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Abstract: Xenopus laevis and its diploid relative, Xenopus tropicalis, are the most used amphibian
models. Their genomes have been sequenced, and they are emerging as model organisms for research
into disease mechanisms. Despite the growing knowledge on their genomes based on data obtained
from massive genome sequencing, basic research on repetitive sequences in these species is lacking.
This study conducted a comparative analysis of repetitive sequences in X. laevis and X. tropicalis.
Genomic in situ hybridization (GISH) and fluorescence in situ hybridization (FISH) with Cot DNA of
both species revealed a conserved enrichment of repetitive sequences at the ends of the chromosomes
in these Xenopus species. The repeated sequences located on the short arm of chromosome 3 from
X. tropicalis were not related to the sequences on the short arm of chromosomes 3L and 3S from
X. laevis, although these chromosomes were homoeologous, indicating that these regions evolved
independently in these species. Furthermore, all the other repetitive sequences in X. tropicalis and
X. laevis may be species-specific, as they were not revealed in cross-species hybridizations. Painting
experiments in X. laevis with chromosome 7 from X. tropicalis revealed shared sequences with the
short arm of chromosome 3L. These regions could be related by the presence of the nucleolus
organizer region (NOR) in both chromosomes, although the region revealed by chromosome painting
in the short arm of chromosome 3L in X. laevis did not correspond to 18S + 28S rDNA sequences, as
they did not colocalize. The identification of these repeated sequences is of interest as they provide
an explanation to some problems already described in the genome assemblies of these species.
Furthermore, the distribution of repetitive DNA in the genomes of X. laevis and X. tropicalis might be
a valuable marker to assist us in understanding the genome evolution in a group characterized by
numerous polyploidization events coupled with hybridizations.

Keywords: Xenopus tropicalis; Xenopus laevis; repetitive DNA; genomic in situ hybridization (GISH);
fluorescence in situ hybridization (FISH); Cot DNA; chromosome painting

1. Introduction

Amphibian genomes show the greatest size variability among vertebrates, generally
due to their high content of repetitive DNA and transposons [1–3], and due to polyploidiza-
tion events [4]. The way in which changes in ploidy can affect repetitive DNA is of
particular interest since polyploidization can trigger transposon activity and cause genome
expansion and instability [5]. The effects on karyotype morphology and evolution are also
unknown, as alterations in repetitive DNA have not been studied in depth. Amphibian
chromosomes are generally large and are characterized by the absence of informative
banding patterns [6–9]. This includes the sex chromosomes, which are homomorphic in
most amphibian species [10,11]. In this sense, repetitive DNA can be used as chromosomal
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markers for comparative cytogenetic analysis [12,13] or for the identification of the sex
chromosomes, as the accumulation of repetitive sequences is one of the first signs of sex
chromosome differentiation according to the canonical pathway on the evolution of the sex
chromosomes [14].

In situ hybridization on metaphase chromosomes using labeled genomic DNA as a
probe (a technique called genomic in situ hybridization, or GISH) allows for the identifica-
tion of repeated DNA sequences, as they reanneal more rapidly than unique sequences in
the genome [15]. GISH can provide distinctive information about similarities between DNA
from related species, as it can reveal the physical distribution of common and different
sequences between the species being probed and the species used to supply the DNA probe.
This method’s efficacy is largely based on genome-specific dispersed repetitive sequences
(reviewed in [16]). Furthermore, if repeated DNA sequences are differentially located on
sex chromosomes, this technique will allow for their identification in species with homo-
morphic sex chromosomes. This has been the case in some species of Lepidoptera or in
the crustacean Asellus aquaticus, where GISH revealed the accumulation of repetitive DNA
sequences on the sex chromosomes [17–19].

Species of the genus Xenopus are interesting models for studying genome evolution
after polyploidization, because most changes in genome size in this genus involve changes
in ploidy (ranging from diploid to dodecaploid). They are also good models to study
sex chromosome evolution, as sex chromosomes have evolved independently several
times in this group [20–23]. Extant species of the genus Xenopus are restricted to Africa
and can be classified into two clades [24]. One clade includes X. tropicalis and all the
polyploid Xenopus species with a number of chromosomes that are multiples of 20. The
other clade is comprised of polyploid Xenopus species with chromosome numbers that are
multiples of 18, including X. laevis [9]. The chromosome nomenclature initially proposed
for Xenopus species (including X. tropicalis and X. laevis) was based on relative sizes of
p and q arms [25,26] (for a review on Xenopus cytogenetics, see [27]). Although this
nomenclature has been widely used [6,28,29], a change based on chromosome size was
first established by [30], promoting the renumbering of the genetic linkage groups in the
v4 draft of the X. tropicalis genome assembly [31]. The currently accepted nomenclature of
Xenopus chromosomes was established by the Xenopus Gene Nomenclature Committee and
is based on chromosome size and phylogenetic relationships [9,32].

Among Xenopus species, X. tropicalis is an interesting model as it is the only diploid
species of the genus, with a karyotype containing 2n = 2x = 20 chromosomes [25]. Fur-
thermore, in this species, three homomorphic sex chromosomes coexist (Y > W > Z) both
in laboratory strains and in natural populations [20,21]. In contrast, X. laevis is a func-
tional diploid with an allotetraploid origin. Accordingly, two subgenomes, L and S, can
be identified based on the size of the homoeologous chromosomes (long and short) and
on the differential accumulation of transposon families in each one (2n = 4x = 36 chro-
mosomes) [33,34]. About 25–30% of the genome in X. laevis is comprised of sequences
repeated more than 100 times [33], although no evident sex-specific accumulation of repet-
itive sequences has been identified on the homomorphic sex-chromosomes (ZZ/ZW) of
this species [6,28].

According to genetic mapping, X. laevis and X. tropicalis chromosomes have main-
tained conserved synteny since their divergence around 48 Mya [28,33,35]. The major chro-
mosome rearrangement observed is the fusion of chromosomes 9 and 10 (about 48–34 Mya)
in the ancestor of the two extinct progenitor species that led to X. laevis by hybridiza-
tion, followed by polyploidization, about 17–18 Mya [6,33]. Other mayor chromosome
rearrangements (translocations, insertions, deletions, inversions or sex-specific replication
bands) have not been identified in these species [9], although inversions are observed in
subgenomes L and S from X. laevis [33].

The sex chromosomes in these species are homomorphic, with no heteromorphism
identified so far [20,28,36,37]. Furthermore, the sex chromosomes in X. laevis and X.
tropicalis are not homoeologous. The sex-determining locus in X. laevis (dm-w [38]) is
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located at the end of the long arm of chromosome 2L (XLA2L), while the sex-determining
locus in X. tropicalis is located at the end of the short arm of chromosome 7 (XTR7). XTR7
is also of interest, as silver staining in metaphase chromosomes identified a single active
nucleolus organizer region (NOR) located in the secondary constriction of 7q [25,39]. In
some amphibian species, pairs carrying NORs have been linked to sex chromosomes
(Gastrotheca riobambae [40], Leiopelma hamiltoni [41], Hyla femoralis [42], Buergeria buergeri [43],
Bufo marinus [44]). In this sense, the comparative study of sequences of this chromosome
(XTR7) on other Xenopus species is of interest for the study of the evolution of NOR-bearing
chromosomes and sex chromosomes in the genus Xenopus.

In this study, we used GISH and FISH with Cot DNA to compare the distribution
of repetitive sequences in the species X. tropicalis and X. laevis, diploid and allotetraploid
representatives of the genus Xenopus. Furthermore, chromosome 7 from X. tropicalis was
applied for chromosome painting experiments to establish common sequences between
this NOR-bearing sex chromosome and X. laevis chromosomes. The study of common and
specific repetitive sequences in species of this genus will provide information about the
evolution of genomes and chromosomes after hybridization and polyploidization events.

2. Materials and Methods
2.1. Animals

X. tropicalis and X. laevis were purchased from Xenopus Express (Rennes, France)
and maintained at the Centro Andaluz de Biología del Desarrollo (CABD) (Seville, Spain).
Tadpoles from these species were a generous gift from Jose Luis Gómez-Skarmeta. All
animal protocols were approved by the ethics committee for research on animals of the
University of Jaén and authorized by the competent authority (project number 30-11-15-
375). The care and treatment of animals used in this research was conducted in accordance
with policies on animal care provided by Spanish and EU regulations.

2.2. Cell Culture, Chromosome Preparations and Banding Analyses

Primary cell cultures were prepared from tadpole limbs as described in [45]. Briefly,
stage 55 tadpoles (according to Nieuwkoop and Faber [46]) were euthanized by immer-
sion in 2 g/L bicarbonate-buffered tricaine methanesulfonate (MS-222) (Sigma Aldrich,
Darmstadt, Germany) in water, washed in 70% ethanol, and their gonads and limbs were
dissected in PBS. Gonads were fixed in Bouin’s solution, embedded in paraffin and pro-
cessed to establish their sex by histological analysis. Limbs were washed in clean PBS
(Sigma Aldrich, Germany), transferred into sterile tubes, disaggregated with sterile scissors
and then cultured in DMEM (Sigma Aldrich, Germany) supplemented with 10% fetal calf
serum (PAA Laboratories, Cölbe, Germany), 100 µg/mL penicillin, 100 U/mL streptomycin
and 2.5 µg/mL amphotericin B (all antibiotics from Sigma Aldrich, Germany). Cell cul-
tures were maintained in 25 cm2 tissue culture flasks at 28 ◦C under ordinary atmospheric
conditions. Confluent primary and secondary cultures were subsequently transferred to
75 cm2 tissue culture flasks.

Mitotic chromosomes from X. tropicalis (three females and two males) and X. laevis
(three females) were obtained from secondary cultures as described previously [47]. Briefly,
colcemid (Invitrogen, Waltham, MA, USA) was added to the culture medium at a final
concentration of 0.1 µg/mL. After 5 h of incubation, cells were harvested, centrifuged and
treated with a hypotonic solution (0.4% KCl) for 20 min. The cell suspension was fixed in
methanol and acetic acid (3:1 v/v), washed three times with new fixative and dropped onto
microscopic slides.

Triple staining chromomycin A3 (CMA3)/distamycin A (DA)/4′, 6-diamidino-2-
phenylindole dihydrochloride (DAPI) (Sigma Aldrich, Germany) was performed according
to [48]. Briefly, the slides were stained with CMA3 (0.5 mg/mL in McIlvaine buffer, pH
7.0, containing 10 nM MgCl2) for 60 min, washed with distilled water, stained with DA
(0.1 mg/mL) for 30 min, washed again and stained with DAPI (0.5 mg/mL) for 30 min.
Finally, the slides were washed with distilled water, air dried and mounted with Vec-
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tashield anti-fade medium (Vector Laboratories, USA). Samples were examined under a
fluorescent microscope. Nucleolus organizing regions (NOR) were detected by AgNO3
staining according to [49]. For the chromosome nomenclature of X. tropicalis and X. laevis
used in this work, see [9,32].

2.3. Chromosome Microdissection

Chromosome microdissection was carried out in an inverted microscope (Zeiss Ax-
iovert 200) using glass needles attached to an electronic micromanipulator. Glass needles
were made from 2 mm diameter glass capillaries using a vertical pipette puller (Narishige
PB-7). Chromosome preparations used for microdissection were obtained from a cell
culture derived from a female tadpole (the probable sex chromosome constitution is ZW,
although WW cannot be ruled out). Fresh, dry chromosome extensions were prepared
on 24 × 60 mm coverslips, previously washed with 10% SDS and distilled water. About
15–20 microdissected chromosomes were transferred to a glass micropipette containing
the collection solution (10 mM Tris-HCl pH 7.5, 10 mM NaCl, 0.1% SDS, 1 mM EDTA pH
7.5–8.0, 0.1% Triton X-100, 1.44 mg/mL proteinase K (Applichem, Darmstadt, Germany)
and 30% glycerol) and then incubated for 1 h in a wet chamber. For the technical details of
glass needle-based microdissection, see [50].

2.4. Probe Synthesis and Labelling

Genomic DNA was labeled with biotin 11–dUTP (Sigma Aldrich, Germany) using a
nick-translation kit (Sigma Aldrich, Germany). Three probes were obtained, depending
on the species and sex of the DNA sample used (X. tropicalis ZZ male, X. tropicalis WW
female and X. laevis ZZ male). The length of the probe was between 150 and 1000 bp. Cot-1
DNA from X. laevis (ZZ male) and Cot-1 to Cot-20 from X. tropicalis (mix of ZW females)
were prepared according to [51] and labeled with biotin 11–dUTP using nick-translation in
the same way as genomic DNA, or with fluorochromes (SpectrumGreen–dUTP or Texas
Red–dUTP (Vysis, Richmond, UK)) using the DOP-PCR method [52]. The telomere probe
was synthetized and labeled with biotin–dUTP as part of the same PCR reaction using
the oligos Telo1 (TTAGGG)5 and Telo2 (CCCTAA)5 and the following thermal program:
94 ◦C × 5 min; (94 ◦C × 1 min; 55 ◦C × 30 s; 72 ◦C × 30 s) × 10 cycles; (94 ◦C × 1 min;
60 ◦C× 30 s; 72 ◦C× 30 s)× 35 cycles; 72 ◦C× 5 min. The plasmid pDmra51#1, containing
rDNA from Drosophila melanogaster [53], was labeled by DOP-PCR with Texas Red–dUTP
and used as a probe for the direct detection of ribosomal DNA.

Chromosome painting probes were obtained from needle-microdissected chromo-
somes 7 and 7p from X. tropicalis. After proteinase K treatment, microdissected chromo-
somes were pre-amplified using sequenase (USB, Cleveland, OH, USA) in 0.63 µL of seque-
nase buffer, 0.4 µL of 0.2 mM dNTPs, 0.6 µL of 40 mM DOP primer (5′-CCGACTCGAGNNN
NNNATGTGG-3′) and 3.37 µL of PCR water per sample. Pre-amplification by DOP-PCR
was conducted using the following program: 92 ◦C for 5 min (to inactivate proteinase K),
followed by eight cycles of 90 ◦C for 1 min, 25 ◦C for 2 min and 34 ◦C for 2 min. Due
to enzyme inactivation during the denaturation step, 0.2 µL of sequenase mix (12 U/µL
of sequenase and 1.75 µL of sequenase dilution buffer) was added in each cycle during
the annealing step. The first round of amplification was performed by adding 0.1 U Taq
polymerase (Bioline GmbH, Luckenwalde, Germany), 0.2 mM dNTPs, 20 µM DOP primer,
25 mM MgCl2 and 34.23 µL of PCR water (final volume of 50 µL) under the following
conditions: 33 cycles of 92 ◦C for 1 min, 56 ◦C for 2 min, 72 ◦C for 2 min, with the addition
of a final extension step of 5 min at 72 ◦C. In the second round of 30-cycle DOP-PCR,
painting probes were labeled with Texas Red–dUTP (Vysis, Richmond, UK) using 1 µL of
the previous DOP-PCR products as template DNA. Painting probes were named XTR-7w
(probe from the whole of chromosome 7 from X. tropicalis) and XTR-7p (probe from the
short arm of the same chromosome) [50].
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2.5. Fluorescence In Situ Hybridization (FISH) and Chromosome Painting

Chromosome preparations were incubated in RNaseA (Roche, Mannheim, Germany)
solution (100 µg/mL in 2xSSC) for 1 h at 37 ◦C, washed three times in 2xSSC for 5 min,
and then incubated in Pepsin (Applichem) solution (50 µg/mL in 0.01 N HCl) at 37 ◦C for
5 min. After two washes in 2xSSC for 5 min, the slides were fixed in 1% formaldehyde
(Applichem) (v/v) in PBS for 10 min, washed 3 times for 5 min in 2xSCC, dehydrated via
an ethanol series (70, 90 and 100%, 5 min each) and air dried.

Chromosomes were denatured at 70 ◦C for 3 min in 70% formamide/2xSSC, washed
in 2xSSC, dehydrated via an ethanol series and air dried. For each slide, the hybridization
solution (containing 200 ng of labeled DNA dissolved in 10 µL of 50% formamide/2xSSC;
15 µg of Cot-1 DNA) was denatured at 73 ◦C for 6 min and then cooled on ice (chromosome
painting probes were left at 37 ◦C for 30 min for renaturalization before cooling on in ice).
For hybridization, 10 µL of the denatured probe was added to the slide and covered with a
coverslip. Slides were left overnight in a moist chamber at 37 ◦C.

Post-hybridization washes for direct fluorescence included one wash with 2xSSC for
5 min at room temperature; one wash of 2 min in 0.3% Nonidet P40 (Roche, Mannheim,
Germany), 0.4xSSC at 65 ◦C and one wash of 30s in 0.1% Nonidet P40/2xSSC at room
temperature. Finally, slides were dehydrated in 90% and 100% absolute ethanol for 5 min
each, dried and mounted in anti-fade solution (Vectashield with DAPI) (Vector Laboratories,
Burlingame, CA, USA).

Post-hybridization washes for indirect fluorescence included one wash of 5 min in
2xSSC at room temperature; three washes of 5 min each in 50% formamide/2xSSC at 37 ◦C;
two washes of 5 min each in 2xSSC at room temperature and one wash of 5 min in 4T
(4xSSC, 0.05% Tween 20). Slides were blocked for 1 h in 4M (5% blocking reagent (Roche)
in 4T) in a humid chamber at room temperature, washed for 5 min in 4T, incubated in
fluorescein isothiocyanate (FITC)-conjugated avidin (Vector Laboratories, Burlingame, CA,
USA) (1:1000 in 4T) and then washed three times (5 min each) in 4T. For signal amplification,
slides were incubated in biotinylated avidin (Vector Laboratories, USA) (1:100 in 4M) for
20 min, washed three times (10 min each) in 4T, followed by a second incubation in avidin—
FITC (1:1000 in 4T) for 20 min and three washes (10 min each) in 4T. Finally, slides were
washed four times (5 min each) in PBS, dehydrated via an ethanol series, air dried and
mounted in anti-fade solution (Vectashield with DAPI) (Vector Laboratories, Burlingame,
CA, USA).

2.6. Microscopy and Image Capture

About 10–25 metaphases were analyzed in each experiment (NOR, triple staining,
GISH, FISH with Cot DNA and chromosome painting). Chromosome images were captured
with a digital CCD camera (Olympus DP70) coupled with a fluorescence microscope
(Olympus BX51). Images were processed further with Adobe Photoshop CS2 software.

3. Results and Discussion
3.1. Genomic In Situ Hybridization (GISH)

The hybridization of metaphase chromosomes from X. tropicalis with labeled genomic
DNA from X. tropicalis showed positive signals at the ends of all chromosomes of the
karyotype (Figure 1A and Figure S1). Intense signals were also observed on the short arm
of chromosome 3, which stained completely, on the secondary constriction of chromosome
9 and on the C-positive band [39] of chromosome 4 (chromosome 5 according to [30]), but
not on the secondary constriction of chromosome 7, where the nucleolar organizing region
(NOR) is located (Figures 1A and 2A,B). Most positive regions revealed by GISH were also
positive when stained with CMA3 (a GC-specific dye [54])—chromosome ends, the 3p arm
and the secondary constriction of chromosomes 7 (faint) and 9 (Figure 2C,D)—revealing
that these regions are GC rich. No sex-linked difference was observed when male or female
chromosomes were hybridized with male or female probes (Figure S2).
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Figure 1. GISH and FISH with Cot DNA. Metaphase chromosomes from X. tropicalis (A,C,E,G) and X.  laevis (B,D,F,H) 

hybridized using, as a probe: (A,B) genomic DNA from X. tropicalis (female), (C,D) genomic DNA from X. laevis (male), 

(E,F) Cot DNA from X. tropicalis (female) and (G,H) Cot DNA from X. laevis (male). All metaphases were derived from 

female individuals. All probes were labeled with biotin 11–dUTP, and three rounds of amplification were used during 

immunological detection. The arrowheads point to the NOR. Chromosome XTR8 is mounted in C. Scale: 5 μm. 

Figure 1. GISH and FISH with Cot DNA. Metaphase chromosomes from X. tropicalis (A,C,E,G) and X. laevis (B,D,F,H)
hybridized using, as a probe: (A,B) genomic DNA from X. tropicalis (female), (C,D) genomic DNA from X. laevis (male),
(E,F) Cot DNA from X. tropicalis (female) and (G,H) Cot DNA from X. laevis (male). All metaphases were derived from
female individuals. All probes were labeled with biotin 11–dUTP, and three rounds of amplification were used during
immunological detection. The arrowheads point to the NOR. Chromosome XTR8 is mounted in C. Scale: 5 µm.
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points to the secondary constrictions on pair 7 (NOR). The asterisk (*) signals the short arm of XTR3. (E) In situ hybridization on X. 
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hybridization using a telomeric probe, labeled with biotin 11–dUTP (after three rounds of amplification). Scale: 5 μm. 

Figure 2. Analysis of X. tropicalis chromosomes in female samples. (A) DAPI-stained metaphase from X. tropicalis. (B) Ag-
NOR staining revealing active NOR located on the secondary constriction of chromosome 7. (C,D) Triple staining using
CMA3/DA/DAPI. (C) Metaphase spread from X. tropicalis using DAPI filter; (D) the same metaphase using a FITC filter.
The arrow points to the secondary constrictions on pair 7 (NOR). The asterisk (*) signals the short arm of XTR3. (E) In situ
hybridization on X. tropicalis metaphase chromosomes using X. tropicalis SpectrumGreen-labeled Cot-20 DNA as a probe
(direct detection). (F) In situ hybridization using a telomeric probe, labeled with biotin 11–dUTP (after three rounds of
amplification). Scale: 5 µm.
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The hybridization pattern observed when genomic DNA was used as probe was
similar to that obtained with labeled Cot DNA (Cot-1 to Cot-20) from X. tropicalis (Figures 1E
and 2E and Figure S3), confirming that the positive signals correspond to repetitive DNA
sequences. It should be noted that, using direct fluorescence, labeled Cot DNA also
identified a strong signal on the short arm of chromosome 8 and lower intensity signals at
centromeric or pericentromeric positions (Figure 2E and Figure S3).

X. laevis metaphase spreads, hybridized with labeled genomic DNA from X. laevis,
showed a hybridization pattern different to that observed in X. tropicalis (Figure 1D).
In metaphase spreads from X. laevis, the signals at the ends of the chromosomes were
less intense than those observed in X. tropicalis, and positive signals were detected on
the short arm of chromosome 3L (except for the region of the secondary constriction,
corresponding to the only NOR of the karyotype of this species), on the centromere of
pair 6S and on the short arm of one acrocentric pair. This could be the pair 3S, as it has
a strong C-positive band in its short arm [6,55] and it is homoeologous of chromosome
3L [6,28,29]. However, it could also be the chromosome pair 4L since, according to [6,55],
it also has a strong C-positive band in its short arm. The hybridization pattern observed
after GISH coincided with that observed when DNA Cot-1 from X. laevis was used as
probe (Figure 1H). Noteworthily, differences in the size of the signals between homologous
chromosomes existed on the short arm of chromosome 3S (or 4L) and on the centromere of
pair 6S. These differences were observed in three female siblings (Figure S4), and could be
due to polymorphisms for the size of the repetitive region. Further analysis using unrelated
individuals will be necessary to confirm the existence of such polymorphisms. On the other
hand, samples from female tadpoles (ZW), showed no differences in the hybridization
pattern when both chromosomes 3L (sex chromosomes) were compared (Figure 1B,D,F,H).

The relationships between the repetitive DNA sequences from X. tropicalis and X.
laevis were analyzed by cross-hybridization, that is, metaphase spreads from one species
were hybridized with genomic DNA or Cot-1 DNA from the other species, and vice versa
(Figure 1B,C,F,G). When X. laevis genomic DNA was probed on X. tropicalis chromosomes,
the hybridization signals were detected at the end of all the chromosomes of the karyotype
(Figure 1C), with a pattern similar to that observed when genomic DNA from X. tropicalis
was used as a probe (Figure 1A). Nevertheless, in this case, no signals were observed
on the secondary constriction of pair number 9, the short arm of chromosome 4 or the
short arm of acrocentric pair 3. On the other hand, when X. laevis chromosomes were
hybridized with genomic DNA from X. tropicalis (Figure 1B), the hybridization signals were
detected at the ends of all chromosomes of the karyotype (but with a lower intensity than
in metaphase chromosomes from X. tropicalis) and on the short arms of chromosomes 3L
and 3S (or 4L). However, no positive centromeric signal was observed on pair number 6S.
The hybridization pattern obtained by GISH was similar to that observed when X. tropicalis
or X. laevis Cot-1 DNA were used as probes (Figure 1G,H).

When GISH or Cot DNA hybridization experiments were performed with probes and
chromosomes from X. tropicalis, the ends of all chromosomes were revealed and stained
with high intensity. This hybridization pattern demonstrates a rather interesting distribu-
tion of repeated DNA sequences, also present in the X. laevis karyotype, although amplified
to a smaller extent. The intensity of the signal observed at the ends of chromosomes using
labeled genomic DNA or Cot DNA as probes did not correspond exclusively to telomeric
repeats (TTAGGG)n, as the signal obtained after hybridizing with telomeric sequences was
smaller in size (Figure 2F). This indicates that these hybridization signals were not solely
due to telomeric sequences, but also due to sub-telomeric repetitive DNA with differential
accumulation in these species.

The existence of repeated DNA sequences at the ends of chromosomes has been
described in Glandirana rugosa, a species where two types of short repeats (41 and 31 bp)
have been located at the ends of chromosomes [56]. However, although searched, no
similar sequences have been found in the genome of X. tropicalis, so they must not be
related [56]. GISH experiments in other amphibian species have not revealed a similar
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distribution of repeated sequences at chromosome ends (Bufo bufo, Epidalea calamita, Bufotes
viridis, and Pelobates cultipes), although accumulations of repeated DNA at other locations
have been identified in some species (unpublished data).

The terminal/subterminal regions of X. tropicalis and Pipa carvalhoi (an anuran species
of the same family) chromosomes have been found to be enriched in microsatellite mo-
tifs [12]. Furthermore, in X. laevis, the repetitive DNA of 77–79 bp [57] has been predomi-
nantly located in chromosome ends [9]. These characteristics have also been observed in
the karyotypes of fish [58] and birds [59]. Thus, the accumulation of microsatellites and
repetitive sequences in these regions may reflect their role in the organization and function
of these chromosomal regions [60,61].

Regarding other chromosomal locations, GISH and FISH with Cot DNA on X. tropicalis
chromosomes also intensely stained the short arms of the acrocentric chromosomes (XTR3
and XTR8), as well as the secondary constrictions of XTR9 and XTR4 (Figures 1A,E and 2E).
These regions are C-positive [39] and are very late replicating in the case of the short arm
of XTR3 and the secondary constriction of the short arm of XTR4 [9]. On the other hand,
GISH and FISH with Cot DNA on X. laevis chromosomes revealed positive signals at the
short arm of pair XLA3L, the short arm of pair XLA3S (or XLA4L) and the centromeric
region of pair XLA6S (Figure 1D,H). Again, this pattern of hybridization is not surprising
considering the C-banded karyotype described in X. laevis, with C-positive bands precisely
at these positions [6].

The repeated sequences on the short arm of XLA3L and XLA3S are of interest, since
they were revealed with probes from both species, indicating these sequences are present
in X. tropicalis and X. laevis. Nevertheless, their distribution in the karyotype of these
species must be different, since probes from X. laevis did not reveal accumulations of
repetitive sequences in the chromosomes of X. tropicalis, apart from the sub-telomeric
repeats. Regarding the repetitive sequences located on the short arm of XTR3 (homologous
to XLA3L and XLA3S), they were revealed with probes from X. tropicalis, but not from X.
laevis. Thus, the repeated sequences located on the C-positive regions of chromosomes
3, 4, 8 and 9 from X. tropicalis and on chromosome 6S from X. laevis may correspond to
species-specific repeated sequences. Testing the relationships between these sequences
will require their isolation to use them as probes in chromosome painting experiments in
several species of the genus Xenopus. Interestingly, painting experiments with XTR3 on
X. laevis revealed positive signals on the long arms of XLA3L and XLA3S, but no intense
signals were evident on the short arms of these chromosomes, even though the short arm
of XTR3 was strongly stained with the same probe [29]. Taken together, these results
reveal differences in the repetitive sequences located on the short arm of XTR3 and those
present on the short arms of XLA3L and XL3S, indicating that these regions are evolving
independently in these species.

The distribution of repetitive sequences revealed by GISH and FISH with Cot DNA
may help in the interpretation of mapping and sequencing results. Repeated DNA se-
quences in these Xenopus species have hampered the assembly of their genomes. In fact, the
genetic map used to produce the v9.0 chromosome scale assembly in X. tropicalis reveals
low levels of recombination and a scarcity of genetic markers, specifically in the short arms
of XTR3 and XTR8 [62]. Increasing our knowledge about these repeated DNA sequences
and their chromosomal organization could help to improve the genome assembly of these
species.

3.2. Chromosome Painting

The active NOR in X. tropicalis was located in the secondary constriction of 7q
(Figure 2B and [25,39]), while the sex determining locus was at the end of 7p [20,36,37].
Using chromosome microdissection, two painting probes from X. tropicalis’ chromosome 7
were obtained: the whole of chromosome 7 (XTR-7w) and the short arm of chromosome
7 (XTR-7p). These probes were labeled by DOP-PCR and used in chromosome painting
experiments on metaphase chromosomes from X. tropicalis and X. laevis. When these probes
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(XTR-7w and XTR-7p) were hybridized with X. tropicalis metaphase spreads, the expected
signals were observed in each case: the whole of chromosome 7 or only the short arm were
painted, respectively (Figure 3A,B). The NOR was not stained when an XTR-7w probe was
used, probably due to the inefficient amplification of these sequences by DOP-PCR when
heterogeneous DNA samples were used as templates (rDNA was labelled by DOP-PCR
using plasmid pDmra51#1 as a template). Positive signals were also observed in telomeric
and some centromeric regions of most chromosomes of the karyotype. Since their intensity
could be reduced by adding unlabeled Cot-1 DNA from X. tropicalis to the probe, these
signals may be caused by repetitive telomeric and centromeric sequences. Furthermore,
since XTR-7w and XTR-7p probes painted almost all telomeric regions, similar repetitive
sequences must be involved in the organization of these regions.
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Figure 3. Chromosome painting with XTR-7 probes on X. tropicalis (A,B) and X. laevis (C,D) metaphase chromosomes from
female samples, using two painting probes from X. tropicalis labeled with Texas Red–dUTP: XTR-7w (A,C) or XTR-7p (B,D).
The insert in A and B shows chromosome 7 from X. tropicalis at a higher magnification after hybridization with XTR-7w
or XTR-7p, respectively. Note the absence of hybridization signal on the secondary constriction (NOR) of chromosome 7.
The arrowhead points to the centromere; the arrow points to the NOR. The signals observed are from direct fluorescence.
Scale: 5 µm.

When XTR-7w and XTR-7p probes hybridize on metaphase chromosomes from X.
laevis, intense signals were detected on the chromosome pairs 7L and 7S, which were
painted completely with the XTR-7w probe, but only on the short arm if the probe used
was XTR-7p (Figure 3C,D). Both probes also revealed intense signals on the short arm of
chromosome 3L, and dispersed signals in most telomeric and some centromeric regions.
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Centromeric and telomeric signals could be reduced by adding unlabeled Cot-1 DNA from
X. tropicalis to the hybridization solution.

The signals obtained with the XTR-7w and XTR-7p probes in X. laevis agree with those
previously reported by [29]. The existence of hybridization signals in two chromosome
pairs (7L and 7S) from X. laevis with a painting probe from a single chromosome in X.
tropicalis was expected considering the allotetraploid origin of X. laevis [24], and it shows
that these chromosomes are homologous to XTR7.

Painting experiments also confirmed that the sex chromosomes of both species have
an independent origin, confirming previous reports by [29]. Chromosome 7 is the sex
pair in X. tropicalis [20,36,37], but not in X. laevis, where the homomorphic ZZ/ZW sex
chromosomes correspond to pair 2L [28]. Thus, after the divergence of the two clades
of Xenopus from a common ancestor about 20–60 million years ago, these species used
different sex-determining genes located on different chromosomes. This is evident by the
comparative mapping between X. laevis and X. tropicalis, as the genes located on X. tropicalis
chromosome 7 (sex pair) were located on chromosomes 7L and 7S of X. laevis. Similarly,
genes on the sex chromosome pair of X. laevis (2L) were related to those of chromosome 2S
in X. laevis (due to their allotetraploid origin) and to chromosome 2 in X. tropicalis [35].

The intense painting signal observed on the short arm of chromosome 3L from X. laevis
could be explained by the presence of rDNA sequences [29], since chromosome 7 from X.
tropicalis and chromosome 3L from X. laevis are the only chromosomes of the karyotype of
these species where the NOR is located [6]. However, the XTR-7w painting probe did not
paint the NOR in X. tropicalis. To rule out the possibility that the XTR-7w probe was able to
paint the NOR in X. laevis, a probe containing 18S and 28S ribosomal DNA sequences from
D. melanogaster was hybridized with X. tropicalis and X. laevis chromosomes (Figure 4A,B,
respectively). The hybridization signal in X. tropicalis and X. laevis was located on the
secondary constriction of pairs 7 and 3L, respectively (Figure 4A,B). A close comparative
examination of chromosome 3L in X. laevis revealed differences between the hybridization
signals obtained with the rDNA probe (Figure 4C,D) and the XTR-7w painting probe
(Figure 4E,F). According to these results, the evidence indicates that the signal detected on
the short arm of XLA3L after chromosome painting with XTR-7w was not due to rDNA
sequences.

Firstly, when XTR-7w was used as a probe on metaphase chromosomes of the same
species, no hybridization signal was observed on the secondary constriction of XTR7 (the
position where the rDNA is located, according to FISH experiments). This indicates that the
probe was not enriched on rDNA sequences, perhaps due to the inefficient amplification
of these sequences by DOP-PCR when a complex mixture was used as template. In fact,
the centromeric signal was more intense than the signal on the secondary constriction
(see insert in Figure 3A). Secondly, when the painting probe used was XTR-7p (which
did not include the secondary constriction or rDNA sequences), the hybridization signal
observed on XLA3L was similar to that obtained when XTR-7w was used (Figure 3C,D).
Since this probe did not include the secondary constriction of chromosome 7 from X.
tropicalis, it can be assumed that it could not detect rDNA on the short arm of XLA3L.
Finally, the hybridization pattern of an rDNA probe on X. laevis was different to the pattern
obtained after chromosome painting with XTR-7w or XTR-7p probes. The hybridization
signal obtained with the 18S + 28S rDNA probe was located specifically on the secondary
constriction of chromosome 3L (Figure 4C,D), while the hybridization signal obtained with
XTR-7w probes was located on the short arm of this chromosome, but not on the secondary
constriction (Figure 4E,F).
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Figure 4. FISH with rDNA probe vs chromosome painting with XTR-7. Metaphase chromosomes
from female X. tropicalis (A) and male X. laevis (B) samples, hybridized with an rDNA probe (18S
+ 28S) labeled with Texas Red–dUTP. (C–F) Detail of chromosome 3L from X. laevis hybridized
with the rDNA probe (C,D) and with the painting probe XTR-7w (E,F). In all cases, the stained
chromosome was compared with the image of the same chromosome stained only with DAPI. The
image comparison revealed that the hybridization signal with the ribosomal DNA probe, which was
located in the region of the secondary constriction, did not coincide with the hybridization signal
when XTR-7w was used as a probe, which was located at the end of the short arm of the chromosome.
All signals correspond to direct fluorescence. Complete metaphases corresponding to Figure 4C–F
are depicted in Figure S5. Scale: 5 µm.

This evidence reveals the existence of common sequences in XTR7 and the short
arm of XLA3L that could be associated with a common ancestral location of the NOR.
Comparative cytological analyses in species of the genus Xenopus revealed that functional
NOR is present in only one homologous pair. The NOR-bearing chromosome is highly
variable in Xenopus species [27], a characteristic observed in many other amphibian taxa
with conserved karyotypes (reviewed by [49,63]). The wide relocation of the NOR observed
in the Pipidae family has hampered the identification of the ancestral loci of the NOR, while
the conservation of linkage groups between species indicates that simple rearrangements,
such as translocations, are not involved in NOR relocation [64]. The common sequences
shared between XTR7 and XLA3L may be a remnant of minute insertions involving the
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NOR. It is also possible that the positive signals observed after painting with XTR-7w and
XTR-7p probes were due to conserved DNA sequences that were differentially amplified in
the karyotypes of both species. It should be noted that the short arms of chromosomes 3L
and 3S from X. laevis are formed by late-replicating, C-positive heterochromatin [6], and
they stained intensely when X. laevis chromosomes hybridized to genomic or Cot DNA
from X. tropicalis. These sequences could be different to those identified by GISH and
FISH with Cot DNA, since painting probes did not reveal any signals on the short arm of
XLA3S (or XLA4L). Additionally, the genomic DNA of X. laevis did not reveal any region
of repeat DNA in the X. tropicalis karyotype apart from the chromosome ends. Thus, if
repetitive sequences are shared between XTR7 and XLA3L, there must be a lower amount
in X. tropicalis than in X. laevis. To test these hypotheses, it will be of interest to check if
the XTR-7w probe also paints the NOR-bearing chromosomes in other Xenopus species, or
if the short arm of chromosome 3L from X. laevis paints metaphase chromosomes from
X. tropicalis.

Previous painting experiments in X. laevis with XTR7 also revealed a positive signal
on the short arm of one acrocentric chromosome that was identified as chromosome 13
(4L according to [32]) [29,65]. We did not observe a positive signal on this chromosome
pair in the samples we analyzed. It was proposed that the positive signal on 4L was due
to rDNA sequences [29]. Our FISH experiments to detect rDNA in both X. tropicalis and
X. laevis did not reveal other positive signals, apart from those located on the secondary
constriction of those species (Figure 4A,B). Using different rDNA probes, other authors
have observed additional positive signals in the karyotype of X. tropicalis (the ends of the
long arms of chromosomes 6 and 9 and the ends of the short arm of chromosome 7) that
have been attributed to rDNA sequences [66]. The differences between our results and
those obtained by others could be explained by population differences in the location of
rDNA sequences, as the NOR in Xenopus is highly mutable and has the capability for rapid
evolutionary changes [27]. Alternatively, the signals attributed to rDNA may be due to
sequences other than 18S + 28S, since the probe was generated and labeled by PCR from
genomic DNA [66], or more probably due to fluorescence leakage from the 5S probe, since
the signals coincide with strong signals from the 5S probe [66].

Alternatively, the intense signal observed by [29] on the short arm of one XLA4L could
be due to the accumulation of repetitive sequences on this chromosome (positive regions
revealed in this work by GISH and FISH with Cot DNA in X. laevis). Additional evidence
in support of this hypothesis is that [29] only detected the signal in one chromosome, while
we observed differences in the intensity of the GISH/Cot signal when the homologous
XLA3S (or XLA4L) were compared. We probably did not paint this chromosome with
XTR-7w, because we used high amounts of Cot-1 DNA as competitor DNA instead of
genomic DNA.

As for the less intense and scattered signals observed on most X. laevis chromosomes,
it has also been proposed that they correspond to additional copies of rDNA. While our
FISH experiments rule out that these signals correspond to 18S + 28S rDNA sequences, they
could be due to 5s rDNA, which is distributed at the ends of the long arms of almost all X.
laevis chromosomes [9]. However, if this was the case, the XTR7 painting probe should also
detect the 5S rDNA in X. tropicalis.

4. Conclusions

Subtelomeric regions in X. tropicalis and X. laevis chromosomes were highly enriched in
common repetitive sequences. Other blocks of repetitive DNA in X. tropicalis were located
on the short arms of chromosomes 3 and 8, two regions with a scarcity of genetic markers
that also show assembly problems; and on the C-positive regions corresponding to the
short arm of chromosome 4 and the secondary constriction of chromosome 9. The repetitive
sequences located on the short arm of chromosome 3 from X. tropicalis were not related to
the sequences on the short arm of chromosomes 3L and 3S from X. laevis, although these
chromosomes are homoeologous, indicating that these regions evolved independently in
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these species. Furthermore, all the other repetitive sequences in X. tropicalis and X. laevis
may be species specific, as they were not revealed in cross-species hybridizations.

Painting experiments with chromosome 7 from X. tropicalis also revealed interesting
relationships between X. tropicalis and X. laevis karyotypes. XTR-7w and XTR-7p probes
painted the homologous chromosomes in X. laevis (7L and 7S), together with an intense
signal on the short arm of chromosome 3L. Although the NOR was located on this region,
the painting signal did not correspond to the location of 18S + 28S rDNA sequences, but
to a region that shares sequence homology with X. tropicalis chromosome 7 (the signal
was also visible using the XTR-7p probe). These results also confirm that the repeated
sequences on the short arm of XTR3 were not related to those located on XLA3S, since no
positive signal was identified on XTR3 after painting with XTR-7p and XTR-7w probes.

The conclusions of the cytogenetic analysis carried out on X. tropicalis and X. laevis
karyotypes are summarized in Table 1 and Figure 5.

Table 1. Summary of the results obtained by different cytogenetic techniques on the chromosomes of X. tropicalis and
X. laevis.

XTR [9] XTR [62] XTR [28] XTR [25] Morph. GISH Cot CMA/DA XLA [32] XLA [26] GISH/Cot XTR-7w

XTR1 1 1 1 S T T XLA1L 1 T
XLA1S 2 T

XTR2 2 2 2 S T T XLA2L 3 T
XLA2S 8 T

XTR3 3 9 9 A T, p T, p p XLA3L
(N) 12 T, p p

XLA3S 16 T, p (pol) 1

XTR4 5 3 4 S T, c2 p T, c2 p XLA4L 13 T, p (pol) 1

XLA4S 17 T

XTR5 4 4 3 S T T XLA5L 4 T
XLA5S 5 T

XTR6 6 8 8 M T T XLA6L 9 T
XLA6S 6 T, C (pol)

XTR7
(N) 7 5 5 S T T N XLA7L 7 T w

XLA7S 10 T w

XTR8 8 10 10 A T T, p XLA8L 14 T
XLA8S 11 T

XTR9 9 6 6 S T, c2 q T, c2 q c2 q
XLA9L 15 TXTR10 10 7 7 S T T

XLA9S 18 T

XTR [9]: Nomenclature of X. tropicalis chromosomes used in this study; XTR [62], XTR [28] and XTR [25]: alternative nomenclatures for X.
tropicalis chromosomes, according to the references indicated in each column; Morph: chromosome morphology; GISH: results of GISH in
X. tropicalis with a gDNA probe from the same species; Cot: results of FISH in X. tropicalis with Cot DNA from the same species; CMA/DA:
signal in X. tropicalis after triple staining with CMA3/DA/DAPI; XLA [32]: nomenclature of X. laevis chromosomes used in this study;
XLA [26]: alternative nomenclature for X. laevis chromosomes according to [26]; GISH/Cot: results in X. laevis after GISH and FISH with
Cot DNA from X. laevis; XTR-7w: chromosome painting in X. laevis with the XTR-7w probe. Abbreviations: p: short arm; q: long arm; c2:
secondary constriction; C: centromere; N: NOR; T: telomere; pol: polymorphic; w: whole chromosome. Equivalence between X. tropicalis
and X. laevis chromosomes was established according to [32]. Chromosome morphology: Metacentric (M) (1 > q/p > 1.17); Submetacentric
(S) (1.2 > q/p > 2.8); Acrocentric (A) (2.3 > q/p > 5.7); Telocentric (T). 1 Alternative possibilities for the positive signal identified by GISH
with chromosomes and probe from X. laevis: the proposed signal in XLA3S could be in XLA4L instead.
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Figure 5. Summary of the results obtained by GISH, FISH and chromosome painting comparing the
signals observed in the karyotypes of X. tropicalis and X. laevis. The probes used and the color codes
are indicated in the box. (*) Alternative possibilities for a positive signal identified by GISH/Cot
with chromosomes and probes from X. laevis (represented only in XLA3S; according to chromosome
morphology could be on XLA4L instead). The size and shape of the chromosomes of both species are
based on the ideograms by [28], but the nomenclature follows [9] for X. tropicalis and [32] for X. laevis.
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.3390/genes12050617/s1—Figure S1: In situ hybridization on metaphase spreads from X. tropicalis
using genomic DNA labeled with biotin 11–dUTP as probe; Figure S2: Comparisons of male and
female chromosomes from X. tropicalis after GISH with male and female probes from the same species;
Figure S3: In situ hybridization on metaphase spreads from X. tropicalis using Cot-1 to Cot-16 DNA
from X. tropicalis; Figure S4: Comparison of GISH results on different X. laevis individuals; Figure S5:
Complete metaphase plates showing the chromosomes included in Figure 4C–F.
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