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Cross-species transmission resulted in the emergence and establishment of circovirus in pig

To the Editor,

Emerging infectious diseases (EIDs) are a great threat to public
health worldwide. Around 60%–80% of human EIDs originate from
wildlife, the typical examples being influenza, coronavirus and heni-
pavirus-related lethal neurologic and respiratory diseases that origi-
nated from wild animals and bats, respectively(Hu et al., 2017; Su et al.,
2017, 2016). Pigs act as “mixing vessels” since they are susceptible to
viral infections of wild animal species and can transmit zoonotic dis-
eases to humans (Zhou et al., 2019). In addition, the high-density
farming and international trade within the pig industry increases the
risk of transmission and global spread (He et al., 2019b; Morilla
GonzáLez et al., 2003). Indeed, contact between pigs and humans was
an important factor for the emergence of pandemic influenza virus and
Ebola-Reston virus, among others (Horimoto and Kawaoka, 2005;
Morris, 2009). Considering the broad spectrum of viruses to which pigs
are susceptible and the number of pathogens currently identified in pig,
it is essential to understand the factors determining the emergence and
evolution of these pathogens.

Circoviruses (family Circoviridae, genus Circovirus) are the smallest
known autonomously replicating viruses. Their genomes consist of a
circular, single stranded DNA molecule with two open reading frames
(ORFs) encoding the REP and CAP proteins using an ambisense strategy
(Cao et al., 2015; He et al., 2013; Lin et al., 2018; Palinski et al., 2016).
Although they were originally described in avian species, numerous
members have been characterized in fish, insects and mammals
(Garigliany et al., 2015; Li et al., 2010). Until now, three species of
circovirus are known to infect pigs including, porcine circovirus (PCV)
1, PCV2 and the novel PCV3 (Li et al., 2018a, 2018b, 2018c; Palinski
et al., 2017). The diversity of circoviruses and its association with
multiple vertebrate hosts represents an important model for under-
standing how viruses emerge and establish themselves in pig hosts.

1. The study

It has been reported that PCV2 entered wild boar from avian spe-
cies, and subsequently transmitted to pigs(Firth et al., 2009). Despite an
increasing number of available sequences, the origin and transmission

patterns of PCVs remain obscure. At the same time, there is controversy
regarding the evolutionary relationship between circoviruses and their
hosts. While particular studies have suggested co-speciation between
circovirus and host (Johne et al., 2006), other studies indicate that
these viruses may be introduced to new hosts through cross-species
transmission (Firth et al., 2009; He et al., 2019a). The increasing
availability of sampling and sequences data offers an important op-
portunity to reconstruct the origin and transmission patterns of PCVs.
Here, we analysed 95 circovirus Rep from different hosts retrieved from
GenBank (https://www.ncbi.nlm.nih.gov/) to trace the origin and
evolutionary history of PCV (Table S1). Based on a maximum likelihood
(ML) tree of the conserved Rep sequences from multiple hosts inferred
using RAxML (v4.8.10), we found that PCV1 and PCV2 cluster together,
while PCV3 represents a more divergent lineage from PCV1 and PCV2
(Fig. 1a) (Stamatakis, 2014). PCV3 clusters with BatCV in line with our
previous report (Li et al., 2018c). Additionally, PCV1 and PCV2 may
have originated from bat circovirus (BatCV), however not from the bat
clade 2 because they are related to a novel bat genotype (Wu et al.,
2016). These results are also confirmed by a Bayesian tree re-
constructed using MrBayes (v3.8.2) with a mixed model and a sample
size of 2,000,000 and a sample frequency of 200 (Fig. 1b). In addition,
we performed selection analysis based on the ML tree and we identified
positive selection in some branches (Fig. 1). In particular, we found
positive selection in the branch (red branch) of the diversification of
BatCV and PCV (Fig. 1) using DATAMONKEY (http://www.
datamonkey.org/), suggesting that the transmission of circovirus be-
tween bats and the porcine host resulted in adaptation to pigs. Then
PCV diverged into PCV1 and PCV2, moreover causing huge economic
losses to the pig industry.

We also detected recombination between BatCV and PCV using
RDP4 (p value< .05) and Simplot (similarity plot) (Fig. 2a) (Lole et al.,
1999; Martin et al., 2015). After RDP4 analysis, one bat circovirus was
detected by a potential recombinant between BatCV and PCV2. To
confirm this, we observed the sequences characteristic and re-
constructed a phylogenetic tree using recombined and non-recombined
regions separated by the potential recombination breakpoint (the 777th
nucleotide) (Fig. 2b). The position of the BatCV (YN/ZQ924) sequence
varies in the two trees. The non-recombined region of the BatCV (YN/
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ZQ924) sequence clusters with other BatCVs. However, the recombined
region clusters with PCV2. This indicates that BatCV recombined with
PCV2 in the REP gene, suggesting that bats might be co-infected with
PCV to form a new BatCV. Although it is not clear if this recombination
facilitated the cross-species transmission of the virus, it suggests that
virus transmission and recombination occurred between bats and pigs
(Zhou et al., 2018). We can speculate that bat-originated DNA viruses
can recombine and cross-species transmission concomitant with the
migration, co-roosting and intra- or inter-species contact of other hosts.
Our result suggests that the emergence and host range expansion of
circoviruses could be the result of the close contact of domestic and wild
pigs. Indeed, PCVs are highly prevalent in China while closely-related
bat CVs have been sequenced from Southern China (Fig. 1 and Table
S1) where there is a large number of pig slaughterhouses and a wide
distribution and diversity of bat species displaying unique behaviour
including characteristic flight patterns, mobility, diet, and roosting.
This, together with the constant interaction of pig and humans, presents
a potential threat to the pig industry and public health.

2. Conclusion

In summary, we provide evidence suggesting that PCV1 and PCV2
might originated from bats and the occurrence of recombination with
PCV2. Overall, we provide new insights into the evolution of CVs in
different hosts and unravel transmission/recombination events between
pigs and other hosts. Due to the special bat migration ecology and pig
farming methods, the transmission models and instances of evolu-
tionary adaptation need to be meticulously researched in the future.
Given the fact that bats carry a variety of viruses with human infection
potential and that pigs can act as adaptive intermediates for bat pa-
thogens, it is important to monitor these animal species in China for the
potential of the emergence of novel zoonosis.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.meegid.2019.103973.
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