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Simple Summary: The white-spotted longicorn beetle, Anoplophora malasiaca, is one of the most
destructive pests of many fruits and street trees. Effective controls are needed because the effect
of marketed insecticides is limited. Entomopathogenic fungi offer a solution, combination with
the beetles’ contact sex pheromone. The surface of the female body is covered with contact sex
pheromone, which we extracted. Males held onto a glass model coated with female extract for 5 h,
but males held onto one without extract for <0.3 h. Males that held onto coated model, attached to
fabric impregnated with an entomopathogenic fungus, Beauveria brongniartii, picked up significant
fungi. The fungi were then transferred to females during mating. Our results indicate that a
combination of contact pheromone with a pathogen could improve entomopathogenic infection of
both male and female beetles.

Abstract: The white-spotted longicorn beetle, Anoplophora malasiaca, is one of the most destructive
pests of horticultural crops and street trees. Effective controls are needed because the effect of
marketed insecticides is limited. Entomopathogenic fungi offer a solution, and improving the rate
of infection would be a breakthrough in this beetle’s control. The combination of pathogenic fungi
and the beetle’s contact sex pheromone was suggested. The surface of the female body is covered
with contact sex pheromone, which elicit male mating behavior. To develop a method for the
practical control of this beetle, we evaluated the arrestant activity of female extract containing contact
pheromone coated on a black glass model. Males presented with a coated model held on for 5 h
(mean) during an 8-h experiment. In contrast, males presented with a control model held on for
<0.3 h. Males that held onto coated models attached to fabric impregnated with conidia of the fungus
Beauveria brongniartii picked up much conidia, which they then passed on to females during mating.

Keywords: arrestant; Biolisa Kamikiri SLIM; microbial insecticide; mating; infection; control

1. Introduction

The white-spotted longicorn beetle, Anoplophora malasiaca (Thomson) (Coleoptera:
Cerambycidae), has a very wide range of host plants exceeding 100 species [1]. It is one of
the most destructive pests of horticultural crops and street trees including citrus, blueberry,
plane tree, maple, and willow [2,3]. This species is distributed in Japan [3] and effective con-
trols are needed because the effect of marketed chemical insecticides is limited. Microbial
insecticides offer a solution [4–10]. Compared to chemical insecticides, entomopathogenic
ones pose minimal risk to nontarget organisms and are environmentally friendly [11].
Studies performed with fabric bands impregnated with conidia of entomopathogenic fungi
are reported [8–10]. In Japan, non-woven fabric band impregnated with conidia of an
entomopathogenic fungus, Beauveria brongniartii, named “Biolisa Kamikiri SLIM”, is com-
mercially available [12]. A fabric band is looped around the base of the tree trunk or a

Insects 2021, 12, 383. https://doi.org/10.3390/insects12050383 https://www.mdpi.com/journal/insects

https://www.mdpi.com/journal/insects
https://www.mdpi.com
https://orcid.org/0000-0002-3946-6161
https://doi.org/10.3390/insects12050383
https://doi.org/10.3390/insects12050383
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/insects12050383
https://www.mdpi.com/journal/insects
https://www.mdpi.com/article/10.3390/insects12050383?type=check_update&version=2


Insects 2021, 12, 383 2 of 9

main branch, and adults become infected through direct contact with conidia on the fabric,
which relies on chance.

Fungal infections can be transferred during mating: an infected beetle of a closely
related species, A. glabripennis, can transfer an infection to its mating partner, particularly if
the infected beetle is male [7,13]. In other Coleoptera, horizontal transmission has been
reported in Psacothea hilaris [14] and Cylas formicarius [15]. Improving the infection rate
would be a breakthrough in beetle control, especially as microbial insecticides are environ-
mentally friendly and non-toxic to humans. Other studies that address the combination of
attractant pheromones and entomopathogens in Coleoptera revealed effective transmission
of the pathogen [15,16].

The entire composition of the contact sex pheromone of A. malasiaca female was
recently elucidated [17]. The surface of the female body is covered with contact sex
pheromone, which is composed of three chemical groups: aliphatic hydrocarbons, ketones,
and lactones [18–22]. When at least one component of each group was mixed together and
presented to males, the males responded to the mixture in the same way as to crude female
extract [18–20]. In our recent work, all synthetic pheromone blends elicited pheromonal
activity to the same degree as did crude female extract [17]. During bioassays investigating
pheromone candidates, we observed that males held strongly onto glass models of females
and would not let go. This strong attachment gave us the idea to test a combination
of entomopathogenic fungi and contact sex pheromone. If the contact pheromone has
arrestant activity, it will increase the duration of contact and thus the rate of infection. Since
the synthesis of the lactone components of the contact pheromone is complex, we used
crude female extract to evaluate the activity. To develop a method for the practical control
of this beetle, we tested whether the combination of “Biolisa Kamikiri SLIM” and contact
pheromone improves the dose and spread of infection beyond the use of fungi alone.

2. Materials and Methods
2.1. Insect Collection and Laboratory Rearing to Adults

Anoplophora malasiaca adults were collected by hand from mandarin orange (Citrus
unshiu Marc.) groves on Kunisaki Peninsula, Oita Prefecture, Japan, in mid-June 2016.
Beetles were individually reared in clear plastic cups (~11 cm diameter × 9.5 cm height) at
25 ◦C under a 15 L:9 D photoperiod, illuminated by fluorescent lamps. Each beetle was fed
C. unshiu branches collected from the sampling sites. All cut branches were stored at 5 ◦C
and used within 10 days. Eggs were obtained from 200 females collected in the field. Eggs
laid on branches in the laboratory were collected and the hatched larvae were individually
reared to adults on an artificial diet (Silkmate 2S, mulberry leaf–based diet; Nihon Nosan
Kogyo, Yokohama, Japan). Emerged adults were individually held in clear plastic cups
(as above). Adults started feeding on willow branches 1 week after emergence and were
reared on willow for 3 weeks.

2.2. Extraction of Female Contact Pheromone

After 3 weeks of feeding, females were frozen and stored at −30 ◦C. Because extracts
of willow fed females were more attractive to A. malasiaca males than that of citrus–fed
females, and mature female extract is more attractive than immature female extract [23],
we used extract of 3–week–willow–fed–female for bioassay. The elytra of 10 females
were removed and placed in 15 mL diethyl ether (1.5 mL/female). After 5 min at room
temperature, the extract was decanted. Elytra were rinsed twice with 15 mL ether, and
the rinses were added to the extract. Ether was removed from the extracts under reduced
pressure at <30 ◦C, and the resulting residue (the “female extract”) was dissolved in 200 µL
n-hexane and stored at −30 ◦C until use. Solvents were distilled just before use.

2.3. Recording Male Behavior to Evaluate Arrestant Activity of Female Extract

Behavioral assays were conducted between 09:00 and 17:00 at 25 ◦C (8 h recording,
4 h after lights on). A capsule-shaped black glass model (12 mm diameter × 35 mm length)
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was used as a female dummy [24]. It was affixed with a small piece of adhesive tape to
the center of a filter paper disc (15 cm diameter, Toyo No. 2, Toyo Roshi Kaisha, Tokyo,
Japan) and coated with female extract (1 female equivalent, fe), dissolved in ca. 20 µL
n-hexane. A male beetle was placed with a model coated with female extract or just solvent
and covered with a clear plastic cup (as above). We tested 5 males separately at the same
time (Figure 1b,c). Male behavior was recorded every 10 min with a time-lapse camera.
When a male was seen to be holding the model, the holding period was calculated as (no.
of recorded of “holding” × 10) min. The longest holding period was recorded. The sample
sizes were 20 for female extract and 5 for solvent only.
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Figure 1. Anoplophora malasiaca males. (a) Male holding a glass model coated with female extract and bending his abdomen
toward it. (b) Males with solvent-only glass models. All males ignored the models. (c) Males with models coated with
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2.4. Conidial Adherence to Males

“Biolisa Kamikiri SLIM” (Idemitsu Agri Co., Ltd. Tokyo, Japan) non-woven fabric
(4 mm thick) was cut into pieces of 2.5 cm × 5.0 cm. A glass model coated with 1 fe extract
or solvent only was attached to its center and placed at the center of a plastic box (30 cm ×
22 cm × 6 cm; Figure 1). A male was introduced near the model and left for 1 h. Males
were introduced near a glass model treated with solvent only (Male A, n = 9, Figure 2
left) or treated with female extract (Male B, n = 10, Figure 2 middle). The fabric size was
larger than the model, so the male antennae and legs were encountered the fabric first.
All males placed with coated glass models held the models and bend their abdomens
toward them. After 1 h, each male was ultrasonicated in 15 mL of 0.02% polyoxyethylene
(20) sorbitan monopalmitate (Wako Pure Chemical Industry, Osaka, Japan, Tween 40,
surfactant) in water for 2 min, and the mean number of conidia in the solution (number of
conidia/mm3) were counted by hemocytometer under a microscope, then calculated the
number of conidia released from the each male.
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2.5. Conidial Adherence to Females That Copulated with Infected Males

A male prepared as in Section 2.4 (Male B) was placed together with a female (Female
B, n = 10) in a plastic box (30 cm × 22 cm × 6 cm) for 1 h (Figure 2 right). All Male B
were used only once. All males used in this assay held the female and bent their abdomen
toward the female. After 1 h, Female B was ultrasonicated as in Section 2.4, and conidia
were counted.

2.6. Statistical Analysis

The calculated longest holding time (x min) was analyzed by Student’s t-test at p < 0.01.
Individual conidial number (y) was tested by one-way analysis of variance (ANOVA), and
analyzed by Tukey’s multiple comparison at p < 0.05.

3. Results
3.1. Arrestant Effect of Female Extract on Males

When a glass model coated with female extract was presented to males, almost all
males persistently tried to copulate with it (Figure 1a). During 8 h recording, males
presented with an solvent only model walked around the floor and on the wall of the
plastic cup (Figure 1b). However, most males presented with coated model held onto the
model for a long time, and if they left it, they returned to it and held it again (Figure 1c).

Extract-coated glass models arrested males for an average of 5.1 h (307.5 ± 36.5 min;
mean ± SE, n = 20) per 8-h experiment (Figure 3). Maximum arrested time was 8 h that
equals to experiment period. On contrast, models without female extract only arrested
males less than 0.3 h (16.0 ± 4.0 min, n = 5), arrested time was significantly different to that
of female extract coated model (Student t-test, p < 0.01).
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Figure 3. Male longest arrested time on a glass model coated with or without female extract during
8-h experiment. Box-plots: middle line, mean; boxes, quartiles; whiskers, maximum and minimum
values. ◦ Data points; × average. ** Significantly different at p < 0.01 (Student’s t-test).

3.2. Conidial Adherence to Males with Help of Female Extract

To evaluate the effect of the arrestant activity of female extract on infection by the
fungus, we compared numbers of conidia on the body surface between males on models
with and males on models without female extract on “Biolisa Kamikiri SLIM” fabric
(Figure 2, left and center). Males presented with extract-coated models on “Biolisa Kamikiri
SLIM” held the models without hesitation. These males acquired significantly more conidia
(370.2 × 105 ± 104.4 × 105, mean ± SE; Figures 4 and 5 middle) than those presented
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with uncoated models on “Biolisa Kamikiri SLIM” (52.7 × 105 ± 15.9 × 105; Tukey’s test,
p < 0.05; Figure 5 left). The mortality rates after 7 d were 50% with 3 s contact and 90%
with 60 s contact (n = 10; Figure S1a, χ2-test, p < 0.06), and was 80% and 100% after 9 d.
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Figure 5. Numbers of conidia attached to adults’ bodies. Male A: placed with a glass model without
female extract on “Biolisa Kamikiri SLIM” fabric for 1 h. Male B: placed with a glass model with
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maximum and minimum values, whiskers. ◦ Data points; × average. Different letters indicate
significant differences (Tukey’s test, p < 0.05).

3.3. Conidial Adherence to Live Females by Mating with Conidia Attached Males

Males acquired conidia in the presence of female extract transferred significantly more
conidia to females during mating (Female B, 113.7 × 105 ± 41.3 × 105, Figure 5 right),
than acquired by males in the absence of extract (Male A, 52.7 × 105 ± 15.9 × 105; Tukey’s
test, p < 0.05, Figure 5 left). The mortality of mated adults (both males exposed to “Biolisa
Kamikiri SLIM” for 60 s and females that mated with them) after 7 d was 100% (Figure S1b,
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n = 5; 5 of 8 pairs mated). No unexposed males or females of 3 weeks’ rearing died during
the 9-day experiment.

4. Discussion

Contact sex pheromone of female A. malasiaca proved to have arrestant activity against
conspecific males. The combination of entomopathogenic fungi and female contact sex
pheromone improved both dose and spread of infection compared with fungi alone. A
glass model coated with or without female extract was placed on fabric impregnated with
conidia of entomopathogenic fungi and presented to males. Crude female extract on a
black glass model greatly increased the male’s exposure to the inoculated fabric, and, thus,
the number of conidia picked up and later transferred to females during mating.

Our group previously showed that a capsule-shaped black glass model used as a
female dummy and coated with female extract elicits mating behavior by males [24].
Models of other colors or of transparent glass are less attractive. Models without female
extract do not elicit male mating behavior.

Bands of non-woven fabric or polyurethane impregnated with B. brongniartii conidia
are looped around tree stems or branches [9,25], where they infect adult beetles that
walk over them, so they must be placed in positions where large numbers of adults pass
through [26]. Anoplophora malasiaca generally oviposit at and emerged from the base of
the host tree trunk, so if the bands are placed below the first branch, not only expecting
laying egg female, all newly emerging adults should to be infected as they walk up the tree
to feed [9]. The application of a conidial suspension to only abdomen, legs, or antennae
of A. malasiaca led to high mortality [27]. The mortality of beetles that spent only 3 to 6 s
walking on polyurethane foam impregnated with conidia of B. brongniartii for 3–6 s was
100% after 15 days [9]. Here, the mortality of beetles that walked on “Biolisa Kamikiri
SLIM” for only 3 s was 50% and for 60 s was 90% after 7 days (Figure S1a), and was 80%
and 100% after 9 days. When adult beetles of Capnodis tenebrionis were stimulated to climb
non-woven commercial fiber bands impregnated with Metarhizium anisopliae conidia, no
significant correlation was detected between the time needed to cross the band and time
of death; total mortality rates were 85.7% to 100.0% [10]. In A. malasiaca, in contrast, the
frequency of touching bands impregnated with B. brongniartii conidia might be improved
for greater mortality in the field [27]. Here, mortality increased with longer exposure
to the fabric, supporting the use of the fabric band in combination with female contact
pheromone to enhance infection of this species. No unexposed males or females died
during the 9-day experiment. These results and previous reports show that it would be
worthwhile for practical control of A. malasiaca to improve the frequency of contact with
contaminated fabric.

Our results show that the contact pheromone kept the males in contact with the
“Biolisa Kamikiri SLIM” fabric for longer, increasing the number of fungal conidia on them
(Figure 5). Rather than continuously holding the coated glass models, the males sometimes
released the models, walked around them, and held them again. This possible female-
guarding behavior thus increases the chance of picking up conidia. Later contact of these
infected males with females thus infects the females. Sexual transmission of B. brongniartii
by mating of the yellow spotted longicorn beetle P. hilaris has been reported [14]. So even if
females do not come into contact with the “Biolisa Kamikiri SLIM”, they have a chance
of infection through mating. At 7 d after mating with males that spent 60 s in contact
with conidia, female mortality was 100% (Figure S1b). This means that conidia on male
bodies were successfully transferred to females during mating, and that dose enough
to kill her. Thus, contact pheromone might improve the infection rate in the field. One
practical use of Biolisa Kamikiri SLIM with a contact pheromone is a fabric band on which
1 or 2 glass models coated with female extract (or, in future, synthetic pheromone blend),
looped around the base of the trunk, as is used already.

The effectiveness of entomopathogens as biopesticides can be enhanced by their use
in combination with chemical control methods. When used together, M. brunneum and
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the insecticide imidacloprid synergistically reduced survival time of A. glabripennis adults
relative to either alone [28]. However, the rate of sporulation of the fungus was reduced.

Many cerambycid beetles are known to have a contact pheromone [29–37]. If these
pheromones have arrestant activity, they could be used to increase the duration of con-
tact with entomopathogenic fungi. This strategy might be applied to other important
pest beetles.

A volatile pheromone-based attract-and-kill strategy might be made possible by
using bait stations containing an attractant along with either a toxicant or an ento-
mopathogen [7,15,16,25]. Sex pheromones have been used as beetle attractants; a sex
pheromone trap made with a bottle with exit holes containing conidia of B. bassiana was
designed and tested to control the sweet potato weevil, Cylas formicarius [15]. The use
synthetic female sex pheromone was effective for the transmission of M. brunneum by male
Agriotes obscurus click beetles [16]. An attract-and-kill strategy against A. malasiaca is not
yet realistic because no effective volatile pheromone nor attractant has yet been formulated.
Several reports describe the use of chemicals derived from host plants or male volatiles to
attract A. malasiaca over short distances [38–40]. A blend of sesquiterpenes derived from a
host plant C. unshiu attracted adults in the field, although they landed not on but near lures
which impregnated with the blend [38]. This would increase the opportunity for infection
if the microbial fabric were set near the lures.

However, once an effective attractant is developed, beetles will be attracted to the
fungal bands and become infected. In combination with a contact pheromone, attract-
delay-kill strategy could achieve control of A. malasiaca.

5. Conclusions

Female contact pheromone of A. malasiaca arrested conspecific males. In combination
with a black glass model coated with female extract and fabric impregnated with conidia
of an entomopathogenic fungus, it increased the number of conidia on male bodies and
thus mortality. Infected males transferred conidia to the females during mating. This
combination could be used to develop a method for the effective control of this beetle.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/insects12050383/s1, Figure S1. Mortality of A. malasiaca adults 7 d after contact with “Biolisa
Kamikiri SLIM”. (a) Adult mortality following 3 or 60 s contact (each n = 10, virgin adults, χ2-test,
p < 0.06). (b) Mortality of mated adults. “60 sec/mated ♂”: males exposed to “Biolisa Kamikiri SLIM”
for 60 s and then mated with females. “mated ♀”: females that mated with males exposed to “Biolisa
Kamikiri SLIM” for 60 s just before mating (n = 5, 5 of 8 pairs mated).
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