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Unraveling the determinants of microRNA
mediated regulation using a massively parallel
reporter assay
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Despite extensive research, the sequence features affecting microRNA-mediated regulation

are not well understood, limiting our ability to predict gene expression levels in both native

and synthetic sequences. Here we employed a massively parallel reporter assay to investigate

the effect of over 14,000 rationally designed 3′ UTR sequences on reporter construct

repression. We found that multiple factors, including microRNA identity, hybridization

energy, target accessibility, and target multiplicity, can be manipulated to achieve a pre-

dictable, up to 57-fold, change in protein repression. Moreover, we predict protein repression

and RNA levels with high accuracy (R= 0.84 and R= 0.80, respectively) using only 3′ UTR
sequence, as well as the effect of mutation in native 3′ UTRs on protein repression (R= 0.63).

Taken together, our results elucidate the effect of different sequence features on miRNA-

mediated regulation and demonstrate the predictability of their effect on gene expression

with applications in regulatory genomics and synthetic biology.
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Hundreds of miRNAs regulate the expression of about 60%
of human protein-coding genes at the post-transcriptional
level1–5. The mature miRNAs associate with Argonaute

(AGO) proteins to form an miRNA-induced silencing complex
(miRISC), which causes downregulation of target genes through a
variety of mechanisms6–9. In animals, miRNA-specific binding
sites, denoted as “seed matches”, are mostly localized within 3′
UTRs and usually contain six consecutive nucleotides, which are
complementary to bases 2–7 of the 5′ end of the miRNA1,3,6.
Although in some cases the seed match alone has been shown to
confer regulation of target mRNAs10, in many cases additional
sequence features were shown to affect regulation11. However, it
is yet unclear to what extent these observations can be generalized
in order to accurately predict the effect of miRNA regulatory
elements (MREs) on gene expression.

A variety of methods have been introduced over the years that
are aimed at studying the interaction between MREs and miRNAs.
RNA immunoprecipitation-based methods reveal genome-wide
physical interactions between the miRISC complex and the target
mRNA, but they cannot elucidate which of these interactions have
regulatory outcomes12,13. Quantification of gene expression after
miRNA modulation can be used to identify enriched sequence
features4,11,14. However, this approach is indirect, examines the
gene expression response at non-native miRNA concentrations,
and is often limited to the quantification of mRNA levels15. High-
throughput proteomics and ribosome profiling following over-
expression or knockout of miRNAs resolve most of the mentioned
drawbacks, but they may still be affected by indirect and secondary
effects7–9,16. Finally, reporter gene-based assays facilitate the
testing of native and mutant 3′ UTR sequences in the presence and
absence of miRNAs10,17,18. These approaches have limited
throughput and are sensitive to the selection of the reporter
construct and the miRNA concentration to resemble the native
state15. New methods for the systematic analysis of the relation-
ship between 3′ UTR sequence features and gene expression reg-
ulation are needed in order to further advance our understanding
of the regulatory mechanisms involving MREs.

Recent advancements in high-throughput DNA synthesis facili-
tated the development of massively parallel reporter assays (MPRAs)
19–27, allowing researchers to assess the regulatory consequences of
thousands of variants in each experiment. Furthermore, systematic
analysis of rationally designed libraries via MPRA has been pre-
viously shown to contribute to the understanding of a variety of
regulatory mechanisms19,20,25,28–30. Despite previous 3′ UTR
MPRAs for the discovery of multiple regulatory elements present in
native sequences31,32, there is still a major gap in our ability to model
the contribution of 3′ UTR sequence features to protein levels.

Here we set out to dissect the features governing MRE-
mediated regulation of gene expression by applying an MPRA
approach developed in our lab. We take advantage of the large
scale of our assay and the rational design of the sequences to
quantify the effect of MREs and surrounding sequences on pro-
tein repression for ten miRNAs. We find general and MRE-
specific rules with protein repression reaching 57-fold. We inte-
grate our findings into a comprehensive machine learning scheme
achieving highly accurate predictions of protein repression and
RNA levels from 3′ UTR sequence features alone. Finally, we
accurately predict the difference in repression upon mutation of
native MREs. Taken together, our models and analysis advance
our understanding of MRE-mediated regulation and promote
applications in regulatory genomics and synthetic biology.

Results
A massively parallel reporter assay for over 14,000 3′ UTRs. To
get a quantitative measure for the effect of various sequence

features on MRE activity, we adopted an MPRA approach pre-
viously used in our lab20,33. We designed 14,151 210 nucleotide
(nt) long oligonucleotides, which are comprised of constant and
variable regions (Methods). We applied systematic manipulations
aimed to elucidate the consequence of specific sequence changes
on miRNA-mediated regulation of gene expression. We generated
a population of cells with a single variant per cell and quantified
the mean expression and protein repression levels for each variant
(Fig. 1a, Methods). We previously demonstrated that this
approach is highly accurate and reproducible by obtaining high
agreement (R = 0.98) between MPRA and isolated strains mea-
surements of mean expression for a library of core promoter
sequences33. Furthermore, we estimated the technical noise of our
system by examining groups of ten variants with identical
sequences except for the DNA barcode and found that the
median relative standard deviation (RSD) was 10.5% (Supple-
mentary Figure 1), indicating that our system exhibits low tech-
nical noise.

Here we designed synthetic MREs for ten miRNAs highly
expressed in K56234 Fig. 1b). For each of these, we designed four
MREs with varying base pair complementarity between the
miRNA and the binding site (Fig. 1c). While the 8mer site
maintains only marginally extended seed pairing, the 3′
complementary and bulged sites have additional 3′ pairing
between the miRNA and the target, but they still lack the full
complementarity required for cleavage of the target by the
miRISC complex. This design allows us to test sequences that
resemble native MREs as well as MRE types more relevant for
synthetic biology, such as bulged and perfect match MREs, since
they are essentially never observed in humans. We used these
MREs, along with control sequences, in four major mutagenesis
schemes (Fig. 1d).

We subjected the designed library to our experimental pipeline
and obtained protein repression measurements for ~91.2% of the
variants. We found that the assayed variants span over 50-fold in
repression levels (Fig. 2a). The protein repression distribution is
highly skewed, with the majority of sequences exhibiting little to
no repression, consistent with the design of the library, which
included a large proportion of MRE-destructive mutations. We
conclude that our MPRA approach can measure the effect of 3′
UTR sequences on protein repression over a wide range of values.

MiRNA abundance has a significant effect on repression. To
investigate the effect of miRNA levels on their ability to repress
their targets, we designed variants to robustly assess the miRNA
activity using perfectly complementary MREs. The results show a
range of repression levels, depending on the miRNA identity, that
can span up to 5.7-fold in median repression (Fig. 2b). We
computed the correlation between the median repression and the
microarray data for the miRNA levels in K56234. We found that
the miRNA abundance can explain up to 81% of the variability in
the measured median repression (R = 0.90, p = 3.6e−04, Fig. 2c).
Thus, these designed reporter constructs can serve as reliable
sensors for miRNA expression. We confirm that miRNA abun-
dance is a major determinant of target repression, at least for the
subset of ten miRNAs included in our analysis.

The MRE sequence is a major determinant of repression. To
study the effect of the MRE sequence on repression, we first
examined the effect of the MRE type. The results reveal that MRE
types with increased base pair complementarity between the
miRNA and the MRE lead to stronger repression (Fig. 3a, Sup-
plementary Figure 2). As expected, perfectly matched binding
sites show the highest effect on repression, since they are the only
examined binding site type that leads to cleavage by catalytically
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active AGOs and rapid RNA degradation35–37. Our results con-
firm on a larger scale that increased base pair complementarity
correlates with a higher repression potential of MREs.

To further examine the effect of base pair complementarity, we
took perfectly complementary MREs and accumulated mis-
matches between the miRNA and the MRE. We found that an

increase in the number of mismatched bases led to progressively
stronger reduction in repression, reaching saturation around base
14 of the miRNA (Fig. 3b). We further examined whether the
decrease in repression can be explained by the hybridization
energy (ΔG) between the miRNA and the MRE. Strikingly, we
found that for most miRNAs, the coefficients of determination
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between the repression and the ΔG are high, indicating that
between 12 and 87% of the repression can be explained by the ΔG
(Fig. 3c–e). Moreover, the repression levels of the mutants can
span up to 8.4-fold. Thus, these artificial MREs can be used for
the design of 3′ UTRs with a predictable effect and serve as
valuable synthetic biology parts. Together, these results confirm
that the strength of the interaction between the MRE and the
miRNA has a major effect on protein repression irrespective of
miRNA identity.

Another important feature of the MRE sequence is the
complementarity between the miRNA seed and the MRE. For
the 3′ complementary and bulged sites, it is widely accepted that
the mutations within the seed-complementary region are more
destructive than the mutations in the other regions of the MRE15.
Moreover, the importance of having an “A” at position 1 and/or
base pairing at position 8 has been previously reviewed3. We
examined these hypotheses by extensive mutational analysis of 3′
complementary and bulged MREs. Surprisingly, the results show
that MREs differ in their sensitivities to mutations in the different
regions (Fig. 3f and Supplementary Figure 3). Moreover, the effect
size is different between the different MREs for both mutations in
positions 2–7 and mutations in position 1 or 8. Thus, we propose
that mutations within different regions of the MRE can have
varied effects depending on the miRNA identity. Furthermore, we
observe a difference in the effect size of reduction in repression
upon mutation in the different groups when comparing between
3′ complementary and bulged MREs (e.g., hsa-miR-20a). More-
over, the reduction of repression in mutants with mutations at
positions 2–7 becomes smaller. Although the bulged sites are
rarely found in nature and represent an extreme case of 3′
compensation, this result teaches us about possible architectures
of native MREs, where additional base pairs between the 3′ end of
the miRNA and the MRE compensate for mutations within the
seed region2,38. However, since we performed the mutational
analysis on one 3′ complementary and one bulged site sequence
for each miRNA, we cannot eliminate the possibility that the
observed effect is sequence specific.

Repression can be adjusted by modifying MRE flanking
regions. Although the MRE sequence, especially the seed region,
has a major effect on repression, the RNA secondary structure
surrounding it has been shown to significantly influence the
interaction between the miRNA and the target sequence, thus
affecting the extent of post-transcriptional regulation by the
miRNA18,39. Therefore, we varied the sequence surrounding 3′
complementary and bulged MREs to affect the RNA structure
encompassing them. As a measure of the total interaction energy,
we use the ΔΔG estimate as previously described18 (Methods).
The results reveal that the variability in ΔΔG can account for up
to ~4-fold difference in repression with varied correlation values
(Fig. 4a–c). Interestingly, we note that the MREs with a higher

repression potential are associated with higher correlations. These
results can be attributed to a smaller signal-to-noise ratio for the
less potent sites or to miRNA and MRE type-specific effects.
Thus, these insights help elucidate the sequence determinants
required for higher MRE activity in both native and synthetic 3′
UTRs.

Repression has also been shown to increase with the number of
MREs10,11,40. Therefore, we systematically varied the number of
MREs for the selected miRNAs (Fig. 4d, Methods). We observe
that for the more active miRNAs (hsa-miR-20a, hsa-miR-19b,
and hsa-miR-92a) the fold repression increases as a function of
the number of sites, up to a 57-fold difference in repression, while
for the less active miRNAs (hsa-miR-21 and hsa-miR-320a), the
fold repression remains low (Fig. 4e and Supplementary Figure 4).
Furthermore, the increase in repression as a function of the
number of MREs is qualitatively different for different miRNAs.
For hsa-miR-92a, the repression potential reaches saturation at
around four MREs, while for hsa-miR-20a and hsa-miR-19b this
is not the case. These results indicate that an increase in the
number of MREs can result in an increase in repression in an
miRNA-specific manner. Given the artificial nature of this data
set, it is most useful for the design of 3′ UTRs for synthetic
biology purposes. However, the gained insight can still contribute
to our understanding of native MRE clusters.

Highly accurate prediction of repression from MRE features.
Based on our reported discoveries, we next ask whether we can
build a comprehensive model for predicting repression from 3′
UTR sequence. A given 3′ UTR can interact with multiple miR-
NAs and have multiple MREs for a given miRNA. Therefore, the
features in our model are a total interaction score for each of the
274 miRNAs detected in K562 cells34 (Methods). We apply a
machine learning approach based on gradient boosting regression
(GBR), which learns the contribution of each feature and can also
learn non-linear interactions between the features41. We compare
the measured to the predicted values from 10-fold cross valida-
tion (Fig. 5a) and used Pearson correlation as a measure of model
performance. We repeated this analysis for each of our four
mutagenesis schemes (Fig. 5c). Strikingly, our model predicts the
observed expression in all of the synthetic sets with high accuracy
(R = 0.79–0.84, p< 10−10) and also performs well in the more
challenging task of mutations to WT MREs (R = 0.62, p< 10−10).
This decrease in performance can be attributed to the features
other than MREs contributing to the observed repression values
in WT sequences or to a smaller signal-to-noise ratio given the
smaller measured effect.

In our WT MRE mutagenesis set, we mutated predicted and
validated MREs (Methods) by replacing the seed region or the
entire MRE with an alternative sequence. By calculating the
differences in repression between the native and the mutant
sequences, we estimated the MRE repression efficiency. The

Fig. 1 An experimental system for the systematic interrogation of the effects of variation in the 3′ UTR sequence on protein repression. a A schematic
representation of our massively parallel reporter assay (Methods). b MiRNAs expressed in K562 cells as quantified by a published microarray
experiment34. The ten highly expressed miRNAs selected for the library design are indicated. c An illustration of the four binding site types used for the
design of MREs complementary to the ten selected miRNAs. MRE sequences were designed to match the depicted structure using ViennaRNA 2.060. The
perfect match MRE is a fully complementary binding site, disregarding the preference of the miRNA machinery for an “A” at the first position. For all other
binding site types, the first position was forced to be an “A”. d An illustration of the four main mutagenesis schemes used in the design of the 3′ UTR
sequences. First, we placed the designed MREs in a variety of native or designed contexts. Second, we subjected the MREs in the selected contexts to
extensive mutagenesis of the binding sites. Third, we positioned multiple MREs in different architectures and compositions in selected contexts. Finally, we
introduced mutations into native sequences that contained predicted MREs and included those in our library alongside the wild-type (WT) sequence.
Different patterns depict different sequence contexts, while different colors depict different MREs. Designed mutations within the MRE sequence are
annotated with an “X” and include single-base substitutions, single-base insertions, single- and double-base deletions, and cumulative mismatches from
the MRE 5′ end. See also Supplementary Figure 1 and Methods
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distribution of the measurements reveals that most of the MRE
mutations result in little or no effect on repression (Fig. 5d). Only
~8% result in more than a two-fold decrease in repression upon
mutation of the MRE, supporting the notion that native MREs are
used to fine tune gene expression. We adapted our machine
learning pipeline to perform with two input 3′ UTRs and to
predict the paired difference in repression (Methods). The
predicted values show a surprisingly good agreement with the
measured ones (R = 0.70, p< 10−10, Fig. 5e). These results
indicate that mutations in MREs and surrounding sequences
can affect gene expression levels in a highly predictable manner.

RNA expression does not enhance predictive model accuracy.
To gain further mechanistic insight into the regulatory process,
we quantified RNA levels for our library. We adapted a previously
used approach24,42,43 to estimate the RNA levels of each variant
(Methods). We found that the method was highly reproducible
between technical replicates (Fig. 6a, R = 0.82, p< 10−10). When
applying our prediction pipeline to predicting the RNA levels
from the MRE features, we achieved high performance, although
slightly lower than the one achieved for prediction of protein
repression (Fig. 6b, c). This may be due to the RNA data being
more susceptible to technical noise as observed by higher median
RSD (34%, Supplementary Figure 5A) and a wider distribution of
RNA expression values (Supplementary Figure 5B).

With both the protein repression and RNA measurements at
hand, we examined their joint distribution (Fig. 6e). We found a
negative correlation (R = −0.68, p< 10−10) between protein
repression and RNA abundance. We repeated our machine
learning analysis and included the RNA abundance as the single
input feature or in addition to the MRE-based features and
compared the model performance (Fig. 6f). We found that using
the RNA level as a single feature results in the lowest
performance. Surprisingly, despite the correlation between RNA
levels and protein repression, we found that the exclusion of the
RNA levels from the feature set does not hinder model
performance. Given that our model achieved high performance
in predicting the RNA levels (R = 0.77, Fig. 6c), the model for
predicting protein repression could capture the underlying RNA
dynamics, resulting in high performance despite the exclusion of
the RNA levels as a feature. These results indicate that RNA
abundance is a consequence of sequence features and was
captured well by our model.

High performance of predictions on held out data. We further
validated our model on a held out portion of our data that was
not used at all during the model development. We processed the
data and extracted the features in the same manner as we did in
the main data set. Remarkably, our algorithm achieved similar
performance on the held out data as it did on the main data set
for predicting the repression in the different subsets for both the
protein repression (R = 0.84, Fig. 5b) and RNA levels (R = 0.80,
Fig. 6d). Furthermore, the algorithm for predicting the difference
in repression between native and mutant MREs in WT sequences
also achieved similar performance to the training set (R = 0.63,
Fig. 5f). These results further support the ability of our algorithm
to provide accurate predictions of MRE-mediated regulation in
K562 cells.

Features underlying repression and RNA level predictions. To
investigate how different features contribute to prediction, we
visualized the partial dependence (PD) of the model prediction
on individual features using partial dependence plots (PDPs)44.
PDPs graphically visualize the marginal effect of a given feature
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on prediction outcome after accounting for the average effect of
all other features.

We calculated the PD for predictions of both protein
repression and RNA levels from MRE features. For a feature
associated with a negative regulatory element, we found lower
ΔΔG to correlate with lower RNA levels and higher protein

repression levels (Fig. 7a). Similarly, for a feature associated with
a positive regulatory element, we found lower ΔΔG to correlate
with higher RNA levels and lower protein repression (Fig. 7b).
When neither of these correlations was significant, we classified
the feature as contributing neither positively nor negatively.
Overall, we found 112 features that correspond to the expected

a

b

c

f

d e

Fold repression

2–1 20 21 22 23 24 25

23 miRNA

mRNA target

1
3′

3′
3′

3′5′

5′
5′

5′
Perfect match

N = 450

N = 452
A

A

A

N = 439

N = 447

N = 316 Control sequences

Non-modified contextsN = 54

Bulged
B

in
di

ng
 s

ite
 ty

pe
V

ar
ia

nt
s 

di
ffe

rin
g 

un
pa

ire
d 

ba
se

s

Seed

Controls

None

23

hsa-miR-20a
0.75

0.60

0.45

0.30

0.15 –45

Other Seed

–35 –25

ΔG [kcal/mol]

R2=0.12 R2=0.87

–15 –45 –35 –25

×8.4

ΔG [kcal/mol]

–15

R2

hsa-miR-19b
hsa-miR-92a
hsa-miR-17
hsa-miR-21
hsa-miR-25

hsa-miR-223
hsa-miR-103

hsa-miR-130b
hsa-miR-320a

C1

Context

C2

21
= Unpaired Base position

19 17 15 13 11 9

21.2
23.0

22.5

22.0

21.5

21.0

20.5

20.0

2–0.5

20.8

20.4

20.2

20.0

2–0.2

2–0.4

24

23

* * *
*

*
*

* * * *
* ** * **

*
*

*
*

*
*

*
*

*
*

** *
*

*
*

*

22

21

2–1

C1

hsa-miR-17 hsa-miR-20a hsa-miR-130b hsa-miR-92a

hsa-miR-17 hsa-miR-20a hsa-miR-130b hsa-miR-92a

C2 C1 C2

Context

Other Seed

C1 C2 C1

= No mutations

C2

C1 C2 C1 C2
Context

C1 C2 C1 C2

20

21.0

7 5 3 1

Fold repression

F
ol

d 
re

pr
es

si
on

F
ol

d 
re

pr
es

si
on

24

23

22

21

2–1

20F
ol

d 
re

pr
es

si
on

F
ol

d 
re

pr
es

si
on

20 21 22 23 24

3′ comp-
lementary

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-02980-z

6 NATURE COMMUNICATIONS |  (2018) 9:529 |DOI: 10.1038/s41467-018-02980-z |www.nature.com/naturecommunications

www.nature.com/naturecommunications


negative regulatory effect (Fig. 7c). Surprisingly, we also found 39
features corresponding to a positive regulatory effect. Since the
magnitude of the PD contribution can vary greatly, we filtered the
features and found 22 and 8 features corresponding to negative
and positive regulatory effects, respectively (Fig. 7d). Of particular
interest are the features that correspond to a positive regulatory
effect (Fig. 7b). We found such examples only for features
associated with lowly expressed or falsely annotated miRNAs.
Therefore, these results may indicate that the rules learned by our
model for these sequence features correspond to regulatory
mechanisms other than miRNA-mediated regulation. Thus, this
analysis identified the factors that underlie the high performance
of our predictor and provided insights and testable hypotheses as
to the regulatory mechanisms that drive miRNA-mediated
repression.

A part of our high model performance could be attributed to
the effect of miRNA expression levels on target repression.
Therefore, we devised a basic model that would only consider
miRNA expression levels and MRE multiplicity. We found that
the performance for the basic model (R = 0.56) was lower than for
our complete model (R = 0.84). To elucidate the contribution of
additional factors to model performance, we chose to test a
number of additional models (Methods). When comparing the
model performance (Supplementary Figure 6), we found that our
complete model achieves the highest performance. Judging by the
performance of the simpler models, we can attribute the increase
in performance to both the learned interactions between the
features and the thermodynamic properties used in our complete
model. Furthermore, we note the expected increase in perfor-
mance whenever the number of MREs is considered as opposed
to their occurrence alone. We conclude that despite the
contribution of miRNA expression levels, our complete model
still adds a substantial improvement to prediction.

Reporter RNA levels are affected by varying miRNA profiles.
To test the effect of varying miRNA profiles on expression we
performed measurements of our library in four cell lines. Since
the method for protein repression measurement was highly
optimized for K562 cells, we modified our experimental approach
to MPRA measurements of RNA from a transient transfection of
the reporter library. This approach allowed us to perform the
experiment in four selected cell lines: K562, MCF7, HEK293, and
HepG2. We examined the miRNA microarray expression data for
K56234, MCF745, and HepG246 to determine that the ranking of
the miRNAs is different between these cell lines (Supplementary
Figure 7). Notably, in MCF7 and HepG2, hsa-miR-21 is the most
highly expressed miRNA as opposed to K562. Furthermore, hsa-

miR-223 was not detected in HepG2, and was extremely lowly
expressed in MCF7.

We performed transient transfection in the four cell lines and
acquired normalized RNA level estimates for each variant
(Methods). We found that the method is highly reproducible
between technical replicates (Supplementary Figure 8A-D, R =
0.95–0.97, p< 10−10). Furthermore, for K562 cells, the measure-
ments from transient transfection are in good agreement with the
ones from genomic integration (Supplementary Figure 8E, R =
0.73, p< 10−10). Finally, we estimated the technical noise by
estimating the median RSD, and found that our system exhibits
low levels of technical noise (Supplementary Figure 8F). These
values are lower than the 34% median RSD observed for the RNA
measurements from the genomic integration experiment. We
conclude that our transient MPRA method is a flexible approach
for acquiring RNA measurements for reporter libraries in
multiple cell lines.

We first examined the results for miRNA activity in all four cell
lines, as we did in Fig. 2b (Supplementary Figure 9). To examine
whether this difference in activity can be associated with miRNA
abundance, we computed the correlation between the median
expression and the microarray data for the miRNA expression in
K56234, MCF745, and HepG246. We found that the miRNA
abundance can explain up to 80%, 83%, and 84% of the variability
in the measured median expression for perfectly complementary
MREs in K562, MCF7, and HepG2 cells, respectively (Fig. 8a–c).
Next we turned to comparing the miRNA activity between the
cell lines (Fig. 8d). Clearly, hsa-miR-21 exhibits the most
dramatic differences in activity in the pairwise comparisons.
Thus, our assay captures the effect of miRNA levels on reporter
expression in multiple cell lines and highlights the differences
between them.

To further explore the differences in reporter expression
between the cell lines, we plotted the pairwise comparisons for all
the reporter constructs. Given the differences in hsa-miR-21
activity, we marked the variants with different hsa-miR-21
binding sites (Fig. 8e). It is clear that the most dramatic
differences between the cell lines are dictated by the hsa-miR-
21 MRE containing variants. Notably, the non-perfect match hsa-
miR-21 MREs have a far smaller effect. Therefore, we subjected
hsa-miR-21 to additional analysis, in which we directly compared
the expression of variants with different hsa-miR-21 MREs in
different contexts and across cell lines (Fig. 8f). We observe the
expected effect of the MRE type in MCF7 cells, in which hsa-miR-
21 has the highest activity. However, in cell lines where the hsa-
miR-21 activity decreases, the effect of the weaker MRE types is
diminished. We observe similar trends for the other miRNAs
(Supplementary Figure 10). Thus, the effect of MREs for a given

Fig. 3 The MRE sequence and its interaction with the miRNA are a major determinant of repression efficiency. a Designed MREs of a given type for the
selected ten miRNAs were placed in up to 57 contexts at a single copy in either of the two positions to generate a diverse set of variants. We grouped all
the variants with the synthetic MREs by their binding site type, spanning different miRNAs and contexts, resulting in 2158 unique variants with measured
repression. MRE types with a more extensive base pairing show higher repression. See also Supplementary Figure 2. b For each of the ten miRNAs, the
perfectly complementary MRE was placed in one of the two contexts and mutated to accumulate mismatches from the MRE 5′ end. Each shaded square
represents an unpaired base as predicted by ViennaRNA 2.060. c A heatmap of the R2 values for the fold repression as a function of the hybridization
energy (ΔG, calculated with RNAhybrid 2.1.268) for each of the ten miRNAs in each of the two contexts. All of the correlations were negative. d Scatter plot
of fold repression as a function of ΔG for hsa-miR-103 in context C1, highlighted in c. e Scatter plot of fold repression as a function of ΔG for hsa-miR-223 in
context C2, highlighted in c. The bar annotates the 8.4-fold difference in fold repression spanned by the different mutants. f Comparison of the effect on
fold repression of mutations in three regions of the MRE for four selected miRNAs for 3′ complementary (top panel) and bulged (bottom panel) MRE types.
The first position is considered to be mutated if it is not an “A”. The effect of mutations in the different regions varies between miRNAs. Boxplot pairs
marked with * are significantly different (p< 0.05, Mann–Whitney U one-sided test, FDR-corrected). The fold repression level of the non-mutated MRE in
each context is indicated. In each variant, two identical copies of the MREs were placed in the context in order to increase sensitivity. See also
Supplementary Figure 3
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miRNA is dependent on both the miRNA activity and MRE
sequence, across multiple cell lines.

Finally, we examined the effect of MRE multiplicity for five
miRNAs, each with an 8mer or 3′ complementary MRE, across
our four cell lines (Fig. 8g and Supplementary Figure 11). We
observed that some MREs present varying trends between the cell
lines, most notably hsa-miR-19b and hsa-miR-21. The accumula-
tion of hsa-miR-21 MREs shows the largest effect in MCF7 cells,

in which it is the most active miRNA. We conclude that the effect
of MRE multiplicity depends on the MRE sequence and the
miRNA expression profile determined by the cell line.

Discussion
In this work, we systematically tested the quantitative effect of
various MRE-related sequence features on reporter gene
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expression on an unprecedented scale using a MPRA for
rationally designed 3′ UTRs. We used our measurements for
~13,000 3′ UTRs to dissect the sequence features governing MRE
activity, and found general and miRNA-specific rules. We used
the gained insight to develop a highly accurate model for pre-
dicting regulation from the 3′ UTR sequence on protein

repression and RNA levels. Our algorithm achieves remarkable
performance when predicting protein repression (R = 0.84), RNA
levels (R = 0.80), and paired difference in protein repression upon
mutation of native MREs (R = 0.63), providing a new model for
the accurate prediction of the functional consequences of muta-
tions within MREs. We examined the features underlying the
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predictions of our models and the identified expected and
unexpected relationships between sequence features, protein
repression, and RNA levels. Finally, we showed that the identified
grammatical rules apply in multiple cell lines and respond to
variations in the miRNA profile of the cells.

The MPRA system presented in this work is unique in multiple
ways. First, our libraries are rationally designed, allowing for

extensive testing of specific hypothesis by systematic mutagenesis
of predefined features, as opposed to screening a limited number
of native sequences with random mutations. Second, our MPRA
is based on measurement of fluorescent reporters, which allows us
to study regulation on both the RNA and protein level. Finally, we
perform our measurements in a setting that closely resembles an
unperturbed cellular environment, since our reporter gene is at a
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single copy in the genome and we do not manipulate the endo-
genous miRNA levels. Thus, our approach allows us to develop
accurate models relevant to native scenarios.

Previous work performed mutational analysis of a limited
number of 3′ UTR sequences interacting with a single or a very
small number of miRNAs10,17,18. Furthermore, some of the

analyzed features, such as MRE accessibility18,39 and MRE mul-
tiplicity10,11,40, were studied using multiple methods. Here we
applied extensive mutagenesis on MREs for up to ten miRNAs,
resulting in hundreds of mutants for each feature. This compre-
hensive approach allowed us to detect features that can be easily
generalized to different miRNAs, such as the MRE type, while
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other features seem to be more dependent on the miRNA iden-
tity, such as MRE multiplicity. Furthermore, the quantitative
nature of our measurements allows us to determine the impact of
the examined features on repression. Such insights could not be
achieved via lower throughput assays.

Many of our results can be informative regarding native
binding sites and relevant for synthetic biology. These results

include, but are not limited to, the effects of increased base pair
complementarity, mutations with the MRE sequence, MRE
accessibility, and MRE multiplicity. However, we acknowledge
that mutagenesis of perfectly matched MREs, bulged MREs, or
artificial cases of high MRE multiplicity are less reflective of
native states and more applicable to synthetically designed 3′
UTRs. On the other hand, we note that only ~8% of the 929 pairs
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in our data set pairing WT and mutant MREs show a greater than
two-fold difference in repression with a maximal value of 4.5-fold
change in repression, this is in line with the previous reports47.

We note some limitations of our ability to rationally design
systematic mutagenesis sets aimed to answer certain hypothesis.
First, miRNAs hsa-miR-17 and hsa-miR-20a, and miRNAs hsa-
miR-25 and hsa-miR-92a share the same seed, thus allowing cross
interaction between the miRNAs and the MREs. Second, when
introducing mutations to test a certain hypothesis, one cannot
completely avoid changing other sequence and structure features.
Since these design constraints are very hard to control for we can
only accept them as part of the noise in our data.

Quantifying both RNA level and protein repression for the
variants in our library allows us to examine the relationship
between these two parameters (Fig. 6e). The Pearson correlation
of −0.68 (R2 = 0.47) indicates that 47% of the variability in protein
repression can be explained by RNA levels, in line with previous
reports48,49. Interestingly, we note an absence of variants with
high RNA abundance and high protein repression, supporting the
idea that it might not be possible for miRNA-mediated regulation
to repress translation without affecting RNA levels8,9.

Our model for predicting protein repression or RNA levels in
K562 cells integrates the total ΔΔG of each of 274 miRNAs. This
approach takes into account the hybridization energy, MRE
accessibility, and MRE multiplicity. These features have been
previously used for the prediction of the effect of individual
miRNAs18,39; however, to the best of our knowledge, this is the
first work to incorporate these parameters for a large panel of
miRNAs into a single predictor. This approach is beneficial for
prediction, since MREs for different miRNAs can have interac-
tions that can be captured by our GBR based model11,40,41.

Our algorithm predicts the level of repression for a given 3′
UTR as opposed to prediction of whether or not it is likely to be a
target of a given miRNA. Thus, our algorithm can be used to
predict, in K562 cells, whether a chosen 3′ UTR sequence will
result in a specific desired expression level. A selection of 3′ UTRs
can then be utilized to span the expression of genes in a reg-
ulatory or a metabolic pathway to study the effects of changes in
protein expression or to optimize for a desired outcome. In
addition, we present another algorithm that is capable of pre-
dicting the difference in repression upon mutation of native 3′
UTR sequences. This algorithm can serve as a tool for tuning the
expression of an endogenous gene of interest in K562 cells to a
desired level and study the resulting phenotypes. Thus, our
algorithm can be utilized by the synthetic biology community to
advance basic and applied research.

When analyzing the features underlying our predictor perfor-
mance, we found a surprising number of features corresponding
to positive regulatory elements (Fig. 7d). Since the ΔΔG is cal-
culated for each seed match (a hexamer sequence), it is possible

that the hexamers used correspond to other regulatory sequences.
Given that the miRNAs whose PDs are associated with a positive
regulatory effect are relatively lowly expressed or falsely anno-
tated, it is possible that the function learned by our predictor is
associated with a different regulatory mechanism. The hexamer
sequences can be binding sites for RNA binding proteins (RBPs)
that are capable of stabilizing the mRNA or increasing translation
efficiency. For example, the hexamer “CCCCCU” corresponds to
a known poly-C motif, which is bound by a family of RBPs and
was shown to contribute to RNA stabilization and translation
enhancement50,51. Future endeavors may devise a model that will
include features of regulatory elements other than MREs, thus
improving our ability to predict the protein repression and
mRNA expression from sequence alone.

Finally, we examined the effect of varying miRNA profiles on
reporter expression by measuring RNA levels for our library in
four different cell lines. The presented data greatly expand the
accumulated evidence for the sequence features affecting MRE
activity in human cells. The results show that the miRNA levels
are a major determinant of MRE activity and reveal that the most
prominent differences in reporter expression between the cell
lines can be attributed to MREs of hsa-miR-21, whose expression
differs the most between the cell lines. We corroborate the effect
of main MRE and surrounding sequence features from K562 cells
in the newly tested cell lines, indicating that the devised rules can
be generalized.

In summary, we used a quantitative high-throughput assay to
measure the regulatory effect of over 14,000 rationally designed 3′
UTRs to decipher the rules of miRNA-based regulation. We
identified various general and miRNA-specific sequence features
responsible for the potential to repress translation. Furthermore,
we combined our insights into accurate models for prediction of
protein repression and RNA levels. These results contributed to a
systematic functional understanding of miRNA-mediated gene
regulation, as well as opened new possibilities for making use of
the powerful regulatory potential of this mechanism for synthetic
biology.

Methods
Synthetic library design. General design notes: oligonucleotides were designed to
maintain a constant length of 210 nt. We made sure that all sequences excluded
restriction sites used for cloning and the canonical polyadenylation signal
(AATAAA) and its point mutants. All the variants were composed of an 18 nt
forward primer, 12 nt barcode sequence, 162 nt variable region, and 18 nt reverse
primer sequences. The 14,151 variants were designed as a part of a larger library of
55,000 variants. Unique primer sequences were used to facilitate targeted ampli-
fication of the 14,151 variants pool.

Selection of miRNAs and contexts: the miRNAs were selected based on a
literature survey and miRNA expression data as quantified by microarray34. We
selected miRNAs that were highly expressed (within the top 10%, except for hsa-
miR-320a). We selected miRNAs involved in different cell processes such as cancer
(hsa-miR-17-92 cluster52,53 and hsa-miR-2153–55) and K562 differentiation (hsa-

Fig. 8 Varying miRNA profiles across cell lines affect reporter expression. a–c The median-transformed reporter RNA levels for perfect match MREs (see
also Supplementary Figure 9) as a function of the miRNA expression levels, as quantified by published microarray for K56234, MCF745, and HepG246, for
the ten selected miRNAs. Calculated R2 and associated p-values are indicated. For MCF7 and HepG2, hsa-miR-223 was excluded from this analysis due to
its extremely low expression. d Pairwise comparison of transformed reporter RNA levels for perfect match MREs (see also Supplementary Figure 9) for the
ten selected miRNAs. Hsa-miR-21 is annotated in every subplot. e Pairwise comparison of transformed RNA levels for all measured reporter library
variants. The colored points indicate different MRE types for hsa-miR-21 as shown in the legend. f Transformed RNA levels of reporter constructs with
different MRE types for hsa-miR-21 in different cell lines. Controls contain control sequences instead of the MRE. The "None" group contains the context
with no inserted sequences. Boxplots marked with * are significantly different (p< 0.05, Mann–Whitney U one-sided test) from the controls group. See
also Supplementary Fig. 10. g Transformed RNA levels as a function of number of MRE sites for K562, MCF7, HepG2, and HEK293 cells. Analysis was
performed as in Fig. 4e per cell line. Plots shown are for 3′ complementary with control 1 and 8mer with control 1 at the top and bottom rows, respectively.
Colors represent results from different cell lines as shown in the legend. A stronger effect is observed for hsa-miR-21 in MCF7 cells, where it has the
strongest activity. See also Supplementary Fig. 11
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miR-22356, hsa-miR-10357, and hsa-miR-320a57,58). The selected miRNAs were as
follows: hsa-miR-20a (MIMAT0000075), hsa-miR-17 (MIMAT0000070), hsa-miR-
19b (MIMAT0000074), hsa-miR-21 (MIMAT0000076), hsa-miR-92a
(MIMAT0000092), hsa-miR-223 (MIMAT0000280), hsa-miR-25
(MIMAT0000081), hsa-miR-130b (MIMAT0000691), hsa-miR-103
(MIMAT0000101), and hsa-miR-320a (MIMAT0000510). Underlined miRNAs
were subject to more extensive mutagenesis in some cases.

To facilitate library design and to examine the effect of varying native contexts,
we selected 57 unique sequences. The sequences spanned a range of GC content
and minimal folding energy (MFE) values. Origins of the sequences were coding
regions, 5′ UTRs, 3′ UTRs, viral genomes, and random sequences.

Design of the synthetic MREs and controls: for each miRNA, the target sites
were generated based on the miRNA sequence from miRBase version 2059. We
designed four synthetic MREs for each miRNA: perfectly matched, bulged, 3′
complementary, and seed-matched. For perfectly matched MREs, we took the
reverse complementary sequence to the miRNA sequence. For bulged sites, we
enforced a bulge at bases 9–11 of the miRNA. For 3′ complementary sites, we
enforced a perfect match within the seed region and additional base pairing at bases
13–16 of the miRNA, while enforcing the rest of the MRE to be unpaired. For seed-
matched sites, we enforced pairing within the seed region alone, while enforcing
the rest of the MRE to be unpaired. Secondary structure predictions were
performed with ViennaRNA package 2.060. All target sites were forced to be 23 nt
long (for shorter miRNAs additional bases from the pre-miRNA were taken)
except for bulged sites, which were 22 nt (due to deletion in the target site required
to form the bulge). Three 23 nt long control sequences were used throughout the
library and included a CXCR4 siRNA perfect match site17, a 23 nt sequence from
firefly Luciferase, and a random 23 nt sequence.

Designing the contexts set: we placed MREs in native contexts by replacing the
native sequence in the selected positions, thus maintaining constant
oligonucleotide length. We placed MREs for the selected three miRNAs in 50
different contexts. We also placed MREs for all the miRNAs in a subset of ten
contexts. The MREs were placed in two positions within the oligonucleotide. In
addition, we placed the MREs for the three selected miRNAs in two selected
contexts in 14 different positions with 10 nt difference between them. For a more
focused approach in examining the effect of MRE accessibility, we placed 3′
complementary and bulged MREs for all the ten miRNAs in various predicted MFE
structures (ViennaRNA package 2.060).

Designing the mutant MREs set: two adjacent (1 nt distance between upstream
site 3′ end and downstream site 5′ end) mutant target sites, in order to increase
sensitivity, were placed in two selected contexts. The generated mutations included
cumulative mismatches in perfect and bulged MREs (mismatches were predicted to
be unpaired with ViennaRNA package 2.060), all point mutants of the seed in
bulged MREs, single-base pair mutations and double-base pair mutations to
complement bases, single-base deletions, “C” and “G” insertions in bulged, and 3′
complementary MREs. In addition, for all the MREs, except the perfect match
ones, mutants with a first position (from miRNA 5′ end) “A”, match or mismatch,
were included. The seed region was defined as the MRE bases complementary to
bases 2–7 of the miRNA.

Designing the combinatorial set: to examine the effect of MRE multiplicity, we
selected five positions along the oligonucleotide sequence. In each position we
placed either an MRE or a control sequence, generating all 32 (25) variants for a
given MRE and resulting in identical sites with different multiplicity. This design
was applied to a 3′ complementary and an 8mer MRE for each miRNA and was
repeated for a total of two control sequences. We also placed various pairwise
combinations of MREs in multiple context sequences and at varying distances
between the MREs. Since these designs did not yield significant results and were
only used in the prediction pipeline, their description is beyond the scope of this
work.

Designing the WTs set: we collected native sequences containing predicted and
verified MREs from a number of sources. First, we compiled a list of 114 sequences
of verified targets of our ten miRNAs based on public databases61,62. We mutated
these targets to span various lengths of the native region, all including the MRE, in
two different context sequences (to maintain constant oligonucleotide length). We
also replaced the native MRE with our correspondingly designed MREs (interacting
with the same miRNA) and control sequences. Second, we extracted native
sequences with MREs for our ten miRNAs from a database of informative single-
nucleotide polymorphisms (SNPs) in close proximity of miRNA-binding sites and
mutated the seed region for each reported allele. Finally, we included native
sequences with predicted MREs by selected prediction tools: TargetScan6.211,
PICTAR2.063, and PITA18.

Finally, a large number of WT sequences was incorporated into the library and
mutated based on target site prediction, verified target sites61,62 and informative
SNPs in close proximity of miRNA-binding sites64. For each of our ten miRNAs,
the top 100 sites based on a score assigned by the program, were selected. In
addition, the predicted sites of all three programs for our ten miRNAs were
intersected, and the common list of 134 sites was added to the list of target sites.
For each target site, two mutants were generated by replacing the seed with a
control octamer.

Overall, of the 472 unique WT sequences used for the various mutagenesis
schemes, 201 contained 8mer sites, 215 contained 7mer-m8 sites, 44 contained
7mer-A1 sites, and 12 contained 6mer sites, which were described elsewhere3. The

selected MREs were under selective pressure as determined by a higher
conservation score of the MREs vs the rest of the native sequence in our oligos (p <
10−10, Wilcoxon signed-rank test, Supplementary Figure 12).

Designing a set of variants with multiple barcodes: we selected 20 variants
expected to span a large range of repression levels. For each variant, we generated
ten different barcodes. Only one of the barcoded variants was randomly selected for
all other downstream analysis.

Experimental procedures. Cell culture: K562 cells were acquired from ATCC. The
cells were grown in Iscove’s Modified Dulbecco's Medium supplemented with 10%
fetal bovine serum (Biological Industries) and 1% Penicillin–Streptomycin solution
(Biological Industries). The cells were split when reaching a concentration of ~106

cells/ml. The cells were grown in an incubator at 37 °C and 5% CO2. The cells were
frozen in batches of 4 × 106 cells in growth medium supplemented with 5% DMSO.

MCF7, HepG2, and HEK293 cells were kindly contributed by Professor Moshe
Oren and were grown in Dulbecco’s Modified Eagle’s Medium supplemented with
10% fetal bovine serum (Biological Industries) and 1% Penicillin–Streptomycin
solution (Biological Industries). The cells were maintained at 30–90% confluency.
The cells were grown in an incubator at 37 °C and 5% CO2. The cells were frozen in
batches of 4 × 106 cells in growth medium supplemented with 10% DMSO.

The cell lines were tested for mycoplasma contamination using EZ-PCR
Mycoplasma Kit (Biological Industries).

Construction of the master plasmid: the desired full construct was assembled
using golden gate assembly in the pFus_A vector (kindly provided by J. Hanna,
Weizmann Institute of Science). The target construct was split into five parts based
on the available templates (previously generated in our lab) and desired additional
features (such as restriction sites) to be inserted between parts. The mNeonGreen
sequence was licensed from Allele Biotechnology, San Diego, CA. Assembly
overhangs were chosen to be compatible with the destination vector (pFus_A),
have at least two mutations difference between them, and a GC content of 25%.
Primers were designed to include the BsaI site with additional bases at the most 5′
end of the primer followed by the relevant overhang, additional features (for
example a restriction site), and complementary region to the relevant template.

The five parts were PCR-amplified using a KOD hotstart polymerase (Merck
Millipore) according to the manufacturer’s protocol with annealing temperature of
55°C and elongation time of 2 min (determined by the longest product) for 35
cycles. The products were gel-purified from a 1% agarose gel stained with GelStar
(Cambrex Bio Science Rockland) using a gel extraction kit (Qiagen). The purified
products were used in a golden gate assembly reaction, which typically included
150 ng of destination vector (pFus_A), equimolar amount of each of the five parts,
2 μl 10× T4 ligase buffer (NEB), 2 μl BSA 10×, 1 μl BsaI enzyme (NEB), 1 μl quick
ligase (NEB), and water to a final volume of 20 μl. The reaction was incubated for
12 cycles of 37 °C for 5 min (restriction) and 16 °C for 10 min (ligation), followed
by 10 min at 80 °C (heat inactivation). Since one of the fragments contained an
internal BsaI site, 1 μl of quick ligase was added and the reaction was incubated at
20 °C for 30 min for final ligation and 65 °C for 10 min (heat inactivation). The
products were kept at 4 °C until transformation. The reaction products were
transformed into chemically competent HIT-DH5α Escherichia coli (E. coli) (RBC
Bioscience) using a standard heat shock transformation protocol. Typically 8 μl of
reaction products were transformed into 100 μl of cells and plated on LB plates
supplemented with Spectinomycin (50 μg/ml final concentration), IPTG (100 μl of
0.1 M solution spread on the plate), and Xgal (40 μl of 40 mg/ml solution spread on
the plate). One positive clone (verified via Sanger sequencing) was digested with
XbaI and PmeI (NEB), and the insert was cloned into pZDonor (CompoZr®
Targeted Integration Kit - AAVS1 kit, SIGMA) digested with XbaI and PmeI, using
quick ligase (NEB) and transformed into DH5α E. coli (RBC Bioscience) using a
standard heat shock transformation protocol. The transformed cells were selected
on LB+Amp plates (100 μg/ml final concentration). Correct clones were verified
using Sanger sequencing.

Synthetic library production and amplification: the production and
amplification steps were adopted from a protocol that was previously described for
yeast promoters19. We used Agilent oligo library synthesis technology to produce a
pool of 55,000 different fully designed single-stranded 210-oligomers (Agilent
Technologies, Santa Clara, CA), a subset of which comprised the 14,151 pool, used
in this study, defined by unique amplification primers. Each designed oligo
contains common priming sites and restriction sites, leaving 174 for the variable
region. The library was synthesized using Agilent’s on-array synthesis
technology65,66, and then provided to us as an oligo pool in a single tube (10 pmol).
The pool of oligos was dissolved in 200 μl Tris-ethylenediaminetetraacetic acid
(Tris-EDTA), and then diluted 1:50 with Tris-EDTA, which was used as template
for PCR. We amplified the library using PCR in 16 tubes. Each PCR reaction
contained 19 μl of water, 5 μl of DNA, 10 μl of 5 × Herculase II reaction buffer, 5 μl
of 2.5 mM deoxynucleotide triphosphate (dNTPs) each, 5 μl of 10 μM forward (Fw)
primer, 5 μl of 10 μM reverse (Rv) primer, and 1 μl Herculase II fusion DNA
polymerase (Agilent Technologies). The parameters for PCR were 95 °C for 1 min,
14 cycles of 95 °C for 20 s, and 68 °C for 1 min, each, and finally one cycle of 68 °C
for 4 min. The oligonucleotides were amplified using constant primers in the length
of 35 nt, which have 18 nt complementary sequence to the single-stranded 210-
mers and a tail of 17 nt containing SpeI (Fw primer) and AscI (Rv primer)
restriction sites. The primer sequences for the 14,151 pool, used in this study, are as
follows, underline represents the 18 nt complementary sequence to the ssOligos:
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AAGTTCAACTAGTACGTCGAAATGGGCCGCATTGC (Fw primer) and
CCCTTGGCGCGCCTCTCTCGTCATCAGCCGCAGTG (Rv primer). The PCR
products from all 16 tubes were joined and concentrated using Amicon Ultra, 0.5
ml 30 K centrifugal filters (Merck Millipore) for DNA purification and
concentration. The concentrated DNA was then purified using a PCR mini-elute
purification kit (Qiagen) according to the manufacturer’s instructions.

Synthetic library cloning into reporter master plasmid: library cloning into the
master plasmid was adopted from a protocol that was previously described for
yeast promoters19. Purified library DNA (540 ng total) was cut with the unique
restriction enzymes SpeI and AscI (Fermentas FastDigest) for 2 h at 37 °C in three
40 μl reactions containing 4 μl fast digest (FD) buffer, 1 μl of SpeI enzyme, 1 μl of
AscI enzyme, 18 μl of DNA, and 16 μl of water, followed by a heat inactivation step
of 20 min at 65 °C. Digested DNA was separated from smaller fragments and uncut
PCR products by electrophoresis on a 2.5% agarose gel stained with GelStar
(Cambrex Bio Science Rockland). Fragments the size of ~221 nt were cut from the
gel and eluted using electroelution Midi GeBAflex tubes (GeBA, Kfar Hanagid,
Israel). The eluted DNA was precipitated using sodium acetate–isopropanol. The
master plasmids were cut with SpeI and AscI (Fermentas FastDigest) in a reaction
mixture containing 6 μl of FD buffer, 3 μl of each enzyme, and 3.55 μg of the
plasmid in a total volume of 60 μl. After incubation for 2 h at 37 °C, 3 μl of FD
buffer, 3 μl of alkaline phosphatase (Fermentas), and 24 μl of water were added and
the reactions were incubated for an additional 30 min at 37 °C followed by a heat
inactivation step of 20 min at 65 °C. The digested DNA was purified using a PCR
purification kit (Qiagen). The digested plasmids and DNA library were ligated for
0.5 h at room temperature in two 10 μl reactions, each containing 150 ng plasmid
and the library in a molar ratio of 1:1, 1 μl CloneDirect 10× ligation buffer, and 1 μl
CloneSmart DNA ligase (Lucigen Corporation), followed by a heat inactivation
step of 15 min at 70 °C. Ligated DNA (14 μl) was transformed into a tube of E. coli
10 G electrocompetent cells (Lucigen) divided into seven aliquots (25 µl each),
which were then plated on 28 Luria broth (LB) agar (200 mg/ml amp) 15-cm
plates. To ensure that all 14,151 oligos are represented, we collected ~0.5 × 106

colonies 16 h after transformation, by scraping the plates into LB medium. Library-
pooled plasmids were purified using a NucleoBond Xtra maxi kit (Macherey
Nagel). To eliminate possible leftovers of insert DNA, which compromises
nucleofection efficiency, we treated the library-pooled plasmids with Plasmid-
Safe™ ATP-Dependent DNase (Epicentre) by mixing 20 µl of library-pooled
plasmids (7.5 µg), 5 μl 10 × buffer, 5 μl 10 mM ATP, 1 μl Plasmid-Safe™ ATP-
Dependent DNase, and 19 μl water and incubating at 37°C for 40 min, followed by
heat inactivation at 70°C for 30 min. Finally, we purified the mixture by standard
sodium acetate–ethanol precipitation.

To ensure that the collected plasmids represent a ligation of single inserts, we
performed colony PCR on 96 random colonies. The volume of each PCR reaction
was 30 μl; each reaction contained a random colony picked from an LB plate, 3 μl
of 10 × DreamTaq (Thermo Fisher Scientific) buffer, 0.6 μl 10 mM dNTPs mix, 0.9
μl 25 mM MgSO4, 1.2 μl of 10 μM 5′ primer, 1.2 μl of 10 μM 3′ primer, 0.3 μl
DreamTaq polymerase, and 22.8 μl water. The parameters for PCR were 95 °C for
2 min, 35 cycles of 95 °C for 30 s, 55 °C for 30 s, and 72 °C for 50 s, each, and finally
one cycle of 72 °C for 5 min. The primers used for this reaction were
CACTCCAAGACCGAGCTCAACTTC (Fw primer) and
GGGGCTTTTCTGTCACCAATCC (Rv primer). Of the 96 colonies tested, only
four had multiple inserts.

Transfection into K562 cells and genomic integration: the purified plasmid
library was transfected into K562 cells and genomically integrated using the Zinc
Finger Nuclease (ZFN) system for site-specific integration, using the CompoZr®
Targeted Integration Kit - AAVS1 kit (SIGMA). Transfections were carried out
using Amaxa® Cell Line Nucleofector® Kit V (LONZA). To ensure library
representation, we carried out 12 transfections of the purified plasmid library. A
master plasmid with no insert was also genomically integrated in the same manner.
For each transfection, 4 × 106 cells were centrifuged and washed twice with 20 ml of
Hank’s Balanced Salt Solution (HBSS, SIGMA). The cells were resuspended in 100
μl solution (warmed to room temperature) composed of 82 μl solution V and 18 μl
supplement (Amaxa® Cell Line Nucleofector® Kit V). Next, the cells were mixed
with 2.75 μg of donor plasmid and 0.6 μg ZFN mRNA (prepared in-house) just
prior to transfection. Transfection was carried out using program T-16 on the
NucleofectorTM device, immediately mixed with ~0.5 ml of pre-cultured growth
medium and transferred to a six-well plate with additional 1.5 ml of pre-cultured
growth medium. A purified plasmid library was also transfected without the
addition of ZFN and served as a control to determine when the non-integrated
plasmid signal was diminished. Non-transfected cells (1.5 × 106) were taken after
the washes in HBSS and seeded in 2 ml of pre-cultured growth medium, serving as
an additional control when sorting the cells in the FACS.

Transient transfection of K562 cells was performed using Lipofectamine® 2000
(ThermoFisher Scientific) following the manufacturer protocol. The day of the
transfection, 5 × 106 cells were plated in 10 ml growth media without antibiotics
and transfected using 20 μg of donor plasmid and 50 μl of Lipofectamine® 2000.
After 4 h, the cells were centrifuged and resuspended in 20 ml complete growth
media. The cells were harvested for RNA purification 24 h after transfection. The
transfections were performed in two replicates.

Transient transfection of MCF7, HepG2, and HEK293 cells: MCF7, HepG2, and
HEK293 cells were plated in 10 cm plates 24 h before transfection making sure they
are at 70–90% confluency on the day of transfection. The cells were transfected

with X-tremeGENE HP (Sigma) according to the manufacturer protocol. A ratio of
3:1 X-tremeGENE HP:DNA was used with 10 μg of donor plasmid. The cells were
harvested for RNA purification 24 h after transfection. Transfections were
performed in two replicates.

Sorting the library by FACS: K562 cells were grown for 22 days to ensure that
non-integrated plasmid DNA was eliminated, confirmed by the cell line transfected
without ZFNs. A day prior to sorting, the cells were split to ~0.3 × 106 cells/ml. On
the day of sorting, the cells were centrifuged, resuspended in sterile PBS, and
filtered using cell-strainer-capped tubes (Becton Dickinson (BD) Falcon). Sorting
was performed with BD FACSAria II SORP (special-order research product) at low
sample flow rate and a sorting speed of ~13000 cells per second. To sort cells that
integrated the reporter construct successfully and in a single copy (~4% of the
population), we determined a gate according to mCherry fluorescence so that only
mCherry-expressing cells corresponding to a single copy of the construct were
sorted (mCherry single integration population). We collected a total of ~6.3 × 106

cells in order to ensure adequate library representation. We also sorted the master
plasmid nucleofected cells for single-copy integration by collecting 0.15 × 106 cells.
The cells were grown for 13 days before the next sorting step, during which batches
of 4 × 106 cells were frozen for future experiments. To obtain high-resolution
measurements of mNeonGreen levels, we sorted the mCherry single integration
population into 16 bins according to the mNeonGreen/mCherry ratio. Each bin
was defined to span a range of mNeonGreen/mCherry ratio values, such that it
contains between 1 and 10% of the mCherry single integration population cells and
maintains high sorting efficiency. We collected a total of 1.55 × 107 cells in order to
ensure adequate library representation. The cells from each bin were grown for
freezing and purification of genomic DNA. In addition, the sorted master plasmid
nucleofected cells were subjected to analysis in order to determine the distribution
of mNeonGreen/mCherry ratios for the vector with no library insert.

Genomic DNA and RNA purifications: for each of the 16 bins, we purified
genomic DNA by centrifuging 5 × 106 cells, washing them with 1 ml PBS and
purifying DNA using DNeasy Blood & Tissue Kit (Qiagen), according to the
manufacturer's protocol. In addition, we purified genomic DNA from the mCherry
single integration population by centrifuging 16 × 106 cells, washing them with 4
ml PBS, splitting into four tubes of 1 ml, and purifying DNA using DNeasy Blood
& Tissue Kit (Qiagen) according to the manufacturer's protocol. This purification
was performed in two replicates.

For the cell population sorted for single integration of the reporter construct, we
also performed RNA purification by centrifuging 16 × 106 cells, washing them with
4 ml PBS, splitting into four tubes of 1 ml, and purifying RNA using NucleoSpin
RNA II kit (MACHEREY-NAGEL) according to the manufacturer's protocol. This
purification was also performed in two replicates.

For the transient transfection experiments, each of the replicates was harvested
for RNA purification, washed with PBS, and split into tubes not exceeding 5 × 106

cells per tube. The tubes were flash frozen in liquid nitrogen and RNA was purified
using NucleoSpin RNA II kit (MACHEREY-NAGEL) according to the
manufacturer's protocol. The purified RNA was treated with DNAse (QIAGEN) in
solution according to the manufacturer's protocol, and purified again using
NucleoSpin RNA II kit (MACHEREY-NAGEL).

Preparing samples for sequencing: in order to maintain the complexity of the
library amplified from gDNA, PCR reactions were carried out on a gDNA amount
calculated to contain a minimum average of 200 copies of each oligo included in
the sample. For each of the 16 bins, we used 20 µg of gDNA as template in a two-
step nested PCR performed in two tubes (to include the required amount of
gDNA), each containing 100 μl (in both steps). In the first step, each reaction
contained 10 μg gDNA, 50 μl of Kapa Hifi ready mix X2 (KAPA Biosystems), 5 μl
of 10 μM 5′ primer, and 5 μl of 10 μM 3′ primer. The parameters for the first PCR
were 95 °C for 5 min, 18 cycles of 94 °C for 30 s, 61 °C for 30 s, and 72 °C for 30 s,
each, and one cycle of 72 °C for 5 min. The primers used for this reaction were
CACTCCAAGACCGAGCTCAACTTC (Fw primer) and
GGGGCTTTTCTGTCACCAATCC (Rv primer). Multiple PCR reaction products
of each bin were combined. In the second PCR step, each reaction contained 5 μl of
the first PCR product (uncleaned), 50 μl of Kapa Hifi ready mix X2 (KAPA
Biosystems), 5 μl of 10 μM 5′ primer, and 5 μl of 10 μM 3′ primer. The PCR
program was 95 °C for 5 min, 24 cycles of 94 °C for 30 s, 65 °C for 30 s, and 72 °C
for 30 s, each, and one cycle of 72 °C for 5 min. Specific primers corresponding to
the constant region of the plasmid were used. The 5′ primer also had a unique
upstream 8 nt barcode sequence and another 5 nt random sequence (underlined)
(5′-HNHNHXXXXXXXX CGAAATGGGCCGCATTGC-3′, where “X”s represent
barcode nucleotides, “N”s represent random nucleotides and “H”s represent any
nucleotide except “G”), and three different barcodes were used for each bin. The 3′
primer was common to all bins (5′-HNHNHNHNTCGTCATCAGCCGCAGTG-
3′). Multiple PCR reaction products of each bin were combined. The concentration
of the PCR samples was measured using a Quant-iT High-Sensitivity dsDNA Assay
Kit (Invitrogen) in a monochromator (Tecan i-control), and the samples were
mixed in ratios corresponding to their ratio in the population, as defined when
sorting the cells into the 16 bins. The library was separated from unspecific
fragments by electrophoresis on a 1.5% agarose gel stained by EtBr, cut from the
gel, and cleaned in 2 steps: gel extraction kit (Qiagen) and SPRI beads (Agencourt
AMPure XP). The sample was assessed for size and purity at the Tapestation, using
high-sensitivity D1K screenTape (Agilent Technologies, Santa Clara, California).
We used 10 ng library DNA for library preparation for NGS; specific Illumina
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adaptors were added, and DNA was amplified using 14 amplification cycles,
protocol adopted from Blecher-Gonen et al.67. The sample was reanalyzed using
Tapestation.

For the mCherry single integration population, we performed the two-step
nested PCR on both gDNA and cDNA prepared from the same population of cells.
Since the reverse primer used in the first PCR on the gDNA from the 16 bins
anneals downstream to the polyadenylation signal, and since we required the same
PCR reaction setup and program on the gDNA and cDNA of the mCherry single
integration population, we used a primer that anneals between the library insertion
site and the polyadenylation signal. The primer sequence used was
CCCTCACTAAAGGGAAAGGGTCC. We prepared cDNA in a single reverse
transcription reaction for each replicate using SuperScript® III First-Strand
Synthesis System (ThermoFisher Scientific) with random hexamer primers and 5
μg of input RNA, according to the manufacturer's protocol. The cDNA product
was diluted 1:10 and 2 μl were used as a template in each of ten reactions of the first
PCR step. The PCR reaction setup and program were the same as used for the first
PCR step on the gDNA from the 16 bins. PCR products from the ten reactions
were pooled and 5 μl were used as the template for each of two reactions of the
second PCR step performed for each replicate. For the gDNA from the same
population, we used 40 µg of gDNA as template in four tubes (to include the
required amount of gDNA). We used the same primers, PCR reaction setup and
program, as we used for the PCR steps on the cDNA. We used 50 ng library DNA
for library preparation for NGS with specific Illumina adaptors and DNA was
amplified using 14 amplification cycles. The samples were analyzed using Tapestation.

For RNA purified from the transient transfection experiments, we prepared
cDNA in a two reverse transcription reactions for each replicate using SuperScript®
III First-Strand Synthesis System (Thermo Fisher Scientific) with random hexamer
primers and 2.5 μg of input RNA per reaction, according to the manufacturer's
protocol. The cDNA products were pooled together and 2 μl were used as template
for each of four amplification reactions. Each amplification reaction contained 2 μl
of the cDNA template, 25 μl of Kapa Hifi ready mix X2 (KAPA Biosystems), 2.5 μl
of 10 μM 5′ primer, 2.5 μl of 10 μM 3′ primer, and 18 μl of ddw. The PCR program
was 95 °C for 5 min, 20 cycles of 98 °C for 20 s, 65 °C for 15 s, and 72 °C for 30 s,
each, and one cycle of 72 °C for 5 min. The primers used for this reaction were
CGAAATGGGCCGCATTGC (Fw primer) and TCGTCATCAGCCGCAGTG (Rv
primer).

Amplification of the library from the plasmid DNA used for the transient
transfection was also performed with Kapa Hifi ready mix (KAPA Biosystems). A
single amplification reaction included 1 μl of the cDNA template, 25 μl of Kapa Hifi
ready mix X2 (KAPA Biosystems), 2.5 μl of 10 μM 5′ primer, 2.5 μl of 10 μM 3′
primer, and 19 μl of ddw. The PCR program was 95 °C for 5 min, 14 cycles of 98 °C
for 20 s, 65 °C for 15 s, and 72 °C for 30 s, each, and one cycle of 72 °C for 5 min.
The primers used were the same ones used for the amplification of cDNA.

The library amplification products from the RNA and plasmid DNA were each
separated from unspecific fragments by electrophoresis on a 1.5% agarose gel
stained by GelStar (Cambrex Bio Science Rockland), cut from the gel, and cleaned
in 2 steps: gel extraction kit (Qiagen) and SPRI beads (Agencourt AMPure XP).
Each sample was assessed for size and purity at the Tapestation, using high-
sensitivity D1K screenTape (Agilent Technologies, Santa Clara, California). For
each sample 20 ng library DNA were used for library preparation for NGS; specific
Illumina adaptors were added, and DNA was amplified using 14 amplification
cycles, protocol adopted from Blecher-Gonen et al.67. The sample was reanalyzed
using Tapestation.

Computational analyses. Mapping next generation sequencing reads: to deter-
mine the identity of the oligo after sequencing, a unique 12-mer barcode sequence
was placed at the 5′ end of each variable region. Barcodes were designed to differ
from other barcodes in the library by 3 nt or more and to avoid the introduction of
known regulatory elements such as seed regions for highly expressed miRNAs, the
canonical polyadenylation signal (AATAAA), and its point mutants. DNA was
sequenced on NextSeq-500 sequencer. For the 16 bins, we obtained a total of ~60
million paired-end reads. For the gDNA of the mCherry single integration
population, we obtained ~58 and ~46 million reads for replicates 1 and 2,
respectively. For the cDNA of the mCherry single integration population, we
obtained ~74 and ~43 million reads for replicates 1 and 2, respectively. For the
cDNA from the transient expression experiment, we obtained 8–12 million reads
per sample. For the plasmid DNA, we obtained ~11 million reads. For the 16 bins,
as reference sequence for mapping, we constructed in silico an “artificial genome”.
Each chromosome in the genome corresponds to a specific bin barcode (total 48
chromosomes). Each chromosome is composed of repeats of the 8 nt bin barcode,
18 nt constant region, 12 nt variant barcode, 5 nt from the variable region (43 nt
total), and 60 “N”s. Paired-end NextSeq reads in the length of 75 nt were trimmed
to 50 nt containing the 5 nt random sequence, bin barcode, common priming site,
and the variant barcode. Trimmed reads were mapped to the artificial library
genome using Novoalign aligner, filtered for minimal mapping quality of 60, and
for perfectly aligned reads for the entire 43 nt region, and the number of reads for
each designed oligo was counted in each bin. For the mCherry single integration
population gDNA and cDNA, as reference sequence for mapping, we constructed a
single “artificial chromosome” composed of repeats of the 18 nt constant region, 12
nt variant barcode, 5 nt from the variable region (35 nt total) and 60 “N”s. Single-
end Next seq reads in the length of 75 nt were trimmed to 43 nt containing the

common priming site and the variant barcode. The trimmed reads were mapped to
the artificial library chromosome using Novoalign aligner, filtered for minimal
mapping quality of 60 and for perfectly aligned reads for the entire 35 nt region and
the number of reads for each designed oligo was counted in each sample. Analysis
of the cDNA from the transient transfection experiment and the plasmid DNA was
performed similarly to the analysis of the gDNA and cDNA from the mCherry
single integration population.

Computing protein repression scores: for the 16 bins, we arranged the data in a
matrix of read counts, where each row corresponded to a variant in our library
(14,151 rows) and each column corresponded to a bin barcode (48 column). The
columns were normalized by dividing each cell by the sum of reads in that column
and then multiplying by the proportion of cells sorted into that bin. The data from
the three barcodes for each bin was summed per bin to produce a matrix of
normalized reads in which each of 16 columns corresponded to data from one bin.
To this matrix, we applied a number of filters to reduce experimental noise. First,
for variants with a row sum less than 100, all cells were set to zero. Second, for cells
with a value less than five, the cell value was set to zero. Third, we observed cases in
which the calculated expression levels were underestimated (as judged by eye
examination of the distribution across 16 bins) due to a disproportionally large
number of reads in bins one and two. Therefore, we zeroed bins one and two when
they both had a normalized read count higher than 50 and the read count in bin
three was <20% than the count in either bin one or two, as they were unlikely to be
part of the correct peak corresponding to higher expression. Fourth, we zeroed all
the cells of variants that had >70% of the normalized reads in bins one and two,
since given the technical noise in those bins, we were not able to reliably calculate
the expression levels for these cases. Fifth, for each variant, we set to zero cells
surrounded by zero values (isolated cells). Sixth, for each variant, we set all cells to
zero if the sum of normalized reads after filtering was less than 60% of the sum of
normalized reads before filtering. Finally, we zeroed values for all cells of variants
that had more than one peak. For each variant, we normalized the vector of values
across the 16 bins so it sums to one and applied a Savitzky–Golay filter for
smoothing the data. We detected peaks in the smoothed vector by simple approach
in which a point is considered a maximum peak if it has the maximal value, and
was preceded (to the left) by a value lower by delta (which we set to 0.05).

For each bin, we calculated the median log2
mNeonGreen
mCherry

� �� �
as a measure of the

bin center based on recorded FACS data. For each variant, we computed the mean
expression as the weighted average of bin centers, where the weight of each bin is
the fraction of the normalized reads number in this bin of its total normalized reads
in all 16 bins. Thus, the expression values are in log2 scale. We calculated the

median log2 mNeonGreen
mCherry

� �� �
for the vector with no insert was 5.24, as calculated

from recorded FACS analysis data. To calculate protein repression values, we
subtracted the mean expression values from the expression value of the vector with
no insert. These values were used throughout the analysis. For variants with no
repression value, we set the value to None.

Computing normalized RNA levels: we arranged the read counts from the
mCherry single integration population gDNA and cDNA data in a matrix, where
each row corresponded to a variant in our library (14,151 rows) and each column
corresponded to one of the two replicates of either the gDNA or cDNA samples
(four columns). To compare between replicates, we calculated for each variant that

had more than 100 reads in all four samples the log2 cDNA reads
gDNA reads

� �
as an estimate for

normalized RNA levels. Since the agreement between the replicates was high (R =
0.82, p< 10−10), we summed the reads between replicates for each variant. For
variants that had more than 100 reads for both the combined cDNA and combined

gDNA samples, we calculated the log2 cDNA reads
gDNA reads

� �
. For the rest of the variants, the

normalized RNA level was set to None.
For the transient transfection experiment, we analyzed the read counts of each

variant in our library for the two replicates for each of the four cell lines. To
compare between replicates, we calculated for each variant the

log2 cDNA reads
plasmid DNA reads

� �
as an estimate for normalized RNA levels. Since the

agreement between the replicates was high (R = 0.95–0.97, p< 10−10, depending on
the cell line), we summed the reads between replicates for each variant. For variants
that had more than 10 reads for the combined cDNA samples, we calculated the

log2 cDNA reads
plasmid DNA reads

� �
. For the rest of the variants, the normalized RNA level was set

to None. In order to compare the reporter expression levels between the cell lines,
we applied a Z score transformation to the normalized RNA levels.

Calculation of ΔΔG: we scored miRNA-target interactions by an energy score,
ΔΔG, equal to the difference between the energy gained by binding of the miRNA
to the target, ΔGhybridization, and the energy required to make the target region
accessible for miRNA binding, ΔGopen. ΔGhybridization is the binding free energy of
the miRNA-target duplex structure in which the miRNA and target are paired
according to pairing constraints imposed by the seed. To compute this value, we
used RNAhybrid version 2.1.268 with the following parameters: energy threshold
−0.01, helix constraint from 2 to 7, max internal loop size of five, max bulge loop
size of five, the 210 nt long variant sequence, and the miRNA sequence. When
analyzing the effect of the MRE accessibility of a given site (as in Fig. 4b, c), in case
of multiple hits the data for the analyzed MRE was extracted from the RNAhybrid
results based on the position within the oligo. The code returned the predicted
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hybridization energy (ΔGhybridization) and the predicted hybridization structure
from which we extracted the start and end position of the binding site. To predict
ΔGopen we used the pf_fold_par function from the ViennaRNA 2.060 python
wrapper, which returns the Gibbs free energy of the ensemble and can have a
structure constraint as input. We used the start and end positions computed from
the RNAhybrid results to compute this structure constraint. The input sequence
used was the 210 nt long variant sequence flanked with additional 70 nucleotides
from the vector upstream and downstream. This ensured that there were at least 70
nucleotides surrounding the interaction site, since this reduces the time complexity
of the calculation and there is low probability of secondary structure base-pairing
interactions between nucleotides that are separated by more than 70nt18. We then
calculated ΔGopen as the difference between the Gibbs free energy of the ensemble
without constraints and the Gibbs free energy of the ensemble with the structure
constraint. Finally, we computed ΔΔG with the formula ΔΔG =ΔGhybridization –
ΔGopen.

Feature extraction for prediction model: for feature extraction, we considered
274 miRNA sequences expressed in K562 cells with a mean expression above a
threshold of 0.1 according to a published microarray data set34. For each miRNA-
variant pair, we computed ΔΔG for each of multiple hits returned by RNAhybrid
with the constraint of seed pairing at positions 2–7. To integrate multiple sites with
ΔΔG scores for one miRNA on the same variant, we compute an overall miRNA-
variant interaction score according to ΔΔGT ¼ �ln

P
e�ΔΔG18. If the miRNA has

no hits in the target sequence, an arbitrarily high value of 50 kcal/mol is used. This
score is the ΔΔG used for further analysis.

Prediction of protein repression and normalized RNA levels: the data used for
our model consisted of 12,339 variants, for which we quantified both protein
repression levels and mRNA expression levels. The data excluded the subset of
variants, which varied only in the barcode sequence. We used ~90% of the data for
the model development phase and ~10% for the final model validation.

All predictions were made using stochastic GBR. Our predictor was based on
the code adapted from the sklearn 0.17.1 GradientBoostingRegressor class. We
performed a parameter optimization step based on a random selection of 50
parameter sets. We optimized alpha, learning rate, max depth, max features, and
n_estimators. To select the best parameter set, we generated 10-fold cross
validation predicted values and computed the Pearson correlation coefficient
between the predicted and measured values as an estimate of model performance.
The parameter set with the highest performance was selected and used in the final
predictor. To assess the performance of our model on training data, we employed
an outer 10-fold cross validation scheme. We divided the training data into ten
subsamples, applied our model on nine of the subsamples and predicted the values
of the tenth subsample. These cross validation predicted values were then plotted
against the measured values (as in Figs. 5a and 6c) and the Pearson correlation
between them was computed. To assess the performance of our model on the held
out test data, we trained the model on all of our training data, predicted the values
for the held out test data, and assessed the performance using Pearson correlation.

To assess model performance with RNA level as the only feature input to the
model, we applied the same scheme described for assessing the performance on
training data, but used the RNA level as the only input feature. To assess model
performance with 274 MRE-based features and RNA level, we applied the same
scheme, but added the RNA level as an additional input feature to the MRE-based
features.

For the elastic net (EN) model, we used the same framework as for GBR. For
parameter optimization, we optimized the values of alpha and l1_ratio. We trained
the model on our training data and tested its performance on the held out data. For
the basic model, the parameter optimization was not required. Thus, we trained a
linear regression model on our training data for each of the miRNAs, predicted on
our held out data values using each model and averaged these values for the final
prediction outcome. Such a model does not allow for learning of any interactions
between the miRNAs.

Prediction of paired difference in repression for WT sequences: using the
variants that had protein repression measurements, we constructed a data set
composed of all WT and mutant pairs in the WTs set. The data contain 929 WT
and mutant pairs spanning 472 unique WT sequences. For each pair, the difference
in fold repression was calculated by subtracting the fold repression of the WT from
the fold repression of the mutant. For each pair, we concatenated the WT and
mutant features to form a vector of features used for that pair. Since we observed
some outliers in the data, we applied an outlier detection scheme in which variants
differing more than five times the median absolute deviation from the median
paired difference in repression were filtered (total of three pairs). We randomly
sampled ~10% of the data and kept it untouched until finishing model
development. The rest of the prediction pipeline was the same as the one used for
predicting protein repression.

Statistical analysis. Statistical analysis was performed using the scipy 0.17 python
package. When comparing two groups, the Mann–Whitney U test was used. When
FDR correction was applied, the Benjamini–Hochberg procedure was used as
implemented in the mne 0.12 python package

Code availability. The code used in this study is available from the corresponding
author upon reasonable request. For data analysis, we used python 2.7.11 with
pandas 0.18, seaborn 0.6, scipy 0.17, sklearn 0.17.1, and mne 0.12.

Data availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request. Sequencing data can be
accessed with SRA study ID SRP128656.
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