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ABSTRACT In clinical settings, rapid and accurate diagnosis of antibiotic resistance
is essential for the efficient treatment of bacterial infections. Conventional methods
for antibiotic resistance testing are time consuming, while molecular methods such
as PCR-based testing might not accurately reflect phenotypic resistance. Thus, fast
and accurate methods for the analysis of bacterial antibiotic resistance are in high
demand for clinical applications. In this pilot study, we isolated 7 carbapenem-sensitive
Klebsiella pneumoniae (CSKP) strains and 8 carbapenem-resistant Klebsiella pneumoniae
(CRKP) strains from clinical samples. Surface-enhanced Raman spectroscopy (SERS) as a
label-free and noninvasive method was employed for discriminating CSKP strains from
CRKP strains through computational analysis. Eight supervised machine learning algo-
rithms were applied for sample analysis. According to the results, all supervised machine
learning methods could successfully predict carbapenem sensitivity and resistance in K.
pneumoniae, with a convolutional neural network (CNN) algorithm on top of all other
methods. Taken together, this pilot study confirmed the application potentials of sur-
face-enhanced Raman spectroscopy in fast and accurate discrimination of Klebsiella pneu-
moniae strains with different antibiotic resistance profiles.

IMPORTANCE With the low-cost, label-free, and nondestructive features, Raman spectros-
copy is becoming an attractive technique with great potential to discriminate bacterial
infections. In this pilot study, we analyzed surfaced-enhanced Raman spectroscopy
(SERS) spectra via supervised machine learning algorithms, through which we confirmed
the application potentials of the SERS technique in rapid and accurate discrimination of
Klebsiella pneumoniae strains with different antibiotic resistance profiles.

KEYWORDS Klebsiella pneumoniae, carbapenems, surface-enhanced Raman
spectroscopy, machine learning algorithm, antibiotic resistance profile

Many microbial organisms are pathogenic to human beings and are able to cause
infectious diseases (1). In addition, drug-resistant bacterial pathogens have been

emerging due to the overuse and misuse of antibiotics (2), which leads to difficulty in
bacterial control and imposes further threats upon global public health. Thus, fast and
accurate detection of antibiotic-resistant bacteria is necessary for clinical treatment of
bacterial infection and prevention of bacterial transmission (3). Klebsiella pneumoniae is
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an encapsulated Gram-negative and facultative anaerobic bacterium that was first
described by Edwin Klebs in 1875 and belongs to the Enterobacteriaceae family (4). It
is also an opportunistic bacterial pathogen that causes pneumonia-derived sepsis,
leading to high morbidity and mortality (5). Due to the rapid dissemination of K. pneu-
moniae in the hospital environment, it is easy for the bacterial pathogen to cause noso-
comial outbreaks (6). In fact, K. pneumoniae is reported to be responsible for around
one-third of all Gram-negative infections in the hospital (7), which makes it the second
most important opportunistic enterobacterium in nosocomial and community infec-
tions just after Escherichia coli (8).

In recent decades, with the increasing abuse of antibiotics in clinical settings, K.
pneumoniae shows frequent acquisition of resistance to antibiotics, which makes the
nosocomial infections caused by the pathogen particularly problematic (8). For exam-
ple, extended-spectrum b-lactamases (ESBLs) mediate resistance to broad-spectrum
cephalosporins and aztreonam, the coding genes of which are usually found on plas-
mids and harbored by K. pneumoniae (9). The increasing use of carbapenems has led
to the abundant emergence of carbapenem-resistant K. pneumoniae (CRKP) strains
(10), while the CRKP strains are defined as being resistant to at least one of the carba-
penem agents, including ertapenem, meropenem, and imipenem (11, 12). Currently,
there are many mechanisms in K. pneumoniae for carbapenem resistance, but few anti-
microbial therapy options exist for infections caused by CRKP (13). Only tigecycline,
colistin, and several aminoglycosides show favorable in vitro activities against CRKP,
which leads to the emergence of strains with colistin resistance among CRKP strains
(7). Due to the difficulty of clinical treatment of CRKP infection, it is therefore important
to discriminate CRKP strains from carbapenem-sensitive Klebsiella pneumoniae (CSKP)
strains with rapidity, cost-effectiveness, and accuracy, which is essential to instruct the
initial antimicrobial use and effective control of the bacterial infection (14).

Surface-enhanced Raman spectroscopy (SERS) is a nondestructive chemical analysis
technique that could improve the weak signals of regular Raman spectroscopy through
interactions between sample molecules and surface plasmons of nanoscale-structured
metal particles (15). In particular, signal-enhancing metal nanostructures, such as silver
(Ag), copper (Cu), and gold (Au), can generate a plasmon resonance electromagnetic
enhancement of the stimulating light, which could greatly increase the signal level of
Raman spectroscopy up to several orders of magnitude (16). However, due to the com-
plexity of Raman spectra, traditional linear analysis is not sufficient for the data-proc-
essing procedures, while machine learning (ML) algorithms are capable of extracting
important features from the sophisticated SERS spectral data sets (15, 16). Thus, SERS
provides a great potential for fast and sensitive microbial detection and identification
with the assistance of appropriate ML algorithms (17). At present, few studies have
applied and compared machine learning methods in terms of SERS spectral analysis in
order to distinguish between CSKP and CRKP strains. In this pilot study, we isolated 7
CSKP and 8 CRKP strains from clinical samples, and their SERS spectra were analyzed
via eight supervised machine learning algorithms. Among these algorithms, CNN
achieved high-level accuracy in predicting CSKP and CRKP strains, with area under the
curve (AUC) values reaching to 99.57% and 5-fold cross validation reaching to 99.78%.
Taken together, this study showed that SERS spectra combined with a deep learning
algorithm could effectively distinguish CSKP strains from CRKP strains, which rein-
forced its potential in real-world applications, such as bacterial diagnosis and antibiotic
stewardship.

RESULTS
Raman spectra of CRKP and CSKP strains. (i) Average Raman spectra. Average

Raman spectra with standard error bands for CRKP and CSKP strains were generated
through calculating the means of signal intensities at corresponding Raman shifts via
both biological and technical repeats (Fig. 1). Although spectral profiles for the two K.
pneumoniae groups were similar, different Raman intensities and characteristic peaks
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were identified, which suggested differences in biochemistry and could be used to dis-
criminate strains of CRKP and CSKP. In addition, the standard error bands (shaded
region) quantitatively reflected the good reproducibility of Raman spectra for CRKP
and CSKP strains, respectively. In order to evaluate the repeatability of Raman spectra,
an average Raman spectrum with a standard error band was also generated for each K.
pneumoniae strain, together with the distributions of characteristic peaks in a dot ma-
trix plot (Fig. S2 in the supplemental material), according to which Raman spectra were
well repeated for each strain.

Meanwhile, we also checked Raman spectra repeatability by calculating the average
Raman spectrum and standard error band for each Klebsiella pneumoniae strain, which
showed that repeatability of Raman spectra was well maintained (Fig. S2A and B).

(ii) Characteristic peaks. Different bacteria have their own combinations of charac-
teristic peaks in Raman spectra due to their unique chemical compositions, which
could be used to distinguish them from each other at different taxonomic levels, such
as species and subspecies, etc. (18). However, raw Raman spectral data are not suitable
for the identification of characteristic peaks due to the unwanted signals (noises) in the
spectra (19). In order to reduce the influences of noises on the identification of charac-
teristic peaks, we used the Savitzky-Golay (SG) smoothing filter algorithm to smooth
the Raman spectral data and reduce noise interference (20). The software LabSpec 6
was then used to identify characteristic peaks with a Gaussian-Lorentzian function (21),
which were marked with black arrows along the spectra (Fig. 1). In order to check

FIG 1 Demonstration of the average SERS spectra for CSKP (N = 280) and CRKP (N = 280). Each
average Raman spectrum was generated from multiple Raman spectra by calculating the mean
Raman intensity at corresponding Raman shift. The characteristic peaks of each average Raman
spectrum were marked with vertical black arrows. Different Raman spectra had their own
combination of characteristic peaks. The shaded band of each Raman spectrum represents 20%
standard error. The x axis shows the Raman shifts from 519.56 cm21 to 1,800.81 cm21, while the y
axis shows the Raman spectral intensity in artificial units (a.u.).
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whether K. pneumoniae strains could be successfully separated solely based on the
unique profiles of characteristic peaks into CSKP and CRKP groups, we also performed
a principal-component analysis (PCA) for the data, which showed that all the samples
could be correctly classified except for two samples, 26-272 and 20-18 (Fig. S3). Thus,
characteristic peaks could not be reliably used for the classification of antibiotic resist-
ance phenotypes.

According to previous studies, characteristic peaks in Raman spectra corresponded
to different biochemical molecules (22). In addition, the more complex the chemical
composition of a bacterium, the richer its Raman spectrum (23). In this study, individual
chemical components represented by characteristic peaks were sourced from previous
reports in the literature and summarized in Table 1. According to the results, CSKP and
CRKP had the same characteristic peaks at 566 cm21 (guanine/thymine/uridine),
654 cm21 (guanine), 723/725 cm21 (nucleic acids), 958 cm21 (carbon-carbon double
bond [C = C]), 1,047 cm21 (phosphorus-oxygen bond [P-O]), 1,129 cm21 (CH2), 1,452/
1,455 cm21 (nitrogen-nitrogen double bond [N = N] aromatic and aliphatic), 1,581/
1,582 cm21 (guanine/adenine), and 1,690 cm21 (carbon-oxygen double bond [C = O],
C = C). For details of the biological meanings and the corresponding references of all
the characteristic peaks, please refer to Table 1.

Supervised machine learning algorithms. (i) Algorithm comparison. The pur-
pose of supervised machine learning analysis is to construct appropriate prediction
models for recognizing Raman spectra in between CSKP and CRKP strains. In this study,
we compared eight supervised machine learning algorithms in terms of their capacities
in predicting Raman spectra of CSKP and CRKP strains, which included convolutional
neural network (CNN), gradient boosting (GB), linear discriminant analysis (LDA), k-
nearest neighbors (KNN), random forest (RF), adaptive boosting (Adaboost), decision
tree (DT), and support vector machine (SVM). The process of a supervised learning
algorithm is to divide the data into independent training and test sets. Data in the
training set will be labeled first, which will then be trained to obtain an optimal predic-
tion model that will be applied to unlabeled test data and mapped into output results.
The performance of each algorithm was measured by four indicators, accuracy (ACC),
precision, recall, and F1 (F1 is an overall measure of a model’s accuracy that combines
precision and recall, a good value of which indicates low false positives and low false
negatives). Cross-validation (CV) is also an efficient method for assessing effectiveness,
overfitting, and stability of supervised machine learning models when sample size is

TABLE 1 Characteristic peaks in the average Raman spectra of CSKP and CRKP strains and
the corresponding chemical components

Wavenumber (cm21) Band assignment Reference
566 Guanine/thymine/uridine 40
654 Guanine 41
723/725 Nucleic acids 42
783 Thymine 43
890 Tryptophan 44
915 C-C (carbon–carbon single bond) 45
958 C = C 41
1,047 P-O 46
1,129 CH2 41
1,209 Phenylalanine/tyrosine 47
1,215 CH 48
1,244 Amide III 49
1,321 Guanine 50
1,328 Adenine ring 51
1,452/1,455 N = N aromatic and aliphatic 52
1,581/1,582 Guanine/adenine 51
1,636 Amide I 50
1,690 C = O, C = C 52
1,898 C = O 52
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small (24). Thus, in this study, we performed 5-fold cross-validation (5-fold CV) for all
the supervised machine learning algorithms.

In specificity, according to the results, CNN had a prediction accuracy of 100%, and
its 5-fold cross-validation reached to 99.78%, which made the algorithm best in pre-
dicting CSKP and CRKP strains compared with the other 7 supervised machine learning
algorithms. As for GB and LDA, their performance measures were exactly the same
(ACC = 99.4%, precision = 99.4%, recall = 99.38%, F1 = 99.4%). However, 5-fold cross-
validation showed that GB (94.91%) had higher average accuracy than LDA (81.1%),
which suggested that GB was more stable than LDA in terms of Raman spectral analy-
sis. The other five algorithms also showed comparatively good performance in terms
of prediction capacities, among which SVM (ACC = 93.54%) had the lowest accuracy.
Taken together, CNN was found to be the best prediction model, while SVM was the
worst. However, when using 5-fold CV as a measurement, LDA had the worst perform-
ance. For details of the performance measures for the eight algorithms, please refer to
Table 2. Moreover, it was also noteworthy that two kernel functions of the SVM algo-
rithm, linear function (linear) and radial basis function (rbf), were compared, according
to which linear kernel function (ACC = 93.54%, precision = 93.54%, recall = 93.45%,
and F1 = 93.49%) performed better than rbf kernel function (ACC = 80.36%, preci-
sion = 80.36%, recall = 80.44%, and F1 = 80.36%). Thus, SVM with linear kernel function
was more appropriate for dealing with dichotomy problems than the rfb kernel func-
tion that was not included in Table 2.

(ii) Receiver operating characteristic curves. To measure the advantages and dis-
advantages of each supervised machine learning model used in this study for the pre-
diction of CSKP and CRKP strains, receiver operating characteristic (ROC) curves were
used to compare the sensitivity and specificity of the prediction results of each model
(Fig. 2). The x axis represents specificity, which is also called the false-positive rate. The
closer the x axis is to zero, the higher the accuracy rate. The y axis represents sensitiv-
ity, which is also known as true positive rate (sensitivity). The larger the y axis, the bet-
ter the accuracy. Therefore, the closer the ROC curve is to the upper left corner, the
higher the accuracy of the experiment. Meanwhile, area under curve (AUC) was also
calculated for each ROC curve in order to quantitatively measure the performance of
each model. The larger the value of AUC, the better the performance of the model
(Fig. 2). According to the results, CNN (AUC = 0.9957) had the best performance, which
was tightly followed by LDA (AUC = 0.9745) and Adaboost (AUC = 0.9767). As for other
models, their AUC values were also comparatively good and were all greater than 0.95,
except for SVM (AUC = 0.9414), which had the lowest AUC value.

(iii) Confusion matrix. A confusion matrix is a visual display used to describe the
performance of a classification model on a set of test data for which the true values are
known. Each column of the matrix represents the sample predicted by the model,
while each row of the matrix represents the true status of the sample. In this study, we
drew a set of binary classification confusion matrices for the eight supervised machine
learning models (Fig. 3). Compared with other models, the results showed that the final

TABLE 2 Comparison of performance measures of eight different supervised machine
learning algorithms

Algorithms ACCa Precision Recall F1 5-Fold CVb

CNN 100% 100% 100% 100% 99.78%
GB 99.40% 99.40% 99.38% 99.40% 94.91%
LDA 99.40% 99.40% 99.38% 99.40% 81.10%
KNN 98.21% 98.21% 98.23% 98.21% 94.90%
RF 98.21% 98.21% 98.28% 98.21% 94.65%
AdaBoost 97.62% 97.62% 97.57% 97.62% 95.17%
DT 96.43% 96.43% 96.47% 96.43% 93.63%
SVM 93.54% 93.54% 93.45% 93.49% 93.43%
aAlgorithms were ranked from high to low values of accuracy (ACC).
b5-Fold CV, fivefold cross validation.
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recognition accuracy of the CNN model for the two groups of Raman spectra, CSKP
and CRKP, was the best and reached to 100%, which verified the feasibility of the CNN
model for the prediction and classification of bacterial antibiotic-resistant and antibi-
otic-sensitive phenotypes based on SERS spectra.

Effects of signal-to-noise ratio on machine learning accuracy. During the gener-
ation of Raman spectra from bacterial samples, it was impossible to avoid the interfer-

FIG 2 ROC curves of eight supervised machine learning algorithms used in this study. Through
comparison, it could be seen that the CNN model (AUC = 0.9957) had the best performance for
predicting CSKP and CRKP strains in this study; TPR, true positive rate; FPR, false positive rate.

FIG 3 Confusion matrices for eight machine learning algorithms in terms of classification of CSKP and CRKP strains. For each
confusion matrix, rows correspond to phenotypes (antibiotic resistance or sensitivity) identified by standard biochemical tests (true
class), while columns correspond to phenotypes predicted by supervised machine learning algorithms (predicted class). Numbers in
the confusion matrix stand for the percentage of correctly classified (diagonal) or misclassified (off-diagonal) spectra, respectively.
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ence of many uncontrollable factors, including environmental noise, fluorescence, and
radiation, etc. The existence of a variety of interference noises requires higher anti-in-
terference ability and robustness of classification algorithm. In this study, we added ar-
tificial noises to raw Raman spectral data via Gaussian noise interference with different
SNRs (1 db, 2 db, 3 db, 5 db, 15 db, 25 db, and 35 db [decibels]) and then compared
the effects of SNR on the classification accuracy of eight supervised machine learning
algorithms (Fig. 4). According to the results, the general trend was that the higher the
SNR, the better the classification accuracy. In addition, CNN showed better stability
and higher accuracy than the other seven tested algorithms. Thus, CNN had the best
anti-interference ability when dealing with raw Raman spectra data.

DISCUSSION

In recent years, multidrug-resistant (MDR), extensively drug-resistant (XDR), and
pan-drug-resistant (PDR) bacterial pathogens are increasingly being reported world-
wide and are not uncommon to be identified in different bacterial species, such as
Pseudomonas aeruginosa, Acinetobacter baumannii, and Klebsiella pneumoniae, which
leads to higher outbreak potentials and international spread of bacterial pathogens
(25). As an opportunistic pathogen, K. pneumoniae is a natural inhabitant of the gut
microbiota and is also commonly encountered in hospital-acquired infections (7). In
addition, K. pneumoniae can cause many serious diseases, such as pneumonia, urinary
tract infections, and bloodstream infections, while increasing numbers of strains resist-
ant to antibiotics have been reported due to antibiotics abuse. According to the CLSI
guidelines, CRKP has been defined as the first clinical K. pneumoniae-positive culture
from inpatients with resistance to at least one of the following carbapenems: merope-
nem, imipenem, and ertapenem (12). Since carbapenems are the last line of defense
against multidrug-resistant Gram-negative infections (26), CRKP represents a great
challenge for clinical practitioners (4). Thus, rapid and accurate identification of CRKP is
crucial for prescribing antibiotic therapy and relevant treatment strategies (4). Since all
the CRKP strains were multidrug resistant, we checked other antibiotic-resistant phe-
notypes for all the CSKP and CRKP strains isolated in this study in addition to carbape-
nem resistance. The complete antibiotic resistance profiles are presented in Fig. S1A in
the supplemental material and are detailed in Table S1 (CRKP) and Table S2 (CSKP). A
PCA algorithm separated CRKP and CSKP strains well into two independent groups
(Fig. S1B), while hierarchical clustering analysis (HCA) clustered CRKP and CSKP into

FIG 4 Quantitative analysis of the influences of different SNR on eight supervised machine learning algorithms. As seen in the figure,
with the increment of SNR added to raw Raman spectra, accuracy of classification algorithms generally increased. Among all the
models, CNN showed the strongest robustness in its antinoise ability. When 1-db SNR was added to the Raman spectra, CNN could
still classify Raman spectral data with an accuracy rate over 90%.
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two different hierarchies except for one misclassification (Fig. S1A), that is, sample 16-
2. The results indicated that the two groups of K. pneumoniae strains were intrinsically
different in terms of their antibiotic resistance profiles, although capacity of statistical
algorithms differed in separating the samples into corresponding groups solely based
on antibiotic-resistant profiles.

Traditional methods for the detection of antibiotic resistance usually take at least 6
to 18 h for preliminary results and 48 h or longer for definitive results, which signifi-
cantly delays the choice of an appropriate antimicrobial therapy (3), not even mention-
ing the fastidious and nonculturable bacterial pathogens. Thus, novel methods are
needed for fast and reliable identification of bacterial antibiotic resistance. Although
Raman spectroscopy (RS) has been considered a potential technique with label-free
and noninvasive features for the analysis of bacterial pathogens, there is currently no
real-world applications of RS in clinical settings for bacterial analysis due to various
restrictions, such as weak Raman scattering effect and low reproducibility and repeat-
ability, etc. (15). Currently, surface-enhanced Raman spectroscopy (SERS) has been
extensively developed to overcome the weak Raman scattering effect, which uses me-
tallic nanoparticles (gold, silver, and copper) to concentrate electromagnetic energy
via surface plasmons (27), although the reproducibility and repeatability of SERS is also
debatable (28). For example, Witkowska et al. systematically compared the differences
between RS and SERS in terms of bacterial detection, according to which SERS spectra
had much better quality than the normal Raman spectra for both Escherichia coli and
Bacillus subtilis (29). In addition, low reproducibility and repeatability are caused by sev-
eral uncontrollable external factors during an experiment (30), which could be partially
reduced through increased number of biological and technical repeats. An averaged
Raman spectrum with standard error was thus generated for the analysis of character-
istic peaks (Fig. 1), which was also used as the representative spectrum of a specific
bacterial strain (Fig. S2). Taken together, due to the greatly enhanced signal intensity,
SERS was applied to all the K. pneumoniae strains for antibiotic resistance analysis in
this study.

Due to the complexity of SERS spectra, traditional statistical methods are not
sufficient to deal with the data analysis procedures (15). Thus, advanced computa-
tional methods such as supervised machine learning algorithms have been
recruited for sample prediction. For example, Wang et al. (31) used CNN- and artifi-
cial neural network (ANN)-classified and predicted 18 Arcobacter species from
clinical, environmental, and agri-food sources with an accuracy rate of 97.2%.
In addition, Tang et al. also successfully identified a set of clinically isolated
Staphylococcus species via the combination of surface-enhanced Raman spectral
fingerprinting and machine learning algorithms, which also confirmed the poten-
tial applicability of the SERS technology in clinical diagnostics (17). In terms of the
differentiation of antibiotic resistance and sensitivity in bacterial strains, a variety
of studies have addressed this question. However, most of the studies used simple
statistical models, such as linear discriminant analysis (LDA) and principal-compo-
nent analysis (PCA) for data analysis. For example, Verma et al. used partial least
squares-discriminant analysis (PLS-DA) to study Raman spectra of Escherichia coli
strains treated with bacteriostatic and bactericidal antibiotics, which identified
characteristic peaks that are altered by antibiotic concentrations (32). In addition,
Cheong et al. analyzed drop-coating deposition SERS spectra via PCA and SVM to
identify quinolone-resistant K. pneumoniae strains (33).

We applied an advanced SERS technique coupled with machine learning algo-
rithms to clinically isolated K. pneumoniae strains, through which CSKP and CRKP
strains were rapidly and accurately recognized. A total of eight commonly used
supervised machine learning methods, including AdaBoost, CNN, DT, GB, KNN,
LDA, RF, and SVM, were performed on SERS spectral data and compared in terms of
their capacities in predicting CSKP and CRKP strains. Among these algorithms, CNN
consistently performed best based on all the evaluation indicators (Table 2), ROC
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curves (Fig. 2), and confusion matrix (Fig. 3), achieving 99.78% accuracy during 5-
fold cross-validation. Previously, Ho et al. (34) used convolutional neural network
(CNN) and support vector machine (SVM) methods to successfully identify methicil-
lin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive S. aureus
(MSSA) with an accuracy of 89 6 0.1%. Thus, the pilot study showed that CNN could
be used for antibiotic resistance predictions in differential bacterial species with
better performance. Moreover, by comparing with other machine learning meth-
ods used in this study, CNN could handle complex regression and classification
problems without assumed mathematical equations between input and output,
leading to high computational efficiency and strong fault tolerance (31). So far, few
studies have paid attention to how Raman spectral preprocess influenced the anal-
ysis of machine learning algorithms. Our study also compared anti-interference
capacities of these algorithms in terms of artificially added noises (Fig. 4), which
consistently revealed that CNN performed the best compared with other super-
vised machine learning algorithms. Thus, we concluded that CNN has good robust-
ness on low signal-to-noise ratio data in the SERS spectra.

In this pilot study, we performed comparative analyses of supervised machine
learning algorithms on discriminating CSKP and CRKP strains via SERS spectra.
Although all the methods achieved relatively high prediction accuracies, there are
still many aspects that need to be improved for the potential application of the
method in clinical settings. For example, the models that we constructed were not
robust and sufficient for real-world applications due to the limited number of K.
pneumoniae strains used in this study. In addition, since both CSKP and CRKP
strains were multidrug-resistant bacteria, other antibiotic resistances rather than
carbapenem resistance may also be involved in the identification of CSKP and CRKP
strains because of their contributions to the generation of SERS spectra. Thus, more
SERS spectra from clinically isolated CSKP and CRKP strains should be used for
training the machine learning models, which would greatly improve the quality
and robustness of the models. In addition, antibiotic resistance profiles during K.
pneumoniae isolation should be strictly controlled, and those strains only with dif-
ferences in carbapenem sensitivity and resistance should be used for SERS spectral
analysis, while the profiles of other antibiotic resistance should be the same. In this
way, machine learning models could reliably predict CSKP and CRKP strains solely
based on carbapenem resistance rather than other antibiotic resistances. It should
be noted that, although acquisition of the signal for a single SERS spectrum took
only seconds, the method used in this study still required bacterial culture and iso-
lation, which made the overall procedure time consuming. In future studies, we
will aim to use machine learning models to recognize CSKP and CRKP strains from
clinical samples directly, which will greatly improve the efficiency of the rapid diag-
nostics of carbapenem-resistant and carbapenem-sensitive K. pneumoniae strains.

Conclusion. Surface-enhanced Raman spectroscopy has been widely studied in
terms of its application potentials in the diagnosis of bacterial pathogens and detec-
tion of antibiotic resistance. In this study, we calculated the average SERS spectra for
CSKP and CRKP strains, through which the profiles of their characteristic peaks were
identified. We then explored supervised machine learning algorithms in terms of their
capacities in predicting CSKP and CRKP strains via SERS spectra. According to the
results, eight supervised machine learning methods could successfully predict carbape-
nem sensitivity and resistance in K. pneumoniae, with the CNN algorithm on top of all
other methods. In addition, CNN also performed best on SERS spectra with low signal-
to-noise ratios. Taken together, our study confirmed the application potentials of sur-
face-enhanced Raman spectroscopy in fast and accurate discrimination of K. pneumo-
niae strains with different antibiotic resistance profiles.

MATERIALS ANDMETHODS
Bacterial strains. Both CSKP (n = 7) and CRKP (n = 8) strains were directly isolated from clinical sam-

ples and cultured on Columbia blood agar plates (35°C, 18 to 24 h) at the Department of Laboratory
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Medicine, Affiliated Hospital of Xuzhou Medical University. It is noteworthy that all the clinical samples
were previously deidentified, and only bacterial isolates were analyzed in this study. Drug susceptibility
was identified through Vitek2 Compact, an automated microbial identification (ID)/antibiotic susceptibil-
ity testing (AST) instrument (bioMérieux, La Balme-les-Grottes, France) in the Department of Laboratory
Medicine, Affiliated Hospital of Xuzhou Medical University. Carbapenem resistance together with other
antibiotic resistance profiles were determined according to the MIC breakpoint standards of the CLSI
Subcommittee on Antimicrobial Susceptibility Testing (M100-S30) (Tables S1 and S2 in the supplemental
material) (35). All bacteria were confirmed with biochemical tests and matrix-assisted laser desorption
ionization–time of flight mass spectrometry (MALDI-TOF MS) for strain typing and were then stored at
280°C (Thermo Fisher, USA). In addition, principal-component analysis (PCA) and hierarchical clustering
analysis (HCA) methods were applied to group these bacteria into two groups based on their antibiotic
resistance profiles. Distribution patterns of antibiotic resistance in the CSKP and CRKP strains were
visualized through interactive Tree of Life (iTOL) and are presented in Fig. S1 (36).

Preparation of AgNO3 solution. AgNO3 (33.72 mg; Sinopharm, Beijing, China) was weighed and
gently mixed with 200 mL of deionized water (ddH2O) in a clean sterile triangular flask, which was
then heated on a magnetic stirrer (ZNCL-BS230, Shi-Ji-Hua-Ke Pty. Ltd., Beijing, China) until boiling;
then, 8 mL of 1% (wt) sodium citrate was added into the mixture and stirred with a speed of 650 r/
min. Heating was stopped, and stirring was continued until the mixture cooled to room tempera-
ture (RT). The final volume was set to 200 mL via addition of ddH2O. One milliliter of the above-
made solution was transferred to a 1.5-mL Eppendorf tube and centrifuged at 7,000 r/min for 7 min
(centrifuge 5430 R, Eppendorf, USA); the supernatant was discarded after centrifugation, and the
pellet was resuspended with 100 mL of ddH2O to get a uniform milky gray solution. The solution is
the negatively charged silver nanoparticle (AgNP) substrate. The solution was stored in the dark at
RT for later use.

Surface-enhanced Raman spectroscopy. After each K. pneumoniae strain was cultured on the agar
plate overnight, a single colony was picked and inoculated into 15 mL of phosphate-buffered saline (PBS)
with vigorous vortexing. Fifteen microliters of negatively charged AgNPs was then mixed with the PBS solu-
tion, which was then dropped onto a silicon wafer to air dry. The dried spot was then measured via a com-
mercial i-Raman Plus Raman spectrometer BWS456-785H (B&W Tek, USA). The measurement settings were
set as follows: helium-neon (HeNe) laser power, 20 mW; wavelength, 785 nm; detector type, high quantum
efficiency charge-coupled device (CCD) array; Raman shift range, 175 to 2,700 cm21; spectral acquisition, 5 s;
resolution, ,3.5 cm21 at 912 nm. The software BWSpec (version 4.10) was used to generate Raman spectral
data. Each spectrum consisted of 657 points measured in the range of 519.56 cm21 to 1,800.81 cm21. A total
of 15 Klebsiella pneumoniae strains were included in this experiment, which includes 7 strains of CSKP
(N = 280) and 8 strains of CRSP (N = 280). Thus, a total of 560 surface-enhanced Raman spectra were col-
lected, which was denoted by the letter N within the parentheses for each group of K. pneumoniae strains.
For details, please refer to Table S3.

Raman spectra data analysis. Raman spectral analysis requires pretreatment of raw data in order
to improve signal-to-noise ratio (SNR) and normalize spectral distributions, which includes curve
smoothing and denoising, baseline correction, and spectral normalization. In particular, averaged
Raman spectra were generated for CSKP and CRKP strains by calculating the averaged value of in-
tensity with artificial units (a.u.) at each Raman shift in the range of from 519.56 cm21 to
1,800.18 cm21, respectively. LabSpec 6 (HORIBA Scientific, Japan) was then used for processing and
smoothing the averaged Raman spectra. Characteristic peaks were calculated by following the
following steps: (i) a “smoothing” function was used to smoothen averaged Raman spectra
(degree of 4, size of 5, and height of 50); (ii) for baseline correction, the parameters type = polynom,
degree = 6, and attach = NO were set, and “Auto” was selected to start searching for the characteris-
tic peaks; (iii) LabSpec 6 was used to normalize the spectral data automatically in order to better
compare the two curves of CSKP and CRKP; and (iv) the GaussLoren () function was used to search
characteristic peaks with a level of 0% and size of 32, while other parameters were kept at default.
All characteristic peaks were marked with black arrows. We then used the software Origin to gener-
ate error bands for the two averaged Raman spectra, which were based on the 20% standard devia-
tion of Raman effect intensity corresponding to each Raman shift and could reflect the reproducibil-
ity of the experiment. An averaged Raman spectrum with a 20% standard error band together with
characteristic peaks were also generated for each K. pneumoniae strain, which showed the repeat-
ability of Raman spectroscopy for a single K. pneumoniae strain (Fig. S2). In addition, a PCA was per-
formed based on the distribution of characteristic peaks of each bacterial strain in order to separate
all the K. pneumoniae strains into different groups (Fig. S3).

Machine learning algorithms. (i) Data preprocessing. Before machine learning analysis, the soft-
ware Unscrambler X was used to perform baseline correction, smoothing, denoising, and normalization
of the original Raman spectra (37). In this study, we used the Savitzky-Golay (S-G) smoothing filter for
denoised smoothing of Raman spectra, in which the polynomial fitting order was set to 2. For baseline
correction, the multiple scattering correction (MSC) method was used, which could effectively eliminate
the scattering effect of the spectral data and enhance the spectral absorption information related to the
molecular compositions (38). Normalization is a method for simplifying calculation, and a variety of
methods have been developed to normalize the Raman spectrum (24). In this study, we normalized
SERS spectra by column (Raman intensity values at a particular Raman shift). That is, the highest intensity
value (peak value) in each column was selected as the maximum constant so that all the other measured
spectral intensities in the same column were divided to the highest intensity value to realize the normal-
ization of the spectral data (39).
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(ii) Supervised machine learning. In this study, eight supervised machine learning methods, that is,
adaptive boosting (AdaBoost), convolutional neural network (CNN), decision tree (DT), gradient boosting
(GB), k-nearest neighbors (KNN), linear discriminant analysis (LDA), random forest (RF), and support vector
machine (SVM), were compared for their capacities in classifying and predicting Raman spectral data by using
the Python machine learning package “sklearn” (https://scikit-learn.org). Among the eight supervised
machine learning algorithms, CNN is an artificial neural network, and the weights in CNN are trained through
the backpropagation algorithm to achieve deep learning analysis. In this study, we used LeNet-5, a classical
and efficient neural network model, for Raman spectral analysis. The schematic illustration of the network
structure is shown in Fig. 5.

(iii) Evaluation of supervised machine learning algorithms. In order to compare the classification abil-
ity of different machine learning algorithms on Raman spectrum data, we need an evaluation standard to
measure the generalization ability of the model. In the identification of spectral signals, the most commonly
used performance measurements are accuracy (acc) and error rate (error), which has the following relation-
ship: acc = 1 – error. In the evaluation of machine learning models, precision (P) and recall (R) are a pair of
mutually restrictive performance metrics. Normally, the precision rate and recall rate are measurements of
predictive performance. When P is high, R is low and vice versa. Therefore, when evaluating the model, in
order to more intuitively reflect the performance of the model, F1 is used as a metric, which is based on the
harmonic average of precision and recall (24). Because, in this study, sample size is small, when the data are
divided, overfitting may occur due to unbalanced data division. For the CNN model, overfitting is more likely
to occur (24). For the optimal model, we used cross-validation to divide the data set, average the results of
multiple evaluations, and eliminate the adverse effects caused by the unbalanced data division, which is eas-
ier to reflect on small data sets (Fig. 6).

Construction of confusion matrix. A confusion matrix aims to summarize the performance of a
machine learning algorithm. During the construction of a confusion matrix for each supervised machine
learning algorithm, the CNN model was built on Keras architecture while the other seven supervised
algorithms directly call the classifiers in the scikit-learn package, which included KNeighborsClassifier(),
SVC(), DecisionTreeClassifier(), RandomForestClassifier(), AdaBoostClassifier(), GradientBoostingClassifier(),
and LinearDiscriminantAnalysis(), respectively.

Effects of SNR on machine learning accuracy. In order to improve the performance of the model,
data enhancement is usually adopted to expand the sample data and enhance the diversity of data. In
this experiment, seven random SNR Gaussian white noises with different intensity were added to the
Raman spectral data. Then, eight supervised machine learning models trained in this study were used

FIG 5 Schematic illustration of LeNet-5 neural network architecture. LeNet-5 neural network classified
different types of data through convolution and pooling steps and then via the full connection layer.
The SoftMax activation function was finally used for the output layer.

FIG 6 Schematic illustration of 5-fold cross-validation for supervised machine learning algorithms. The 5-fold
cross-validation divided the data into 5 parts and selected 1 part as the test set and the other 4 parts as the
training set at each time. The above steps were repeated five times, and different parts were selected as the
test set at each time, which would provide average model accuracy, indicating how stable each model was.
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for testing the effects of different SNRs on the classification accuracy by following the same procedures
as described above.
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