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It has been well-established that antibody isotype, glycosylation, and epitope all play roles

in the process of antibody dependent cellular cytotoxicity (ADCC). For natural killer (NK)

cells, these phenotypes are linked to cellular activation through interaction with the IgG

receptor FcγRIIIa, a single pass transmembrane receptor that participates in cytoplasmic

signaling complexes. Therefore, it has been hypothesized that there may be underlying

spatial and geometric principles that guide proper assembly of an activation complex

within the NK cell immune synapse. Further, synergy of antibody phenotypic properties

as well as allosteric changes upon antigen binding may also play an as-of-yet unknown

role in ADCC. Understanding these facets, however, remains hampered by difficulties

associated with studying immune synapse dynamics using classical approaches. In this

review, I will discuss relevant NK cell biology related to ADCC, including the structural

biology of Fc gamma receptors, and how the dynamics of the NK cell immune synapse

are being studied using innovative microscopy techniques. I will provide examples from

the literature demonstrating the effects of spatial and geometric constraints on the T

cell receptor complex and how this relates to intracellular signaling and the molecular

nature of lymphocyte activation complexes, including those of NK cells. Finally, I will

examine how the integration of high-throughput and “omics” technologies will influence

basic NK cell biology research moving forward. Overall, the goal of this review is to lay a

basis for understanding the development of drugs and therapeutic antibodies aimed at

augmenting appropriate NK cell ADCC activity in patients being treated for a wide range

of illnesses.

Keywords: antibody, ADCC, NK cell, structural biology, antibody therapeutics, immune synapse, antibody effector

functions, immune signaling

INTRODUCTION

Antibodies have a bifunctional role within the immune system. This role is physically built into
their structure through two parts: the fragment antigen binding (Fab), for recognizing antigen,
and the fragment crystallizable (Fc), for recruiting effector immune cells. The process by which
antibody-coated cells direct effector cells to attack and kill an opsonized target is known as
antibody dependent cellular cytotoxicity (ADCC). This is accomplished through ligation with
Fc gamma receptors (FcγRs), which forms a conduit of communication between the target cell
(TC) and immune effector cell (1). The FcγRs are an assortment of transmembrane receptors
expressed to varying levels on primarily innate, but also some adaptive, immune cells (2).
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The ability of antibodies to recruit ADCC is a highly desirable
trait for therapeutic and vaccine development, andNK cells are of
central focus due to their proclivity for ADCC and as a front-line
defense immune cell (3–6). While our understanding of antigen-
antibody recognition and Fc-FcγR interaction are each quite
extensive in isolation, there is still a gap in knowledge about how
these two important aspects of antibodies interplay, especially in
vivo. Combined with frequent incongruency between available
in vitro and in vivo data regarding antibody effector function as
well as the generally complicated nature of the human immune
system, we are left with a looming question: what makes an
effective antibody for recruiting NK cell ADCC?

Answering the question above requires a much better
understanding of the underlying molecular basis of antibody and
cellular effector functions. A good place to start is at the point
of initial contact between an NK cell and TC, known as the
immune synapse (IS). This is the point where activating receptors
on the NK cell surface bind to the Fc domain of antigen-engaged
antibodies and initialize a cascade of events that lead to NK
cell activation and ultimately target-cell death. Extensive studies
of the T cell receptor have provided valuable insight into the
organization of the T cell IS (7–10), but much less is known about
the NK cell immune synapse (NKIS).

Antibodies are necessary for clustering activating receptors
in the early stages of ADCC. Structural biology has been
instrumental in providing a much more detailed view of this
initial interaction of antibody and antigen, especially in the
context of viral antigens from HIV, influenza and ebolavirus.
Depending on the location of antibody epitopes, the Fc domain
of the antibody can differ vastly in how it is presented to a
surveying NK cell. Many other variables, including antigen shape,
size, and density as well as lipid environment and mobility, can
also affect Fc presentation. Further, all these variables can change
with antibody isotype, subclass and glycosylation as well as FcγR
isotype, cellular subclass, FcγR expression and diversity as well as
FcγR glycosylation and alleles (2).

With an increasing number of antibody therapeutics, vaccines
and immunotherapies entering the clinical market (11), a greater
understanding of NK cell mediated ADCC will guide precision
medicine and create more effective drugs. In this review, I
will focus on current efforts to understand NK cell ADCC,
with a particular focus in the context of virally infected cells.
I will explore how advances in microscopy techniques as well
as the increasing accessibility of big data technologies such as
transcriptomics, proteomics, and metabolomics are challenging
our understanding of classical immunology and paving a way
to fill the gap between in vitro and in vivo observations. Such
advances will reveal new avenues for vetting therapeutics with the
greatest chance of success in patients.

RECEPTORS AND LIGANDS INVOLVED IN
ADCC

Humans employ an arsenal of a FcγRs that specifically recognize
antibodies via their Fc domains (1, 2, 12). These receptors can
be inhibitory or activating for the cells on which they reside,

denying or providing the initial spark to perform antibody-
based effector functions, respectively. While NK cells almost
exclusively utilize a single type of activating FcγR (13, 14), it is
important to understand the function of FcγRs more broadly.
In this section, I will briefly discuss what is currently known
about the receptors and ligands involved in ADCC as well as
how their interplay differs among peripheral and tissue resident
NK cells.

The FcγRs and Their Antibody Ligands
Each antibody isotype has its own unique Fc receptor, and
these have been studied extensively and reviewed elsewhere
(1, 12, 15). The receptors include Fc alpha receptor I (FcαRI
or CD89) for immunoglobulin (Ig) A (16–18), Fc epsilon
receptor I (FcεRI) for IgE (19–21), FcγR for IgG (1, 12)
and Fc mu receptor (FcµR) for IgM (22, 23). There is also
mixed evidence of a putative receptor for soluble IgD, named
Fc delta receptor (Fc∂R) (24, 25). There are additional Ig
receptors that reside on other cell types, including the neonatal
Fc receptor (FcRn) with a function in recycling antibodies
(26, 27), the mixed Fc alpha/mu receptor (Fcα/µR) with a
function in endocytosis of IgA/IgM coated microbes (28) and
the polymeric Ig receptor with a function in the endocytosis
of polymeric IgA and immune complexes (pIgR) (29, 30).
Not all antibodies bind to their cognate receptors with equal
affinity (31) and each receptor has a unique control over the
immune response.

Most antibody therapeutics are overwhelmingly of the IgG
class, which is the primary type of antibody formed in response
to vaccines and pathogenic threats (32, 33). IgG also makes up
a significant portion of the antibodies in human sera to assist
the innate immune response in identifying immediate threats
and assisting the adaptive memory response. IgGs exist in four
known subclasses in humans, including IgG1, IgG2, IgG3, and
IgG4 (Figure 1A). There are six known IgG receptors, including
FcγRI (or CD64), FcγRIIa/b/c (or CD32), and FcγRIIIa/b (or
CD16) (Figure 1B), and they each display differential binding
affinity for these subclasses of IgG (1, 2, 31). Most of FcγRs
are activating, signaling through immunoreceptor tyrosine-based
activation motifs (ITAMs), with the exception of FcγRIIb, which
is an inhibitory receptor and signals through an immunoreceptor
tyrosine-based inhibitory motif (ITIM). FcγRIIIa is the most
abundant and important receptor on NK cells for inducing
ADCC, and is a prototypic cell marker for mature NK cells
in the periphery (34–36). While all the IgGs can bind to
FcγRIIIa, IgG1 and IgG3 are the most effective at activating
NK cells for ADCC (2, 31). FcγRI has the highest affinity for
IgG, particularly IgG1 and IgG3, but is not reported to be
found on NK cells (1). Interestingly, there are glycan variants of
FcγRIIIa that display affinities close to FcγRI, as I will discuss
below (37).

Structural biology has been important in elucidating the
molecular nature of the FcγR-Fc interaction and examples exist
of every human FcγR both liganded to Fc and unliganded
(Figure 1C) (38). FcγRs are quite small and are therefore
almost exclusively studied by crystallography (12). Small
proteins (<100 kDa) are still difficult targets for cryo-electron
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FIGURE 1 | Structural characteristics of antibody-FcγR interactions. (A) Schematic of the four IgG antibody isotypes. IgG domains and sub-domains are labeled on

the far left. (B) Schematic of the six human FcγRs and associated signaling motifs. (C) Structural examples of the five main human FcγRs bound to Fc domains with

transmembrane domains modeled in the effector cell membrane. (D) Conserved features of FcγR-Fc binding. The example shown is of FcγRIIIa (PDB 3WN5). ITAM,

immunoreceptor tyrosine-based activation motif; ITIM, immunoreceptor tyrosine-based inhibitory motif; GPI, glycosylphosphatidylinositol.

microscopy (EM) but are becoming increasingly approachable
as technology improves (39–41). These receptors adopt an Ig-
like fold, similar to antibodies, with two Ig lobes separated
by a short elbow (12). Notably, FcγRI has an additional
Ig domain, although the function of the third domain is
unclear (42).

These structures have shown striking conservation in how
IgGs bind to FcγRs (Figure 1D). The majority of molecular
interactions occur near the hinge-region of IgG, near the base
of the Fc, and are heavily reliant upon a glycan at Asn 297 in
the Fc domain (1, 42–44). Binding induces asymmetry within
the Fc through interaction with a single domain of FcγRs.
Despite Fc domains having two equivalent binding sites for
FcγRs, binding to IgGs is monovalent, due to this induced
asymmetry. The 1:1 stoichiometry of binding is the same for
other FcRs, except for FcαR, which is capable of binding IgA as a
dimer (18).

IgG glycosylation can take on many different forms and
has major implications for the immune response (45, 46).
Afucosylated forms of IgG, for example, are capable of a
superior ADCC phenotype and structural evidence indicates
that this form of IgG allows for a stronger interaction with

FcγRIIIa (47–49). FcγRs are themselves glycosylated to varying
degrees (50). Glycosylation is often overlooked in the structural
context, due to limitations of crystallography, but has a notable
influence on activation and affinity and continues to be
explored (37).

Cellular and Tissue Distribution of FcγRs
FcγRs exist mainly on immune cells, but have also been found in
some neural cells, liver cells and even as part of viral and bacterial
defense mechanisms (51). In terms of immunity, the FcγRs
clearly dominate in innate immune cells, likely due to their role
in first-line defense and surveillance (Figure 2A). Conversely,
there is little evidence for constitutive FcγR expression within
adaptive immune cells such as T cells (although some small
subset may express FcγRIIIa) and only the presence of the
inhibitory receptor FcγRIIb on B cells (1, 51). Nevertheless,
FcγR activation by antibodies can recruit the adaptive immune
response and other innate cells, and thus ties both arms of
the immune system together (Figure 2A). Within the innate
cell repertoire, macrophages, monocytes, granulocytes, dendritic
cells, and mast cells all express varying combinations of the
FcγRs (1, 51). The expression of some receptors can be

Frontiers in Immunology | www.frontiersin.org 3 July 2020 | Volume 11 | Article 1635

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Murin Antibody Geometric Constraints on ADCC

FIGURE 2 | Natural killer cell lineage and development. (A) Immune effector cell lineages showing that NK cells derive from a common lymphoid progenitor related to

B and T cells, that make up a majority of the adaptive immune response. NK cells, however, share several similarities in function and phenotype to myeloid progenitor

cells that make up a majority of the innate immune response. (B) Flow chart showing the modern theory of NK cell development, which demonstrates that NK cells

may leave bone marrow at various stages and continue development into specialized subsets in the secondary lymph tissue, peripheral blood or become tissue

resident NK cells. (C) Stages of NK cell development, including distinct sub-stages, with major markers that distinguish mature cell types indicated. HSC,

hematopoietic stem cell; iNKT, invariant natural killer T cell.

Frontiers in Immunology | www.frontiersin.org 4 July 2020 | Volume 11 | Article 1635

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Murin Antibody Geometric Constraints on ADCC

induced in certain cellular populations, although typically at low
levels, or may exist only in a subset of cellular populations.
This range of FcγR expression on immune cells is not well-
understood but may serve as an advantage to the immune
system in being able to quickly respond to a diverse array
of insults.

NK cells form a unique cellular subset since they are of
the lymphoid lineage, more closely related to B and T cells,
but act more like an innate immune cell in their function, are
therefore often referred to as innate lymphoid cells or ILCs
(Figure 2A) (52–54). NK cells are exceptionally diverse, and I will
briefly discuss both their presence in peripheral blood (PB) and
tissues (Figure 2B) (55–59). NK cells form a smaller fraction of
lymphocytes within the PB but can vary widely from 5 to 20% or
even higher depending on the individual. Typically, peripheral
NK cells are defined by a lack of CD3 to distinguish them
from T cells, a lack of CD19 to distinguish them from B cells,
and the presence of CD45 to distinguish them as lymphocytes.
Further, NKs are confirmed by the presence of CD56 and CD16
to varying degrees, leading to so called CD56bright/CD16lo/− and
CD56dim/CD16+ populations (Figure 2C) (60, 61). CD56dim NK
cells are thought to be the cellular population that is best at
performing ADCC due to a higher constitutive expression of
CD16. This makes CD56dim NK cell lines, such as NK-92 cells,
particularly desirable for NK cell engineering and use in in vitro
ADCC assays (62, 63). CD56bright NK cells can respond rapidly
to produce cytokines and chemokines in conjunction with the
response of other activated cells, including T cells, dendritic cells
and monocytes.

The diversity of NK cells extends to tissue resident NK cells
(Figure 2B) (34, 57, 64). CD56dim NK cells, which predominate
the ADCC response in PB, are not found ubiquitously in all
tissues and may actually be outnumbered by CD56bright cells
overall in the human body (57, 64). The population of CD56dim

cells capable of ADCC largely exist in the bone marrow as well
as lung, spleen, breast and subcutaneous adipose tissue (57).
NK cell diversity is extended by varying degrees of chemokine
receptors as well as a huge variety of killer immunoglobulin-like
receptors (KIRs) (65). This plasticity specializes NK cells to their
environment and makes them functionally distinct (Figure 2B).
Further, certain NK cells may even develop memory, similar to
adaptive immune cells (66, 67).

Limits to Our Current Understanding of
Antibody-FcγR Interactions
There are many gaps that prevent a full understanding
of antibody-FcγR interactions. First, all of our molecular
observations of antibody-FcγR interactions come from
fragments. For example, in every structure of FcγRs, the
IgG is severed from the antigen recognition domains
(Figure 1C). Conversely, in every structure of antibody
bound to antigen, the Fc fragment is missing. While there
are a few structures of IgGs alone, as well as biophysical
characterization that demonstrate their range of flexibility and
overall architecture, this flexibility has largely restricted their

study in complexes due to historical limitations in structural
biology (68).

Next, FcγRs are after all membrane glycoproteins, but there
are no structures of the full-length receptors. Additionally,
many activating receptors use transmembrane adaptors that are
necessary for cell surface expression and signaling, proteins that
have only limited structural observation in isolation (14, 69, 70).
While FcγRs are mostly single pass transmembrane proteins
(with the exception of FcγRIIIb, which is a GPI-anchored protein
and whose signaling is not well-understood), there are almost
certainly higher order assemblies that must form in order for
signaling to proceed.

Finally, known molecular observations have not yet been
reconciled with the crowded but organized environment of the
IS. Most of our understanding of the NKIS has derived from in
vitro studies outside of a living organism. Although reductionists
approaches are necessary as building blocks, these observations
must begin to be placed back into a larger context. Below, I will
further explore what is involved in the assembly and function
of the NKIS in the context of ADCC and how we have amassed
this knowledge.

SHEDDING “LIGHT” ON NKIS DYNAMICS

The term “synapse” refers to a junction between cells and is
most often used to describe the junction between neurons.
This definition has since been expanded to also describe the
junction between immune cells and TCs (71–73). While most
notably used to describe the T cell IS (72), the term has more
recently been expanded to NK cells (74). In both cases, the
IS is a delicate ballet of receptors and ligands, cytoskeletal
rearrangements and exchange of cytotoxic material in order to
specifically destroy a cell deemed a threat. Understanding the
players in this immunological dance and how they dynamically
move through the process of immunological attack is vital to
understanding ADCC and how antibodies affect the process
and outcome.

The NKIS can be likened to a busy street corner at rush
hour, people and cars crisscrossing and making their way to
destinations in a concerted spatio-temporal fashion. Similarly,
within the IS, receptors and cell surface molecules must bind
to their ligands, signal and move to make way for the next
set of molecules to follow suit. Understandably, evaluating
the role of an antibody in this context can be extremely
challenging. Do we use the detailed approaches of biochemistry
and structural biology, medium resolution approaches provided
by light microscopy, or more global “omics” types of big data
acquisition and analysis? Ideally, details could be obtained
equally from any one technique; however, technology has been
historically limiting and complete understanding will require
integration of all these techniques. In this section, I will provide
a general overview of what is known to occur during formation
of the NKIS, specifically during ADCC, and how structural
biology and light microscopy have brought complementary
understanding to this process.
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FIGURE 3 | NK cell cytolytic activation. (A) Stages of NK cell cytolytic activity including: (i) tethering of effector to target cell and receptor binding, (ii) lytic granule and

actin polarization at the immune synapse and release of lytic granules into target cells, and (iii) target cell death and release of the NK cell. NK cells can go on to serially

kill or become exhausted. (B) NK cell activation relies upon a balance of activating and inhibitory signals. MHC, major histocompatibility complex.

ADCC and the NKIS
The NKIS has been previously studied in detail and the general
stages well laid out (Figure 3A) (74–77). There are several
different types of NKISs (78), but we will focus mainly on the
lytic IS here. In every type of synapse, the initial stages are the
same, which is that of surveillance (Figure 3Ai). The process
of surveillance involves the tethering of effector to target cell
followed by adhesion. Each of these events is not completely well-
understood, but likely involves carbohydrate sensing by CD2
(79), selectins like L-selectin (80) and integrins like CD11a/b and
CD18 (77), which are upregulated and cluster early in the NKIS
(77). These initial steps serve as way to lock effector and target
cells together to then proceed to recognition, although some level
of pre-activation occurs.

Following attachment to a target cell, it is time for the NK
cell to decide: friend or foe? (Figure 3Ai) Since NK cells are
primed to respond quickly and harshly to threats, their activation

relies upon a well-controlled balance of activating and inhibitory
signals (Figure 3B). Recognition of major histocompatibility
complex I (MHC-I) bearing “self ” peptides is an important
part of this decision but can be overcome by stress signals.
For example, certain cancers cause upregulation of stress signals
such as MHC class I chain-related protein A/B (MICA and
MICB) and UL16-binding (ULBP16) family proteins, which are
recognized by the activating NK cell receptor natural-killer group
2, member D (NKG2D), leading to direct killing (81). Further,
downregulation of MHC-I can occur during viral infection,
also leading to direct killing of infected cells (82, 83). The
presence of antibody coated cells can also lead to activation by
ADCC. For ADCC to occur, surface expressed FcγRIIIa will
recognize antibody bound to the surface of a TC (84), causing
the formation of microclusters (85–87). This may be in part
aided by concurrent cytoskeletal rearrangements, such as F-
actin rearrangement, that is thought to aid in the clustering
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of receptors (76, 77, 88, 89) as well as the presence of lipid
rafts to assist in fluidity (90, 91). Such rearrangements set the
stage for microtububle polarization and delivery of lytic granules
present throughout the NK cell cytoplasm to a conduit point
(Figure 3Aii). Lytic granules bring CD107a to the openings in
actin networks and are a tell-tale sign of NK cell activation and
cytotoxicity (89, 92).

The release of perforin and granzymes at the synaptic cleft,
the point of release of lytic granules, starts to signal the end of
ADCC and cytotoxicity (Figure 3Aiii) (93). How the NK cell
concludes cytotoxicity is still not well-understood, but proteolytic
cleavage and shedding of FcγRIIIa ectodomains is thought to
contribute to NK cell release (94). Although NK cells have been
shown to serially kill multiple targets in a matter of hours,
continued stimulation of ADCC via FcγRIIIa can exhaust the
NK cell leading to decreased perforin release over time and a
slower recovery of FcγRIIIa expression on the surface of NK
cells (93–95). Serial killing can proceed until granzyme stores
are out, leading to upregulation of CD95L, the ligand for target
cell death receptors, resulting in slower apoptosis-mediated
killing (96).

In addition to the formation and function of an IS, NK cells
also release cytokines and chemokines that can exert effector
activity on target cells and help recruit other effector cells,
such as macrophages, dendritic cell and T cells as well as the
proliferation of additional NK cells (97–99). Such cascades of
activity all stem from the initial stages of antibody binding. Thus,
elucidating the molecular basis of antibody-based activation of
NK cells is fundamental to understanding the regulation of all
downstream processes.

Structural Biology as a Tool to Study the IS
Structural biology has been a key driver in our understanding
of antibody interactions with both antigen and Fc-receptors.
Crystallography has long dominated our understanding
of Fab-antigen interactions. More recently, single particle
cryo-EM has been increasingly important for determining
antibody interactions, including more biologically relevant
constructs of antigens and difficult targets. For example,
cryo-EM is superbly suited to handle sample heterogeneity,
enabling the structural analysis of diverse polyclonal antibody
epitopes in a single imaging experiment. This technique
has been instrumental in understanding the antibody-
based immune response to viral infection as well as novel
vaccines (100, 101).

In terms of epitope mapping, the field of infectious disease has
exemplary examples of survivor-derived monoclonal antibodies
bound to viral entry-associated proteins, which my colleagues
and I recently reviewed (102). Such examples include, but are
not limited to, HIV, influenza, ebolaviruses, marburgviruses,
SARS, MERS, Hepatitis, Chikungunya virus, Zika virus, Dengue
virus and Noroviruses, among many others. Antibodies are
capable of binding to nearly any epitope presented on enveloped
viral antigens (Figure 4), however their capacity to induce
ADCC varies widely (103–105). The reason for such variance
is unknown but may be related to where an epitope is located
and the way in which an antibody binds, as well as genetic

FIGURE 4 | Fab-antigen structures give clues to antibody Fc presentation.

Overlay of structures of Fab-HIV Env interaction, demonstrating a wide range

of antibody angles-of-approach. On the right are schematics of how the full

IgG would bind and the direction in which the Fc may point toward

approaching effector cells. Figure adapted from Murin et al. (102).

variation in FcγRs (106). The Fab alone bound to antigen can
give clues to how the Fc may be situated and how this relates
to receptor binding and macromolecular complex assembly
(Figure 4).

By far the most important contributor to antibody ADCC
activity studied so far is antibody subclass and glycosylation.
While the basis of subclass remains somewhat of a mystery,
we do have substantial evidence as to the importance of Fc
glycosylation (43, 47, 49, 105, 107, 108). Specifically, if the
glycan at Asn 297 is fucosylated, then the binding to FcγRIIIa
is impaired (43, 47–49, 109). With removal of this core fucose,
however, affinity is bolstered to the low nanomolar level. Further
affinity can be gained from di-sialylated, complex glycans lacking
core fucose, which also have strong anti-inflammatory properties
(107, 108, 110). Nuclear magnetic resonance (NMR) studies
suggest that the type of glycan attached to the Fc modulates
Fc dynamics as well through the C’E loop that contains Asn
297 (111, 112). Conversely, FcγRIIIa glycosylation itself can
also influence binding of IgG, hinging primarily upon a single
glycan at Asn 162 (107, 108, 110, 113). Indeed, there are vast
donor-specific differences in monocyte derived FcγR glycoforms
that could influence the effectiveness of antibody therapies as
well as donor-derived cell therapies (110). A more complete
understanding of glycosylation effects on ADCC, as well as
innovative ways to generate uniform and specific antibody
glycosylation targeted for donor phenotypes, is an area of
active research.

Experimental Setup for Imaging the IS
Fluorescent light microscopy provides the unique advantage
of being able to observe live cells, illuminating IS dynamics
such as the spatial arrangement of receptors and ligands
over time. Work in this area has been pioneered by the
study of the T cell IS, which has been extensively reviewed
elsewhere (7, 9, 76, 114–119). Study of the T cell IS
has been in part driven by a more reductionist approach
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FIGURE 5 | Experimental setup to study NK cell activation and the immune synapse. (A) Flow cells with microwells allow the physical isolation of single cell pairs to

image the immune synapse in the z plane or en face. (B) Microwell plates enable the isolation of a small number of TCs and NK cells in order to study live,

non-adherent cells. (C) The use of planar lipid bilayers on glass slides is a reductionist approach to studying the NK cell immune synapse. Antigens can be attached to

chemically modified lipids, enabling ease of titrating antigen density and type as well as lipid composition. (D) Activating ligands can be pattered in order to determine

how spatial and geometric constraints affect many aspects of NK cell activation. TC, target cell.

to parse the very complex IS into more digestible pieces.
These techniques have now been adapted to study the NKIS
as well.

The first obstacle to overcome when addressing the question
of the role of antibodies within the IS is how to set up and observe
single cell interactions. This is especially critical in ADCC since
antibodies will influence the earliest stages of IS formation, and
therefore timing is crucial. There are several technologies that
have been developed to address this issue, but they fall into
two major categories: imaging live cells enclosed in a physical
space and imaging live effector cells interacting with a synthetic
surface representing a TC (114). I will briefly touch on a few
examples here.

The first technique of imaging live cells requires physical
isolation of these cells (Figures 5A,B). One approach for this has
been the design of microfabricated wells, which are limited in
diameter for single cells, but deep enough to allow a second cell to
stack on top (120). This allows the imaging of the z-plane between
the two cells where all the action of the IS takes place. Similarly,
microfluidic chambers can trap pairs of cells and provide both
face-on and side views of the IS (Figure 5A) (121). Both of these
techniques have the advantage of high throughput but suffer

from limits in imaging resolutions inherent to the microscopy
techniques required for live cell imaging. Optical tweezers, which
can capture an TC and present the IS to the focal plane of the
microscope, also offer an intriguing solution for examining the
NKIS in real time with improved resolution, however, without
high throughput (122–124). This technique has been useful in
predicting the effectiveness of chimeric antigen receptor (CAR)-
modified T cells and may have similar usefulness for CAR-NK
cells (75).

Cells can also be trapped within microchambers, which
limits the range that non-adherent cells can move (Figure 5B)
(125). This allows the free movement of effector cells in real
time and facilitates tracking of single cell movement. With
the additional implementation of acoustic signals, cell to cell
interaction is stimulated, which allows for increased observations
(126–128). Here we are not looking directly at the IS, but
rather looking at whole cell behaviors within the context of
a more “real” environment. One can envisage the grafting of
tissues into these chambers to observe NK cell infiltration or
to add different antibodies into media within chambers to
observe the effects on whole cell dynamics within the context
of ADCC.
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A more reductionist approach to studying the NKIS utilizes
synthetic forms of TC surfaces (Figures 5C,D). These systems are
convenient for varying the type of antigen and also introducing
spatial and geometric constraints. Supported lipid bilayers (SLBs)
have gained traction in their utility to study the IS, as they
allow for maintenance of the type of fluidity that would be
encountered in cell membranes (Figure 5C) (85, 114, 129–134).
There are many different ways in which to assemble SLBs,
which have historically also found high utility for studying the
electrophysiology of ion channels, pumps and transporters (131,
135, 136). For utility in biology, SLBs are typically formed by
generating lipid micelles in solution and then depositing these
onto ultra-clean glass slides (85, 137). Bilayers can integrate
capture lipids, for example that contain nickel or streptavidin on
their head groups, that can subsequently bind tagged antigens
(Figure 5C) (137–139). In this scenario, antigen density can be
titrated, or lipid composition can be easily adjusted.

Antigens or activating ligands can also be deposited directly
onto substrate in predefined patterns using printing techniques
(Figure 5D) (120, 140). This option allows for well-defined
spatial constraints that can assist in probing how discrete
patterns or geometries influence cellular activation and the
organization of the IS, even within a single cell. For example,
in an experiment where activating and inhibitory molecules
are placed in distinct patterns, NK cell actin cytoskeletal
rearrangement is more intense and patterned around activating
signal patterns than inhibitory patterns (Figure 5D) (141).
While this technique suffers from the static nature of the
antigen presented, distances may be tightly controlled, and
multiple different antigen-antibody complexes could potentially
be examined simultaneously.

Imaging the IS With Fluorescent
Microscopy
Fluorescent microscopy imaging techniques can provide a
range of temporal and spatial resolution (117, 142–144).
While some techniques allow dynamic temporal resolution,
such as the tracking of events in real time, these often
suffer from physical constraints that do not allow high spatial
resolution. Wide-field fluorescence microscopy (WFM) gains
back spatial resolution from deconvolution methods that
allow sharpening of signal post-image acquisition (142). Laser
scanning confocal microscopy (LSCM) is also quite often
utilized due to ease, but loses temporal resolution due to
slow scanning speeds, which impede looking at fast events
like those happening in the IS (121). Here, spinning-disk
confocal microscopy (SDCM) allows for quicker acquisition
(10 to 100-fold over LSCM) with lower photobleaching (117).
Total internal fluorescence (TIRF) microscopy has limited
z-axis resolution but is quite useful for analyzing the IS,
which occurs in a narrow plane (145, 146). Two-photon
fluorescence microscopy (TPFM) can complement TIRF by
allowing similar resolution but with the ability to look at
subcellular properties (117, 147).

Conversely, spatial resolution shines in the realm of super-
resolution techniques (76, 85, 89, 115, 142, 148). This type of

microscopy is not limited by the wavelength of light like the above
examples. Stimulated emission depletion (STED) microscopy
uses two lasers to activate and immediately deplete fluorophores,
offering the ability to image smaller volumes (115, 149, 150).
STED can technically be used for live cell imaging but is still
slower than SDCM and has limitations with fluorophores. Single-
molecule localization microscopy (SMLM) techniques (151),
such as photoactivated localization microscopy (PALM) and
stochastic optical reconstitution microscopy (STORM), utilize
special photoactivatable probes that can indicate the single XYZ
(more resolution in XY and less in Z) location of molecules
(152–154). SMLM techniques can be used on live cells but are
more practical with higher resolution in fixed samples. More
complicated equipment as well as image analysis algorithms have
been developed to offer insight into T cell activation in 3D within
living cells (148). Lattice light sheet fluorescence microscopy
(LLSFM), for example, offers the next generation for studying
live cell IS events, with much faster Z slice image acquisition
than SDCM along with super resolution (155, 156). However,
LLSFM will have increased utility once cost and complexity
both go down.

Future Techniques for Understanding
the IS
The future of imaging and understanding the NKIS will rely upon
two major factors. One will be the marrying of high-resolution
techniques, offered by electron microscopy for example, with
those of resolution limited techniques, such as light microscopy.
The other will be making new technologies more widely available
to biologists, which is only a matter of time (157, 158). Such
a renaissance has been seen in the field of electron microscopy
with the advent of user-friendly microscopes and data analysis
software (159). As far as the former, I will highlight a few exciting
developments to keep an eye on in the coming years.

In the realm of electron microscopy, the aspirational goal is
to achieve sub-nanometer resolution of proteins and complex
macromolecular systems in situ. Since most high-resolution
techniques rely upon averaging, this is not readily possible,
but more advanced techniques in cryo-electron tomography
(cryo-ET) are quickly closing this gap (160–162). Phase plates,
ideal for tomographic techniques to increase image contrast,
have been instrumental in solving complex macromolecular
assemblies within cells. Additionally, focused-ion beam (FIB)
milling instrumentation allows for exquisitely thin and detailed
cell sections to be isolated (Figure 6A) (163, 164). Cryo-
ET examples include cytosolic and mitochondrial structures
of actively translating ribosomes (165), complex actin and
microtubule network assembly (166, 167), and intriguing views
of the neural synapse (168). To examine the nuclear pore
complex, detergent solubilization and removal of nucleic acids
has enabled thinning samples as much as possible while
maintaining 3D structure. Combined with integrative structural
biology techniques, we now have the most detailed views of the
intact nuclear pore complex ever seen (169). Cryo-ET, however,
is labor intensive and requires a high level of expertise that has
not become as streamline as single particle analysis. However,
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FIGURE 6 | Future techniques for studying the NKIS. (A) FIB milling combined with tomography enables the generation of a thin layer to image the molecules bridged

between cells. (B) Cryo-CLEM enables the localization of several structures within the immune synapse by super resolution microscopy followed by higher resolution

structural analysis by tomography, which can be overlaid to provide additional details not offered by either technique alone. (C) MINFLUX nanoscopy offers the highest

spatio-temporal resolution available of any light microscopy techniques, going beyond the limits of confocal and super resolution, down to the range of 1–3 nm. FIB,

focused-ion beam; nm, nanometer.

the field is rapidly moving toward automation and increased
sophistication in data analysis of cryo-ET data. This field holds
great promise as a tool for examining cell to cell contacts, such as
the NKIS (Figure 6A).

Cryo-correlative light and electron microscopy, or cryo-
CLEM, attempts to fill the gap between light and electron
microscopy (Figure 6B) (170, 171). In this technique, whole
cells are first imaged using fluorescent microscopy techniques
to localize and identify features of interest. Next, cells are
vitrified and imaged using cryo-ET, allowing for identification
of features and subcellular location of the somewhat higher-
resolution electron density maps generated. Genetically encoded
fluorescent proteins allow the maintenance of cellular integrity
and examination of fluorescence post-vitrification, or samples
can be fixed, permeabilized and stained prior to freezing. Super
resolution techniques are also starting to be combined to provide
even more details (172–174). Cryo-CLEM may be a way to more
accurately identify the location of signaling proteins within the
IS and then extend results to the high-resolution context through
electron microscopy.

Within the realm of light microscopy, a new technique
has recently broken all the previous barriers associated with
resolution limits, including spatial and temporal limitations
as well as photobleaching effects. Known as MINFLUX,
this revolutionary technique combines the super resolution
techniques of PALM/STORMwith those of STED by establishing
the coordinates of proteins through minimal emission fluxes
(Figure 6C) (175–177). This allows for nanoscale precision on
the order of 1–3 nm spatial resolution. Moreover, this technique

is adaptable to both scanning and standing-wave microscopes
and can be used on fixed or live samples as well as in 3D. Tracking
of single molecules within live Escherichia coli cells over long
distances as well as highly detailed, multicolor labeling of the
nuclear pore complex have been the earliest examples (175, 177).
Clearly, this technique could be adaptable to tracking multiple
different receptors within the NKIS. The only drawback at this
current point is expense and availability.

GEOMETRIC AND SPATIAL
CONSIDERATIONS WITHIN THE NKIS

IgGs are highly abundant within the human body at any given
time, on the order of 7.5–22 mg/mL. Therefore, for ADCC to be
an effective strategy for targeting cellular insults, NK cells must
distinguish between free and specifically bound antibodies. This
is thought to be achieved by the aggregation and agglutination
that antibodies undergo upon antigen binding, whether to cell
surface exposed antigens or soluble (178). This brings Fc domains
in close proximity, allowing the clustering of cellular receptors.
However, this explanation does not account for the sophisticated
arrangements that signaling receptors must adopt in order to
propagate a real signal, nor does it explain the reason and
mechanisms associated with the variety of antibodies, receptors
and glycoforms that exist. There is evidence to suggest that
antibody arrangement is crucial for effector functions to proceed,
that geometry and spacing can tune responses and that antibody
allostery may also assist in regulating cellular activation. Below,
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I will discuss more detailed current knowledge of the early
stages of antibody-based signaling and activation and provide
examples that point to the concerted molecular underpinnings
of effector functions.

Initial Stages of ADCC
Once an NK cell has docked with a potential target, if opsonized
antibodies are present, then FcγRIIIa will subsequently bind
to those IgGs. Alone, the binding affinity of FcγRIIIa for
IgG is estimated to be in the high nanomolar range (at least
in vitro) but also depends on the genotype of individuals
(31). For activation to proceed, however, the affinity between
FcγRIIIa and IgG must be strong enough to allow for sustained
interaction. IgG affinity is provided by the aggregation of IgG
on immune complexes, increasing antibody avidity. Antibody
aggregation is necessary because FcγRIIIa must adapt to a
molecular arrangement that allows intracellular phosphorylation
of cytoplasmic domains. Such an arrangement provides a
platform for kinase binding and activity that is absent in
monomeric FcγRIIIa. It stands to reason that there must be
discreet forms of FcγRIIIa activation complexes beyond what
simple aggregation implies. Indeed, there is evidence to suggest
that such a form could be dimeric, as we will discuss more in the
next section.

Once antibodies have successfully bound to the α subunit of
FcγRIIIa through the ectodomain, this signal must be propagated
to the intracellular side of the NK cell. This is achieved by co-
stimulatory signal adapter molecules, which for FcγRIIIa is either
FcεRI g or CD3 ζ (CD247) (Figure 1B) (13, 69, 70). These
adapters were first attributed to the FcR for IgE (179, 180) and
the TCR complex (181, 182), respectively, but are also adaptable
to FcγRIIIa for ADCC. The γ or ζ adapters exist as a single pass
transmembrane protein that forms a dimer through a cysteine
bond (183–185). There appears to be no preference for either as
they are found equally associated with FcγRIIIa (184). Together,
the adapter homodimer and FcγRIIIa monomer are thought to
form a non-covalent three-helix bundle (184). Mutations that
dissociate adapter molecules from FcγRIIIa have been shown to
prevent cell surface trafficking and are also thought to prevent
FcγRIIIa degradation (184, 186).

ADCC Signaling
Although the overall structural motif of the macromolecular
signaling complex has yet to be elucidated, once FcγRIIIa self-
associates, downstream signaling can then proceed. The γ or
ζ activating adapter molecules contain cytoplasmic tails with
ITAMs (187). In the proper conformation, these ITAMs can
be phosphorylated at two of 6–8 tyrosine sites, setting up a
docking site for Src-family kinases. It may be possible that Src
kinases dock and rely on a specific dimeric motif of associated
FcγRIIIa and adapters for the kinases to dimerize themselves
and auto phosphorylate, structurally similar to what has been
shown for the JAK2 kinases (188). Indeed, Src dimerization is
predicted to be necessary as its role as a hub for multiple signaling
activities (189–191).

Once phosphorylated, the signaling adapters are ready for
recognition by Syk or Zap70, for example, through tandem

SH2 domains (192–194). Syk or Zap70 interaction with
phosphorylated ITAM domains leads to the downstream
activation of several signaling pathways. Concurrently, FcγRIIIa
cross-linking activates PLC-gamma enzymes to generate inositol
1,4,5-trisphosphate (IP3) and sn-1,2-diacylglycerol (DAG),
leading to Ca2+ release from stores within NK cells, which is
required for granule release. FcγRIIIa cross-linking also activates
PI-3 kinase, which produces additional signaling molecules
to assist in ADCC-associated activation activities. Additional
associated signaling pathways include the Ras, ERK2, MAPK,
Vav/Rac, and NFAT pathways. Each of these pathways leads
to activities such as actin reorganization, cellular proliferation
and cytotoxicity. Further, the JAK/STAT pathway can also be
secondarily activated, leading to upregulation of cytokines
and chemokines, recruiting other cells or enhancing effector
functions (195).

Signaling is a highly complex and multicomponent process
that can change depending on extracellular stimuli. For
example, antibody activation via FcγRIIIa sets up ADCC
with a particular response, but that response differs from
direct cytotoxicity or activation inhibition (78, 196). Increased
understanding of the complex signals that occur during
NK cell activation will help us to understand how to
modulate ADCC activity, perhaps through new designs of
antibodies or a synergistic combination of antibody and
small molecule.

Receptor Movement and Lipid
Composition
The initial stages of ADCC as well as the formation of the
NKIS are both intrinsically linked to composition of the cell
plasma membrane. Here is where membrane bound receptors
interact both extra- and intracellularly to generate a robust
reaction on the cellular level. Once thought to be a somewhat
homogeneous environment, the cellular membrane is actually a
circus of different elements, composed of a wide range of lipids
that tightly control many cellular activities, including immune
signaling. While the evidence for how lipid composition of
cells is organized and influences cellular activities is not wholly
realized, due to the difficulties associated with studying lipid
composition in situ, there is still some compelling data that
warrants discussion, especially in relation to immune signaling
and ADCC.

The composition of eukaryotic plasma membranes is
primarily of glycerophospholipids, with head groups attached
to at least one unsaturated acyl chain (197, 198). While
these lipids are sufficient to form a bilayer, it is known
that sterols and sphingolipids also make up a large portion
of the plasma membrane. The sphingolipids can be further
classified into ceramide-based sphingomyelin or carbohydrate-
based glycosphingolipids, both which are often saturated in
their acyl chains. Of the sterols, cholesterol is the principle
component. Both of these additional lipids are of much lower
abundance in internal membranes but are made in the ER and
Golgi and transferred to the cell surface. The composition of the
inner and outer leaflets of the plasma membrane is also known
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to be different, with cholesterols and sphingolipids thought to
preferentially reside in the outer leaflet.

More than any other component, cholesterol changes the
properties of the bilayer by increasing rigidity and reducing
permeability, while still allowing free-lateral movement of
proteins and lipids. Model lipid studies indicate that cholesterols
and sphingolipids form distinct domains within the more fluid
background of the plasma membrane, often referred to as
lipid rafts, and that transmembrane proteins can be included
or excluded from these domains based on their own physical
properties (199–202). Within the outer leaflet, GPI-anchored
proteins are enriched (203). These are subsequently linked to
the inner leaflet by signaling proteins that are preferentially
found in this portion of the plasma membrane, forming
signaling platforms.

Evidence for such signaling platforms, especially in regard to
FcγRIIIa as well as its associated signaling domains, is compelling
in NK cells (90, 204–208). Immunoregulatory elements can be
preferentially partitioned within different lipid environments,
with positive signaling components such as the Src and Lck
family kinases being found in cholesterol rich lipid rafts, while
negative regulators such as phosphatases are excluded from
these regions. By clustering these elements within microdomains,
signaling can be more easily and readily achieved. Although
NK cell ADCC is not associated with GPI-anchored proteins,
many activating immune receptors are indeed GPI-anchored,
which also suggests that immune signaling is biased toward
lipid rafts.

Evidence suggests that negative regulation of NK cell
cytotoxicity results from blocking the association of activating
receptors within lipid rafts (Figure 7A) (204, 205, 207). It
is thought that actin cytoskeletal rearrangement assists in
the association of lipid rafts containing positive regulatory
components within the immune synapse (208). If negative
regulatory components dominate the signaling platform, then
actin rearrangements can be blocked, thus limiting the
rearrangements of downstream signaling components to lipid
rafts containing primarily positive signaling elements. This may
explain why actin cytoskeletal rearrangement is one of the earliest
and fastest physiological responses to NK cell activation.

Lipid rafts likely alter the way in which signaling components
interact once liganded to a target cell. When considering
the many ways in which an antibody bound to its target
antigen could be presented to FcγRIIIa, it is important to
consider how such geometric and physical constraints may
be affected by the more rigid confines of a lipid rafts.
Indeed, cholesterol enrichment seems to be a harbinger for
more efficient NK cell cytotoxicity (209), but there is no
evidence to address how this affects ADCC or how the
physical arrangement of antibodies within a macromolecular
signaling complex may influence activation. Conversely, the lipid
environment of a target cell could also affect how antibody-
bound antigens are presented within the IS (Figure 7B) (210).
Much less attention has been paid to the target cell side of
NK cell cytotoxicity; however, some evidence suggests that lipid
composition is vital to the sensitivity of target cells to attack

FIGURE 7 | The effects of lipid composition on ADCC. (A) Lipid rafts containing activating receptors and higher levels of cholesterol tend to be more rigid and isolated

in the plasma membrane of resting or inactive NK cells. Actin cytoskeletal rearrangements are thought to aid in bringing lipid rafts together in order to allow tighter

clustering of signaling molecules and increased cytolytic activity. (B) Target cell membrane lipid composition may aid or inhibit NK cell ADCC by how well antibody

coated antigen is able to cluster, thus promoting FcγRIIIa receptor clustering.
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(210). There is much room for exploration in the realm of lipid
composition and its influence on ADCC, which may in turn
have important implications for the choice of antibody used for
immunotherapeutic purposes.

Spatial and Geometric Constraints Within
the IS
For NK cell signaling to occur, extracellular signals must be
propagated across the cellular membrane. This necessitates
some type of unique arrangement of proteins that differentiates
a resting cell from a cell that is detecting something in
the extracellular environment. In the case of ADCC, this
starts with understanding the arrangement of FcγRIIIa.
Is there a singular structural motif that must be achieved
in order for activation to occur? Or is the arrangement
of these receptors more stochastic and tunable to the
subtleties defined by extracellular factors? Like most
realities of biology, the answer likely lies somewhere in
the middle.

In an analogous system, the T cell immune synapse, much
work has already been done to answer these questions, ultimately
setting a paradigm for lymphocyte-based signaling (181, 183,
185, 211–215). Similar to FcγRIIIa, the T cell receptor (TCR) is
composed of extracellular domains that recognize peptide bound
MHC-I. These domains, a heterodimer of α and β domains,
are single pass transmembrane proteins that must also pair
with adapters to propagate signal. Nucleation is accomplished
with the CD3 hexamer, comprised of heterodimers of CD3
γ ε and CD3 δε as well as CD3 ζ ζ , which is one of the
same adapters used by FcγRIIIa. The resultant supramolecular
complex is thought to be the basal unit for signaling and requires
very tight spatial interaction, which was recently resolved by
cryo-EM, revealing a crisscrossing network of transmembrane
subunits (185). Ligand binding does not induce any obvious
structural changes, with the caveat that this structure utilized
glutaraldehyde fixation. There are some single molecule data as
well and NMR studies that suggest that reorganization within
the TCR signaling complex may occur upon ligand binding
still (216, 217). Previous structural data also suggested that a
complete signaling complex in solution may be dimeric (211).
It is thought that the antigen-bound TCR then interacts with
actin and other signals to function as a mechanosensory unit
(123, 218).

Studying microcluster formation and dynamics of signaling
kinases that are anchored to the plasma membrane has
been critical to our understanding of TCR signaling and
provides many lessons for studying the NKIS. Studies using
PALM revealed that in cells activated on glass coverslips,
associated signaling molecules like LAT and SLP-76, which
links to actin filaments, form in much smaller nanoscale
sized clusters than previously postulated (146, 219, 220).
The increased spatial resolution of PALM also revealed that
signaling could occur in nanoclusters that may only contain
signaling units as small as dimers of the TCR as the
minimum requirement for signaling (221–224). Complementary
studies using light sheet STORM of activated T cells from

mice showed similar types of spatial organization occurs in
vivo (225).

On the antigen side of immune activation, antigen
presentation and spacing seems to be critical for thresholding
T cell activation. Several studies using nanoscale spacing of
activating molecules suggest that differential activation can
be achieved depending on the space provided within the IS
(114, 212, 226, 227). One study integrating both lateral and
axial spacing of antigen determined that tight 2D clusters with
limited axial spacing of <50 nm was an ideal arrangement
for T cell activation (212). Such spacing is thought to fortify
clustering based activation while excluding CD45, which must
exit the IS in order for activation to proceed. Another study
concluded individual activated TCRs may contribute more
to T cell activation than overall clustering (223). This adds
some clout to the idea that there is a necessary arrangement
of the TCR that qualifies activation, potentially a dimer as
previously suggested.

For ADCC-based activation in NK cells, there is evidence
to support a signaling complex may involve FcγRIIIa dimers,
which have greater appreciable binding to IgGs (14, 70, 184, 228).
Dimers are quite prevalent throughout signaling biology and
are thought to generate universal platforms for kinases with
broad activity (Figure 8A) (181, 191, 213, 229–232). Cytokine
mediated signaling provides the richest examples of dimer
mediated signaling, with a large diversity of structures induced
by cytokine binding (229, 230, 233). There are many additional
examples of homo- and heterodimeric complexes that drive
signaling, including growth factor receptors, insulin and other
hormone signaling receptors and nuclear receptors (Figure 8A).
In each of these cases, dimerization may occur in several
different stoichiometries and can orient dimers in a plethora
of ways. Further, toll-like receptors also require extracellular
antigen-based dimerization for signaling to occur (Figure 8A)
(234). Given the diversity of dimerization in signaling, it seems
highly likely that ADCC signaling may follow a similar type
of organization.

The idea of signaling dimers in ADCC has been previously
postulated. Artificial dimers of FcγRIIIa were sufficient to
reproduce NK cell activity and conversely increase affinity
for IgG (228). Additionally, ectodomains of FcγRIIa within
a crystal lattice suggest a possible domain arrangement that
may extend to other FcγRs. Mutation of critical residues in
this dimeric interface demonstrated reduced cellular activation
but not ligand binding (235). Later structures of FcγRIIa
demonstrated a new dimer interface potentially that serves as
an activating arrangement of signaling as it could reasonably
accommodate two opposing Fc domains as well as ligand bound
Fabs (Figure 8B) (236). The authors proposed a model where
constitutive dimers exist on the cell surface in an inactive
arrangement that changes upon ligand binding, posing the
intracellular signaling domains in an active formation. Perhaps
this is similar to the “rotation model” of other signaling motifs,
where less flexible intracellular domains are opened up for
phosphorylation upon extracellular ligand binding (Figure 8C)
(233). FcγRIIa, unlike the other FcγRs, does not require adapters
for signaling, having its own cytoplasmic ITAMs. It is not clear if
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FIGURE 8 | Molecular basis of effector cell activation. (A) Dimers are prevalent molecular motifs in cellular activation throughout the immune system. (B) Potential

dimer model of IgG-FcγR-CD3 ζ ζ activation complex, based off structures of complex components [FcγRIIb-Fc from PDB-3RY6 overlaid on FcγRIIb crystal contact

dimers from PDB-3RY5; model of transmembrane assembly of CD3 ζ ζ structure from PDB-2HAC and model of FcγRIIIa/adapter assembly from Blazquez-Moreno

et al. (184)]. (C) Potential model of downstream antibody-mediated signaling based on the “rotation model,” which postulates that intracellular kinase domains are

exposed for phosphorylation upon proper dimer assembly when extracellular activating ligands bind.

FcγRIIIa or other FcγRs exist as a similar constitutive dimer on
the cell surface. Achieving a similar dimeric arrangement of other
FcγRs ectodomains may be a critical component for successful
ADCC and additional effector activities, as I will discuss in more
detail below.

There is evidence for other types of dimeric signaling motifs
that suggests that the immune response is not “on or off” in these
structural motifs but rather may be tunable. For example, the
cytokine Erythropoietin (EPO) and its associated receptor EpoR
can be changed in their association topology by diabodies that
re-orient their geometry and lead to differences in intracellular
signaling (230). Other examples, such as tumor necrosis factor
(TNF) signaling as well as some prokaryotic chemoreceptors
such as Tar, further demonstrate that dimer formation alone
is not always sufficient for signaling and that conformational
changes may be additionally necessary (68, 232). Throughout all
these examples, there seem to be thresholds and variations in
geometries that lead to the idea that cellular activation can be
tuned in almost any type of signaling event, possibly even NK
cell ADCC.

Complement Dependent Cytotoxicity and
Comparison to ADCC
Complement is thought to be a more ancient form of
immunity (237); therefore, principles of complement, especially
for IgGs, may have important implications for ADCC as well.
Complement is another function of the modular antibody that
leads to target cell death without the need for effector cell activity.
In complement, antibodies binding to cell surface antigen set the
stage for additional complement associated proteins to assemble
an activation platform ultimately leading to complement
deposition and effector cell phagocytosis or assembly of the
membrane attack complex (MAC) (238). A plethora of studies
have previously set the molecular requirements for complement
assembly, along with many isolated structures of complement
related proteins, but it was tomography that really started to
reconcile these observations (239–241).

Revisiting a fortuitous observation of the first full length
structure of a human antibody (242), Diebolder and colleagues
tried to understand possible functional consequences of Fc
interactions seen in crystal packing, seeding hexameric arrays
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FIGURE 9 | Molecular basis of complement and comparison to ADCC. (A) Fc hexamers form the basis for complement deposition (PDB-1HZH). (B) Tomography of

complement deposition indicates that IgG Fc domains bend parallel to the antigen presenting cell, presenting the binding domain for C1q (EMD-4232, PDB-6FCZ).

(C) Both C1q and FcγR binding induce similar conformational changes in the Fc domain compared to apo-Fc including (1) a 90 degree bend in the hinge-region

loops, (2) a shift in the position of the hinge-region loops and a widening of the base of the Fc and (3) a shift in the position of the C’E loop, including the position of

Asn 297 and the associated glycan (Apo Fc from PDB-1HZH, Fc-C1q from PDB-6FCZ and Fc-FcγR/FcγRIIIa from PDB-3WN5).

(Figure 9A) (239). These hexamers were reminiscent of evidence
indicating that IgG would need to form these types of
structures in order for the complement cascade to proceed
(243). Mutations that limited Fc-Fc interaction lead to decreases
in complement activity while supporting mutations increased
activity. Tomographic structures of assembled IgG on antigen
presenting liposomes displayed the same type of hexamers
seen in crystal packing (Figure 9B). Further, it was observed
that Fc domains bend into a plane parallel with the antigen
presenting plane, presenting the epitope for the first complement
protein C1q, which was also observed in their structures when
assemblies were made in the presence of complement proteins
(Figures 9B, C). Interestingly, only a single Fab of IgG was
necessary for complement deposition, freeing up the rest of
the IgG structure to assemble properly (Figure 9B). Bispecific
antibodies actually performed better in complement assays.

Later EM observations of pentameric and hexameric IgM also
showed very similar structural assembly for complement, with
many additional proteins and observations added on (240, 241).
In these observations, both Fab arms of the IgM were bound
to antigen, which suggests that either IgM and IgG antigen
recognition geometries are different, or there is a dependence on
antigen type. Previous studies on IgM alone indicated that these
antibodies exist in a pre-bent shape that may help to influence
complement binding, whereas IgGs tend to be much more
flexible in solution (244–246). More recent high-resolution cryo-
EM structures of IgM as well as IgA are beginning to give us even
more detailed insight into how full-length antibodies operate pre-
and post-receptor binding, hopefully providing lessons that can
extend to other immunoglobulins (22, 247).

A recent structure of Rituxumab Fab bound to CD20 indicated
that the antibody recognizes CD20 dimers and that Fab-Fab
interactions are important to antibody binding (248). The
authors presented some evidence that these types of Fab-Fab
interactions may promote hexameric assemblies important for

complement deposition. Fab-Fab and/or Fc-Fc interactions may
be a much more prevalent antibody adaptation as there are more
examples in the literature, such as the Fab-Fab interactions for
some malaria antibodies (249).

Most intriguing is the folded presentation of Fc in both IgG
and IgM complement assemblies, that is similar to those seen
in Fc-FcγR structures (Figure 9C) (42, 239). Although FcγRs
can bind free IgG, perhaps a folded Fc domain is required for
proper FcγR dimer assembly and signaling. Varying degrees of
Fc presentation based on antibody binding angle or the number
antigens engaged by an IgG simultaneously may modulate FcγR
dimerization, thus tuning the immune response and leading
to the differential innate activities observed by antibodies with
identical phenotypes but varying levels of ADCC.

Antibody Allostery
The idea of antibody allostery or “intramolecular signaling” has
been discussed for many decades and remains a debated
topic in the antibody field (Figure 10) (250–253). This
hypothesis proports that the Fab and Fc domains of an
antibody communicate through structural properties inherent to
antibodies. To that end, antigen binding in the variable domains
would change structural conformations of constant regions,
priming them for ideal FcR binding that would be lacking in the
apo form of the antibody. However, the reigning theory behind
antibody structure-function relationships is that Fab and Fc
operate independently of each other, with the former binding
to antigen and the later binding to FcRs without one affecting
the other directly (178). Antigen-induced aggregation of IgG is
thought to increase the relatively low affinity of receptor binding
affinity through avidity and induce receptor aggregation that
is required for downstream signaling. Without antigen, the 1:1
interaction of IgG and FcγR remains weak and/or does not
induce receptor clustering even in high affinity interactions like
FcγRI. While there is an ample amount of evidence to support
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FIGURE 10 | Antibody allostery. The theory of antibody allostery or “intramolecular signaling” asserts that (1) an apo-IgG has flexibility that impedes its affinity to

FcγRs. (2) Antigen binding generates an allosteric signal from the Fab to Fc domain. (3) Allostery causes a conformational change in the Fc as well as decreased

flexibility that facilitates FcγR binding with higher affinity.

this type of associative cooperativity, there continue to be models
and complementary evidence that antibody allostery may play a
subtle but significant role in Fc-mediated effector functions.

Studies of antibodies in solution demonstrate that there is a
large degree of flexibility associated with the antibody structure,
mostly likely imparting a wider sampling space for a diversity
of target antigens (Figure 10) (244, 245). Furthermore, crystal
structures of intact IgGs also indicate that the hinge-regions are
largely responsible for this flexibility, although these regions tend
to be poorly resolved and in the confines of a crystal lattice
(68). However, detailed dynamics studies of antibody behavior
in solution provide computational evidence that antigen binding
changes the sampling space of Fc as well as the flexibility,
providing a type of “rigidity” that is not found in unbound
antibodies, which may lead to greater FcγR affinity in the
presence of antigen (254).

There is some direct evidence to suggest that Fab binding
also has consequences for the constant region of an antibody,
at least within in the Fab domain. Comparison of several crystal
structures of native and liganded Fab demonstrate changes that
occur within the Fab hinge as well as elsewhere in structures
(255). Although earlier studies comparing bound and unbound
Fab run contrary to these observations, it appears that there are
some antigen/antibody specific properties that may account for
variability. This may also point to an explanation for differing
innate properties of antibodies depending on the epitope.

Moving toward the Fc end of the antibody, there are several
studies that indicate that perturbations to the Fc region can affect
binding to antigen, for example with Pertuzumab (as an IgA1
and IgA2) and Her2 binding (256). Similarly, many other studies
have shown that using identical variable regions with different
constant regions (i.e., isotype or subclass switching) leads to
variable antigen binding as well (257). Further, an antibody’s

ability to neutralize viruses is possibly linked to its ability to
bind to FcγR and perform effector functions (258). Although
indirectly, the above evidence suggests that Fc and Fab are
intrinsically linked.

Looking back to complement, we now know that antigen
binding is indeed required for the formation of IgG hexamers,
leading to a bending of Fc and Fc-Fc interactions (239). Since
these hexamers do not form stochastically in solution, and since
membrane bound antigens likely do not stochastically form the
hexameric shape required for complement deposition, a system
of allostery seems a likely explanation for how antigen binding
leads to complement associated macromolecular assembly (259).
Higher resolution studies of the complement activation complex,
perhaps using single particle studies, may be required to confirm
this and to piece together what intermediate IgGs look like
moving into the complement-bound state (259, 260).

Detailed structures of full IgGs alone will also provide
critical data showing the structure of Fc in solution when
not influenced by neighbors within a crystal lattice. Indeed,
comparing structures of free Fc and Fc bound to FcγR show
that FcγR binding induces a change in Fc from symmetric
to asymmetric, which precludes a second FcγR from binding
(Figures 1D, 9C) (12). It would be most intriguing to determine
if antigen binding pushes Fc toward a more asymmetric shape,
perhaps facilitating FcγR binding. The increasing capacity of
cryo-EM to solve structures of very small, Fc-sized molecules
as well as to deal with the type of sample heterogeneity
associated with IgGs will prove to be a valuable tool toward
these efforts.

Together, these data collectively fit into a model of leukocyte
variability in relation to effector functions and suggest a
mechanism that inherently must include allostery. This is not to
suggest that antigen induced aggregation is not necessary, but
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that there are likely complementary mechanisms that lead to
effector functions.

Reconciling Antibody-Antigen and
Antibody-FcγR Structures
Given the above discussions, we are led to the idea that antibody
angle-of-approach and Fc presentation may indeed play an
important role in how well an antibody performs NK cell ADCC.
Many structures of antibodies in complex with viral antigens
show that antibody Fab can bind at multiple angles-of-approach
(Figure 4) (102). This may suggest that the Fc domains of these
antibodies are differentially displayed to the immune system
as well. How close antigens are to each other, as well as their
individual size and shape, could influence how Fc domains are
presented as well as the level of avidity experienced (Figure 11A).
There is some evidence to suggest that where an antibody binds
on antigen may influence innate effector activity for HIV (261),
influenza (262, 263) and Ebola viruses (104, 264), among other
examples, but there is not yet convincing molecular data to
provide a general model that ties these observations together.

Given the space requirements for receptor signaling to occur
between cells, along with the details of structures of both Fab-
antigen and Fc-FcγR complexes, there is some suggestion that
antibody Fc and upper-hinge must be presented in a specific way
in order for FcγRs to recognize them, with the Fc folded over
parallel to the effector cell surface (Figures 8B, 9B,C) (2, 12).
This provides space for every type of FcγR so far described to
dimerize in the extracellular region without clashing with bound
Fc (Figure 9B). This type of binding is well-suited to antibody
structure, which is a unique ligand because of flexibility between
antigen and receptor binding domains provided by hinge-
regions. The degree of flexibility can vary depending on subclass
and may correlate with FcγR binding and activation activity.
In this model, antibodies could be quite effective at assembling
the ADCC activation complex over a wide range of antibody
binding angles but may be inhibitory in certain situations
(Figure 11B). Additionally, this model also provides for the
tuning of activation that could result from less than ideal but
still permissive geometries of FcγR dimer assembly. However,
there are currently no structures of full-length antibody bound
to antigen and/or FcγRs that would provide the types of details
required to reconcile structures of isolated domains in the context
of the IS. This field is ripe for discovery and will benefit from
future studies that reflect those already accomplished in the T
cell field.

NEXT-GENERATION APPROACHES TO
STUDYING NK CELL ADCC

Much of our understanding of NK cell ADCC, as well as
antibody effector function in general, is based on individual
biochemical studies or fragmented structural biology. Tying these
data together is proving to be difficult and is only beginning to
paint a picture that seems pervasive throughout immunology,
which is that the immune system is dynamic and variable as well
as extensively complex. Therefore, many scientists are beginning

to rethink altogether how they approach such difficult questions
as those regarding antibody effector function. The next wave
of impactful research toward defining realistic and meaningful
hypotheses about NK cell function and how to design better
therapeutics will almost certainly derive from taking a “bigger
picture” approach, such as offered from omics-type studies.
Below, I will describe what these approaches are and how they
are being used to answer questions regarding NK cell activation.

Transcriptomics, Proteomics, and
Metabolomics
The term “omics” refers to the collective, encompassing and
complete study of a particular aspect of biology (265). The major
contributors to integrative omics techniques, now referred to
as “systems biology,” are genomics, transcriptomics, proteomics
and metabolomics. These techniques refer to, respectively, the
collective and unbiased study of the genes, RNA, proteins and
metabolites that make up single cells, tissues or whole organisms
(266, 267).

Historically, these fields have been quite niche owing to the
immense amount of time, expertise and expense associated with
using any one of them for analyzing a biological question. For
example, sequencing the first human genome is estimated to
have cost $2.7 billion US dollars and took nearly 15 years to
complete. However, advances in technology have not only made
these techniques much cheaper and faster, but they are now
accessible to nearly any scientist in any field. Much of this
success has stemmed from advances in computing, automation
and bioinformatics that can handle the massive amounts of
samples and data needed to be analyzed. Only recently have
these techniques found a foothold in the service-based scientific
industry as well as core technologies at many academic institutes.
We are now beginning to see immunologists exploit omics as
a means of hypothesis generation and an exciting new way to
tackle the study of disease, donor immune response variability
and mining for distinct cellular subsets (268).

Omics Studies on NK Cell Activation
Historically, NK cells are distinguished by cell surface markers
which tend to lump NK cells into two populations as cytotoxic
and regulatory, CD56bright and CD56dim, respectively (35).
However, transcriptomic profiles of NK cells are beginning
to demonstrate a wide range of heterogeneity within NK cell
populations. For example, one study utilized single cell RNA
sequencing (scRNA seq) to determine transitional populations
of NK cells within bone marrow and PB that exist between
these two examples (269). Another group demonstrated that
NK cells exhibit organ-specific transcriptional profiles (270).
Overall, these studies indicate an ability of NK cells to adapt
to their location and to maintain plasticity during development.
Additionally, transcriptomics has been able to distinguish up to
29 different immune cells types based off of their gene expression
profiles, offering a useful tool to study NK cell activation in the
context of multiple immune cells or within a whole organism
(271, 272).

NK cell activation has also been shown to induce unique
transcriptional profiles depending on the type of activation
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FIGURE 11 | Proposed model of antibody tuning ADCC through activation complex geometry. (A) The immune synapse involves a finite distance between target and

effector cell; therefore, the spacing requirements present a “permissive zone” in which antibodies can bind. (i) antigens that are short (i.e., Ebola GP) require antibodies

to bind to epitopes on the top of the antigen, while antigens that are longer (i.e., influenza HA), require antibodies to bind lower down on the antigen in order for proper

binding to FcγRs. (ii) Antigens that are monomeric may be less likely to facilitate FcγR dimerization/aggregation, while those with higher oligomers present multiple

epitopes that increase avidity and chances for FcγR clustering. (iii) Antigens that are of low density may prevent ADCC due to the inability for enough FcγRs to cluster.

Conversely, those with higher antigen density present more opportunities for antibodies to induce FcγR clustering and thus higher levels of ADCC. (B) (i) If antibodies

bind to antigen in an epitope that presents Fc domains in a way that allows FcγRs to dimerize in an ideal way, then intracellular domains can be properly

phosphorylated and ADCC is potent. (ii) Potentially, antibodies could bind at non-ideal epitopes, but this may still allow FcγR dimerization, although non-ideally thus

preventing full intracellular domain signaling motifs from forming, resulting in partial ADCC. (iii) Some epitopes may present antibody Fc in geometries that physically

will not allow FcγR dimerization, thus blocking kinase access and resulting in no ADCC.

stimulus (97). For example, comparison of ADCC, cytokine
and direct activation of primary NK cells showed unique
gene expression profiles and differential expression of genes
commonly associated with NK cell activation (196). Further, HIV

infected individuals have NK cells that differ in their activation
profiles from healthy donors, indicating that viral infection can
alter NK cell activity. This has similarly been demonstrated for
CMV infected individuals, where NK cells can adapt over time
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and act more like an adaptive immune cell (273). These type of
RNA seq studies expose the subtleties in NK cell activity that can
be distinguished by gene expression data.

Proteomic analysis serves as an important way to understand
the relationships to gene expression data. The earliest studies
of proteomes in NK cells utilized gel electrophoresis to identify
membrane enriched proteins, differences in proteins found in
activated vs. resting NK cells as well as the identity of microvesicle
enriched proteins (274, 275). As technology has advanced, larger
numbers of proteins have been identified in an unbiased manner,
demonstrating the growing utility of proteomics (276, 277). A
more recent study used proteomic analysis to identify proteins
important for NK cell proliferation and pointed a pathway
toward increasing the activity of NK cells in a tumor model
through therapeutic blockade (278).

Metabolic studies have also revealed a new aspect of
NK cell biology and differentiation based on the influence
of metabolic factors outside of traditional routes of cellular
influence, and these studies have been well-reviewed recently
(279–282). Indeed, large differences in metabolic processes
have been identified within NK cell subsets. These differences
can help distinguish the regulatory, cytotoxic, and memory
functions of NK cells. Robust metabolism is essential for efficient
cytotoxicity, but metabolic evidence suggests that activated
NK cells use alternative routes for oxidative phosphorylation
(279, 280). Generally, our knowledge of NK cell metabolism
is quite limited and has left many questions unaddressed,
such as the role of metabolism in organ specific and tissue

resident NK cells or whether metabolism can be used to
modulate immunotherapies. Further, this field has not tapped
into the robust tools of metabolomics yet, which could provide
much broader in vivo based knowledge. Although, the field of
discovery-based metabolomics is becoming a more accessible
technique, it unfortunately still requires large amounts of starting
material, which can be inhibitory in certain experimental setups.

CLOSING REMARKS

So, what does make an effective antibody for recruiting NK cell
ADCC? Unsurprisingly, the answer to that question remains
incomplete, but what is clear is that fully understanding the
underlying mechanisms of antibody effector functions is a
complex and difficult task. While this review was certainly
not meant to be comprehensive, it was meant to set a stage
for understanding the more subtle roles of the molecular
underpinnings that seed NK cell activation in the context of
ADCC, as well as to provide a perspective from the point-of-
view of structural biology. The roles of structural and biophysical
constraints entailed in antibody-based cellular activation have
historically been overlooked, and subsequently poorly explored
and understood. When developing an antibody with therapeutic
potential for NK cell recruitment, one must ask many questions
beyond simply “what is the target?” For example, where exactly
does this antibody bind?What does the target look like? How will
the antibody coordinate activating ligands as a full IgG? How will

FIGURE 12 | Potential model for IgG effector function fate. (1) Free IgG binds to antigen, (2) causing a change in presentation of the IgG Fc domain. (3) Depending on

the arrangement of antigen and/or antibody phenotype, Fc-Fc interactions are facilitated in different oligomeric arrangements. (4) Specific arrangements of Fc-Fc

domains influence the binding of FcγRs or C1q, thus resulting in ADCC, CDC or potentially other effector functions.
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this interplay with the rest of the IS? How will these factors affect
the dynamics and coordination of activation?

These types of considerations are important because we have
learned from experience that in vitro activity and validation
have not always translated well to the clinic. While brute force
in evaluating many different potential targets and antibodies
is certainly a way to address the gap in treatment for many
diseases, a far more cost effective and long-term solution is to
rethink how to approach antibody therapeutic research. While
comparing autoimmune disease, genetic disorders, cancer and
pathogenic infection is difficult to do, the human immune system
is designed to be a one stop shop for handling all of these
conditions. Therefore, tackling how to harness that power should
be, in theory at least, straightforward to do once we gain a better
understanding of how it operates.

By returning to the basic biology of NK cell activity,
and understanding the molecular nature of activation, we
can develop more broadly applicable principles of antibody
function and correlates of protection that can be consistently
relied upon. Already, the many advances pointed out in
this review begin to paint a picture of a more concerted
mechanism for how antibodies function post-antigen binding,
offering an exciting potential model for antibody effector
fate (Figure 12). By combining this simple model with
increasing knowledge regarding antibody/receptor glycosylation,
as well as the more complex functions of tissue resident
immune cells, engineering antibody function may become much
more straightforward.

In the future, access tomany of themore complex applications
discussed here, such as single cell transcriptomics andMINFLUX
live cell nanoscopy, may become more commonplace as

technology becomes cheaper and computer processing power
become more powerful and widely available. With access to
such technologies, immunologists can add new layers to their
understanding of how molecular perturbations affect higher
order cellular functions. This density of information will make
understanding antibody function in vivomuch easier, by building
a basis of understanding across biological scales up to the
organismal level.
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