify if

interspecies exchanges of metabolites can compensate for insufficient metabolic capabilities of

the community members, instead of just adding biochemical reactions from reference data-

bases to the metabolic models of the community members. Our results showed that the algo-

rithm can successfully predict both cooperative and competitive metabolic interactions in

microbial communities and comply with experimental measurements and observations. With

the ability to predict elusive metabolic interactions, the community gap-filling method can be

used to generate hypotheses about potential metabolic relationships among community mem-

bers. This direction is useful not only for the improvement of metabolic models, but also for

understanding functions at the community level and providing valuable information for selec-

tive media composition that can enable the isolation of pure cultures for microorganisms.

The community gap-filling method can be further applied on communities with more than

two members as it was demonstrated with the toy E. coli community. A way to use the commu-

nity gap-filling method for the study of microbial communities could be the following. The

community gap-filling method—preferably as formulated in S3 Appendix where the mass bal-

ance for the metabolites in the community is ensured—can be applied for the simulation of a

microbial community on different media, while the constraints for all the exchange reactions

of the participating models in the community are open and set to a proper order of magnitude.

In this way, we can generate plenty of data on the function of the community in different envi-

ronments. Evaluating these results to identify the reactions added to the models, as well as the

metabolic interactions between the models, can offer an insight on which reactions are neces-

sary for the metabolic reconstructions and which metabolic interdependencies are prevalent in

the community. Such predictions can be further tested experimentally and can be used for

improving gene-annotations by identifying gene functions, not based on sequence similarities,

but rather on a growth restoration strategy.
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S1 Fig. Time needed for the solution of the MILP problem with and without the prior use

of FVA for the reduction of the solution space, depending on the number of organisms in

the community. As the number of organisms that make up the microbial community

increases, the community gap-filling algorithm needs increasingly more time to solve the

MILP problem that restores growth in the community. However, the increase in solving time

is significantly reduced with the use of our community gap-filling method that reduces the

solution space of the MILP problem by performing FVA for each organism compartment of

the community before formulating the optimization problem. (The presented measurements

were performed with the models from the toy E. coli community).

(TIF)
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S2 Fig. Fluxes of exchange reactions from the ten best solutions for the community of B.
adolescentis ATCC 15703 and F. prausnitzii A2–165. Fluxes of exchange reactions for the

SCFAs acetate, butyrate, ethanol, lactate, formate, and succinate, and CO2.

(TIF)

S3 Fig. Fluxes of exchange reactions from the ten best solutions for the community of B.
adolescentis ATCC 15703 and F. prausnitzii A2–165. Fluxes of exchange reactions for the

amino acids alanine, aspartate, cysteine, glutamine, glutamate, glycine, histidine, isoleucine,

leucine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, and valine.

(TIF)

S4 Fig. Fluxes of exchange reactions from the ten best solutions for the community of

Dehalobacter sp. CF and Bacteroidales sp. CF50. Fluxes of exchange reactions for the organic

acids acetate, malate, and pyruvate, CO2 and H2.

(TIF)

S5 Fig. Fluxes of exchange reactions from the ten best solutions for the community of

Dehalobacter sp. CF and Bacteroidales sp. CF50. Fluxes of exchange reactions for the amino

acids alanine, arginine, asparagine, glutamate, isoleucine, lysine, phenylalanine, threonine, and

tyrosine.

(TIF)
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