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Pivotal models and biomarkers 
related to the prognosis of breast 
cancer based on the immune cell 
interaction network
Rui Liu1,6, Xin Yang2,6, Yuhang Quan3,6, Yiyin Tang4, Yafang Lai5, Maohua Wang1 & 
Anhao Wu1*

The effect of breast cancer heterogeneity on prognosis of patients is still unclear, especially the role 
of immune cells in prognosis of breast cancer. In this study, single cell transcriptome sequencing data 
of breast cancer were used to analyze the relationship between breast cancer heterogeneity and 
prognosis. In this study, 14 cell clusters were identified in two single-cell datasets (GSE75688 and 
G118389). Proportion analysis of immune cells showed that NK cells were significantly aggregated 
in triple negative breast cancer, and the proportion of macrophages was significantly increased in 
primary breast cancer, while B cells, T cells, and neutrophils may be involved in the metastasis of 
breast cancer. The results of ligand receptor interaction network revealed that macrophages and DC 
cells were the most frequently interacting cells with other cells in breast cancer. The results of WGCNA 
analysis suggested that the MEblue module is most relevant to the overall survival time of triple 
negative breast cancer. Twenty-four prognostic genes in the blue module were identified by univariate 
Cox regression analysis and KM survival analysis. Multivariate regression analysis combined with risk 
analysis was used to analyze 24 prognostic genes to construct a prognostic model. The verification 
result of our prognostic model showed that there were significant differences in the expression of 
PCDH12, SLIT3, ACVRL1, and DLL4 genes between the high-risk group and the low-risk group, which 
can be used as prognostic biomarkers.

Breast cancer ranks the first in the incidence of female cancer, and maintains an upward trend year by year1. 
Globally, about 2.1 million cases of female breast cancer were newly diagnosed in 2018, accounting for nearly a 
quarter of cancer cases in women2. Although advances in early diagnosis and comprehensive treatment strate-
gies have obviously enhanced the prognosis of breast cancer patients in recent years, nearly 30% breast cancer 
patients still develop metastases after diagnosis and treatment. Here, it should be noted that the 5-year overall 
survival rate for patients with non-metastatic breast cancer was greater than 80%, while the survival rate for 
patients with metastatic breast cancer was less than 30%3,4.

Although the expression of the estrogen receptor (ER), the progesterone receptor (PR) and the ERBB2 recep-
tor (HER2) has laid the foundation for the classification of breast cancer, breast cancer is divided into at least 
five molecular subtypes (i.e., Luminal A, Luminal B, Her2-enriched, Basal-like and Normal-like) based on gene 
expression. However, as research progresses, the genomic/transcriptome level of breast cancer typing keeps 
sustained growth5. These studies confirm the heterogeneity of breast cancer, which is also reportedly one of 
the leading causes of breast cancer treatment failure, recurrence, and patient death6. Tumor heterogeneity not 
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only leads to distinctions in survival and prognosis of disparate patients, but also brings about different biologic 
characteristics of cancer cells and different responses to chemotherapy drugs7.

While the heterogeneity of breast cancer has been found and confirmed, the existence of different molecular 
subtypes of breast cancer and different cell subsets within the same tumor tissue also needs to be taken into 
account in the implementation of individualized treatment of breast cancer8. However, the biological relation-
ships between different clonal subsets and between clones and microenvironment in breast cancer tissues are still 
unclear. Traditional gene sequencing methods can only detect population cells but fail to reflect genetic traits at 
the single-cell level. Single-cell sequencing technology is conducive to studying tumor heterogeneity from dif-
ferences at the single-cell level and facilitating the comparison of differences between different subtypes of the 
same tumor9. In this study, single-cell sequencing data was used to identify the inter-tumor and intra-tumoral 
heterogeneity of breast cancer samples. By the identification of the characteristic genes of immune cell subtypes 
and the combination with known immune cell marker genes, a multi-factor interaction network of receptor-
ligand-transcription factors in breast cancer was constructed. WGCNA was employed to identify the prognostic 
signature, and a prognostic model was constructed for evaluation and verification.

Materials and methods
Data sources and processing.  Two sets of data, GSE75688 and GSE118389, were downloaded from GEO, 
among which GSE75688 contained single cell sequencing data (sRNA-seq) of primary breast cancer and meta-
static breast cancer, and GSE118389 was sRNA-seq data of triple negative breast cancer. The RNA sequencing 
data of gene expression (FPKM value) and clinical information are downloaded from UCSC Xena (https://​gdc.​
xenah​ubs.​net). The data of TCGA-BRCA are processed in the following steps: (1) Remove the samples without 
clinical follow-up information; (2) Remove samples with unknown survival time, less than 0 days and no sur-
vival status; (3) Turn the probe into gene symbol; (4) If one probe corresponds to multiple genes, and the probe 
is removed; (5) Take the median value if the expression with multiple gene symbols. The Create Seurat Object 
function is applied to process the Seurat object. After two sets of data were analyzed by PCA, the Find Integra-
tion Anchors function is used to integrate the two sets of data in the S4 object. Finally, the data splits into three 
groups: primary breast cancer, metastatic breast cancer, and triple negative breast cancer.

PCA dimension reduction, cell clustering and annotation.  The integrated data is preprocessed using 
the Seurat package in R. After PCA dimension reduction, JackstrawPlot and ElbowPlot are used to show the 
overall situation of the data. The default value of K being 20 and the resolution being 0.2. According to experi-
ence and debugging, 0.2 is selected as the threshold value for cell clustering, and 14 cell clusters are obtained. 
Subsequently, marker genes in the Cell marker and Panglao DB databases and genes reported in the literature 
were utilized to annotate the cell clusters10,11. The Find All Markers function in the Seurat package was used 
for differential analysis of single-cell data.min.pct = 0.25, only. pos = TRUE, leave the rest of the fields to their 
default. According to the expression levels of top 5 genes and marker genes of immune cell reported in the lit-
erature, marker genes were displayed by the dotplot and violin plots in each cluster. In addition, the dotplot was 
used to show the proportion of immune cells in different groups in line with the frequencies of individual cells 
in the Primary BC group, the Metastatic BC group and the TNBC group.

Construction of ligand‑receptor network and joint analysis of transcription factors.  In this 
section, The c2.cp.kegg.v7.2.symbols.gmt gene set is obtained from the molecular signature database v7.2 
(https://​www.​gsea-​msigdb.​org/​gsea/​downl​oads.​jsp) download page. The cellphoneDB software (https://​github.​
com/​Teich​lab/​cellp​honedb) is adopted. In order to study the potential interactions between different cell types 
in TME, CellPhoneBD is used for intercellular communication analysis. CellPhoneBD is a publicly available 
repository of selected receptors, ligands and their interactions. CellPhoneBD analysis is carried out using the 
CellPhoneBD Python package (2.1.7). After the software was downloaded to build a favorable environment, 
according to the code cellphoneDB method statistical analysis meta.txt counts.txt, the interaction between 
ligands and receptors in each group of data is analyzed12. Among them, the meta.txt file is the barcode and 
corresponding annotated cells; counts.txt denotes the barcode and the gene expression matrix. In the results, P 
values of cell types and enriched interaction ligands and receptors were shown. With P < 0.05 as the threshold, 
cellphoneDB is used to plot the heatmap and meta.txt p values. For further analysis of the transcription factor 
regulation of ligands and receptors, the database TRRUST (https://​www.​grnpe​dia.​org/​trrust/) is adopted, and 
the hypergeometric test method is used to trace the transcription factors of the target ligand and receptor genes, 
and Cytoscape 3.7.2 is applied in the visual display of results.

Weighted gene co‑expression network analysis.  Considering that WGCNA is a systematic biology 
approach to construct scale-free networks using gene expression data, the WGCNA package of R was used to 
construct a weighted co-expression network in the light of the expression profile data of the multifactorial net-
work genes13. Initially, the expression level of the transcript was transformed into a similarity matrix based on 
the Pearson correlation between paired genes. Then, the similarity matrix is transformed into adjacency matrix. 
β parameters can enhance the strong correlation between genes and lower the weak correlation between genes. 
When the power of β is 18, the adjacency matrix is transformed into a topological overlap matrix. To classify 
genes with similar expression patterns into different modules, a dynamic hybrid cutting method is adopted. 
Meanwhile, the minimum number of genes in the module is truncated to 30. KEGG pathway enrichment is a 
common analytical method in bioinformatics to understand the role of genes in biological systems. Metascape 
(http://​metas​cape.​org) is utilized to perform functional enrichment analysis, which is an online analysis tool that 
integrates several ontology sources, including the KEGG pathway, GO biological processes, canonical pathways, 

https://gdc.xenahubs.net
https://gdc.xenahubs.net
https://www.gsea-msigdb.org/gsea/downloads.jsp
https://github.com/Teichlab/cellphonedb
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http://metascape.org
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and CORUM. Significant pathways were screened according to P < 0.05. The prognostic modules were screened 
in accordance with characteristics of overall survival time and overall survival status. The survival time is the 
total survival time of each patient, which is the contact value. The survival status is 0 and 1, which refers to clas-
sification variables. 0 means survival while 1 represents death. GO enrichment analysis was performed on each 
module by Metascape to analyze the biological functions of each module. Moreover, as the first software to use 
the method of hypergeometric distribution to determine the significance of pathway enrichment, KOBAS has 
been successfully applied to the study of different organisms, such as plants, animals and bacteria. The KOBAS 
server can be accessed via https://​kobas.​cbi.​pku.​edu.​cn. KOBAS is used for KEGG pathway enrichment analysis 
in this paper, and P < 0.05 is deemed to be of significance. So the website KOBAS is employed to perform KEGG 
Pathway enrichment analysis of co-expressed genes in modules related to the prognosis of breast cancer.

Univariate regression analysis, KM‑survival prognostic analysis and multivariate regression 
analysis.  First, Univariate Cox regression analysis was used to screen genes significantly expressed in key 
modules. Then, genes with striking differences in the univariate regression analysis were analyzed by Lasso 
dimensionality reduction, output results of which were used as candidate genes. Furthermore, K-M survival 
analysis was used to identify prognostic related genes, and P < 0.05 was used as a threshold to screen genes with 
prominent prognostic effects. The candidate genes and prognostic genes were intersected and visualized by the 
Venn diagram. In this study, 24 genes associated with prognosis of breast cancer were identified by univariate 
Cox regression analysis, and results of univariate cox regression for 24 genes are displayed by forest maps. The 
survminer and survival packages are used to perform multivariate regression analysis. Age, lymphatic node 
metastatic status (N0 vs NN (excluding NX)), the T stage, radiotherapy, race, the breast cancer stage, and overall 
survival were combined with 24 genes for multivariate regression analysis to identify pivotal genes bound up 
with breast cancer prognosis.

The breast cancer samples were segmented into high-risk and low-risk groups based on the median expression 
value of the screened key genes relevant to breast cancer progression. In terms of time-dependent ROC results, 
the AUC of the combined Signature 3-year model group was 0.801 for the analysis of immune infiltration levels 
in the low-risk group. The time-dependent ROC is used to reflect the accuracy and precision of the prediction 
model. It is generally believed that the model with AUC >  = 0.7 can be conducive to the prediction of the prog-
nostic outcome at a specific time14,15.

Results
Quality control, dimensionality reduction, cell clustering and annotation of breast cancer sin-
gle cell sequencing data.  In this study, two sets of data (GSE75688 and GSE118389) were downloaded. 
GSE75688 contains single-cell RNA sequencing data of primary and metastatic breast cancer, with a total of 563 
cells. Among them, 12 samples were sequenced in bulk. Except for non-single cell sequencing data, 549 single 
cell data were retained, among which 441 cells are primary breast cancer and 108 cells are metastatic breast 
cancer. GSE118389 is the scRNA sequencing data of triple-negative breast cancer containing 1534 cells. In the 
quality control of single-cell transcriptome data, the number of feature genes is greater than 200 and less than 
2500, and the proportion of mitochondrial (percent.mt) less than 10% is used as a threshold for data screening 
and filtering. The first threshold is set to eliminate the empty oil droplets. To avert a low number of RNA, data 
less than 200 is eliminated. The second threshold is set to eliminate more than two cells into one oil droplet. Sub-
sequently, PCA and UMAP dimensionality reduction are performed on the data, and the results are visualized 
in the form of the heat map, the JackstrawPlot, and the ElbowPlot (Supplementary Fig. 1).

Next, the Find Integration Anchors function is used to integrate two single-cell transcriptome sequencing 
data from two data sets (non-merged, since the merged one is only A data merge unable to remove batch effect), 
which minimizes the error caused by different batches of experiments, and is thus used to construct the final S4 
object. Subsequently, the Scale Data was used for data centralization and standardization, and Seurat continued 
to be used for PCA and UMAP dimensionality reduction analysis. According to references and debugging effects, 
the clustering analysis were carried out with a threshold of 0.2 resolution, and 14 clusters were acquired. The 
cell clusters were annotated on the basis of the marker genes in the Cellmarker, the PanglaoDB database and 
references. The results showed that 14 clusters were endothelial cells, DCs, basal cells, acinar cells, T cells, NK 
cells, B cells, macrophage cells, Fibroblast cells, neutrophils, epithelial cells, neurons cells, HPCs, and ductal cells 
(Fig. 1A, Supplementary Table 1). The Find Variable Features function is used to find the genes that differ the 
most from one to another among cell clusters. The results show that HP, KCNJ, SCGB2, CPB1 and SPP are the 
first five significantly different genes (Fig. 1B). Meanwhile, expression of common cell markers, namely CD3D, 
MS4A1, AIF1, LUM, S100A8, KRT14, TFF3, CD34 and CLDN1, in 14 clusters were analyzed, and the Violin 
map was used to show the results of marker genes in each cluster (Fig. 1C).

Differential gene expression and multi‑factor interaction analysis of immune cells in breast 
cancer.  In order to analyze the differentially expressed genes in each cluster, the Find All Markers function is 
used to calculate the expression of differential genes in each cluster, and the Do Heatmap function to plot the dis-
tribution of differential genes in different cell types (Fig. 2A). According to the conventional genes of cell annota-
tion in the literature, the expression of 6 types of immune cell marker genes, including NK, DCs, macrophages, 
B cells, T cells and neutrophils, was analyzed (Fig. 2B, Supplementary Table 2). Subsequently, the frequency of 
cells in each cluster is counted and used to explore the enrichment ratio of immune cell populations. The results 
show that NK cells are significantly aggregated in triple-negative breast cancer; the proportion of macrophages 
is remarkably increased in primary breast cancer; B cells, T cells and neutrophils may play a vital role in meta-
static breast cancer (Fig. 2C,D). As exciting as this sounds, T cells and neutrophils are reported to be involved 
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in metastasis of breast cancer16. Next, the MSigDB database is used to perform functional annotation analysis of 
cell types, which is conducive to revealing the functional status of immune cells. The analysis results showed that 
the functions of specifically expressed genes in T cells, Macrophage cells, B cells, DC cells, and Neutrophils were 
dramatically enriched in 20, 10, 7, 6, 3, and 3 terms, respectively (Fig. 2E).

On the basis of elucidating the effect of differential gene expression in breast cancer samples on immune cells, 
the ligand-receptor relationship between cells is analyzed by the cellphoneDB software. In the output of the ligand 
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receptor results (Supplementary Table 3), the interaction between immune cells is analyzed using the heatmap 
plot function. The color-coded values are log10 (the count of interactions between the ligand and the receptor). 
The results showed that macrophages and dendritic cells have obvious activity and interact with a variety of cells 
(Fig. 3A). In order to further analyze the interaction between the ligand and the receptor, the TRRUST database 
was applied, and the hypergeometric test method was used to analyze the interaction between differential genes, 
immune cell marker genes, and ligand-receptors. The multi-factor interaction network between immune cells 
was constructed and visualized by Cytoscape 3.7.2 (Fig. 3B, Supplementary Table 4).

WGCNA analysis revealing key modules associated with breast cancer progression and patient 
survival.  Based on the genes in the immune cell multi-factor interaction network, the grouping information 
of single-cell data (primary, metastatic, and triple-negative breast cancer) and the expression matrix, the co-
expression network was constructed and WGCNA analysis was performed. The average-linkage hierarchical 
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red represents the ligand gene ligand, and light blue represents the receptor gene receptor).
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clustering method is used for gene cluster analysis. According to the standard of the hybrid dynamic shearing 
tree, the minimum number of genes (the soft threshold) for each gene network module is set. The results indicate 
that power = 18 is used as the threshold for subsequent analysis (Fig. 4A). After the eigengenes are calculated, 
the modules are subjected to cluster analysis, and finally 6 modules are obtained (Fig. 4B). Age, gender, race, N, 
the stage, T, radiotherapy, overall survival status, and overall survival time were used as indicators to screen the 
prognostic module with the highest correlation with breast cancer survival in different groups. The Pearson cor-
relation coefficient between the ME of each module and the sample feature is calculated (the higher the module, 
the more important it is). The results showed the closest correlation between the ME blue module and the over-
all survival time of triple-negative breast cancer as well as the most significant difference (R = 0.13, P = 3e−05) 
(Fig. 4C). The contained genes are the main components representing the function and characteristics of the 
module. Meanwhile, the ME blue module incorporates 144 genes (Fig. 4D). These results indicate that ME blue 
may be a prognostic-related module in triple-negative breast cancer, playing an important role in predicting 
the disease progression and the overall patient survival. The GO enrichment analysis of the modular genes on 
the Metascape website shows that the ME blue module is mainly enriched in fields related to cell differentia-
tion, movement, and proliferation, such as developmental process, locomotion, cell proliferation, multicellular 
organismal process, etc. (Fig. 4E) To further comprehend the mechanism of the ME blue module involved in 
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the occurrence and progression of triple-negative breast cancer, the KOBAS website was used to conduct KEGG 
enrichment analysis on genes in the blue module. The results showed that the disordered genes in the ME blue 
module are mainly involved in the cancer pathway, cancer transcriptional mis-regulation, the PI3K-AKT signal-
ing pathway, the Ras signaling pathway, the MAPK signaling pathway, cytokine-cytokine receptor interaction, 
and the AMPK signaling pathway (Fig. 4F).

Univariate regression analysis combined with KM survival analysis to identify prognostic 
genes in ME‑blue modules.  The coxph function in the survival package was used to analyze the relation-
ship between the genes in the blue module and the overall survival (OS) of 1194 samples in the TCGA data, 
which downloaded from GDC and standardized by sklearn. Univariate regression analysis was performed on 
144 genes in the blue module, and 130 genes with significant regression differences with P < 0.05 as the threshold 
(Supplementary Table 5) were obtained (Fig. 5A). Next, those 130 genes were subjected to lasso dimensionality 
reduction analysis, and the number of output genes was still 130 (Fig. 5B). Besides, the Kaplan–Meier method 
was used to analyze the overall survival of 130 genes in the blue module, and 24 genes were found to be in con-
nection with prognosis of breast cancer (P < 0.05, Supplementary Table 6). This means that in the key module, 
24 genes differ significantly in regression analysis and have prominent prognostic properties in survival analysis 
(Fig. 5A). After two genes (ABCC9, NPR1) were randomly selected for survival curve display (Fig. 5C), the 
correlation coefficients and the univariate regression analysis results of 24 genes were subsequently visualized 
(Fig. 5D,E).

Multivariate regression analysis constructing a risk model of breast cancer prognosis‑related 
genes.  To determine prognostic markers of breast cancer, the multivariate regression analysis of the 24 prog-
nostic-related genes in the blue module was performed in combination with the clinical factors of TCGA (age, 
lymph node metastasis status (N0 vs N1 (excluding Nx)), T stage, radiotherapy or not, race, and the breast Can-
cer stage). The results suggest that the expression of ECM2, PCDH12, EPAS1, CD93, DLL4, and ARHGEF15 
are significantly different in age, N (lymph node metastasis status), and whether radiotherapy is received or not 
(Fig. 6A). Subsequently, the sample data was scored and grouped in line with the median value of prognosis 
related gene expression. The Kaplan–Meier survival analysis of high-risk and low-risk group showed that the 
prognosis of high-risk one was poor (Fig. 6B, P < 0.001). The results of time-dependent ROC (the receiver oper-
ating characteristic) analysis found that the above-mentioned prognostic genes showed good predictive effects 
on the 1-year, 3-year, and 5-year survival of breast cancer (AUC was all greater than 0.75) (Fig. 6C). Among 
them, the AUC of the 3-year survival model was 0.801, which confirmed good accuracy of the prediction model 
(Generally, AUC >  = 0.7 is perceived as an effective predictor). The application of riskScore in different molecular 
subtypes of breast cancer is explored. Besides, molecular subtypes, risk scores and age are included in multivari-
ate analysis. The results showed that risk score remained an independent prognostic factor for the molecular 
subtype and age (Fig. 7).

Validation of a risk model constructed by genes related to the prognosis of breast cancer.  In 
this part of the analysis, breast cancer data from ICGC was used to validate the model constructed by the prog-
nostic-related genes in the ME blue module, which downloaded from DCC and standardized by sklearn. The 
accuracy and validity of the above-mentioned model are verified by the use of 1542 sample data with overall 
survival time and overall survival status (Supplementary Table 7). The results indicate that the prognosis of high-
risk group in the model is poor (P < 0.001, Fig. 8A). The time-dependent ROC results show that the AUC values 
for 1, 3 and 5 years are 0.614 (Fig. 8B), 0.634 (Fig. 8C), and 0.632 (Fig. 8D), respectively. Apart from that, accord-
ing to our prognostic model, age, N lymph node metastasis and radiotherapy showed distinct differences in 
breast cancer samples with disparate risk scores (high-risk and low-risk) (Fig. 9A–C). Moreover, the verification 
results of ROC also confirmed that the AUC value of age, N lymph node metastasis was high, which indicated 
good accuracy of ROC (Fig. 9D–F). The multivariate regression analysis was performed in combination with the 
clinical factors (subtype, riskgroup, stage, ER status, PR status, Her2 status and surgical procedure). The results 
suggest that the riskgroup and stage are significantly different (P < 0.05, Fig. 10A). The distribution of molecular 
subtypes in their high and low risk groups was plotted (P = 0.0025, Fig. 10B). These results indicate that our 
model has practical application value in the prognosis and survival of breast cancer.

Discussion
The heterogeneity of breast cancer is the main reason for treatment failure and recurrence. In recent years, the 
development of single-cell sequencing technology has deepen our comprehension of the heterogeneity of breast 
cancer. Cell types and specific gene expression characteristics in tumor tissues can be accurately distinguished 
by single-cell transcriptome. In reality, while breast cancer cells show significant heterogeneity, non-cancer cells, 
including fibroblasts, adipocytes, endothelial cells and various immune cells17, are the main content of hetero-
geneity in breast cancer18,19. Among non-cancer cells, the role of immune cells is particularly significant. The 
progression of breast cancer is characterized by increased immune cell infiltration in tumor parenchyma and 
stroma, including CD4+ and CD8+ granzyme B+ cytotoxic T cells, B cells, macrophages and dendritic cells20. In 
addition, tumor-infiltrating lymphocytes have been reported as a prognostic indicator of breast cancer chemo-
therapy response and patient survival21. This study found significant aggregation of NK cells in triple-negative 
breast cancer, a significant increase in the number of macrophages in primary breast cancer, and an increase in 
the proportion of B cells, T cells, and neutrophils in metastatic breast cancer. Although the high total number 
of NK cells reflects a good survival rate, the infiltration and activation of NK cells vary greatly among different 
sorts of breast cancer. The heterogeneity of NK cells and their actual roles in the microenvironment of breast 



9

Vol.:(0123456789)

Scientific Reports |        (2022) 12:13673  | https://doi.org/10.1038/s41598-022-17857-x

www.nature.com/scientificreports/

A

Univariate Cox 
Regression Analysis

24       106
Survival 
Analysis

B

Log rank P=0.00783

Time (year)

Su
riv

al
 ra

te

Time (year)

Su
riv

al
 ra

te

C                                              D

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

5 10 15 200

ABCC9

Log rank P=0.01996

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

5 10 15 200

High exp
Low exp

High exp
Low exp

NPR1

CALCRL
ABCC9
ECM2
VWF
RASGRF2
PCDH12
EPAS1
MYCT1
RECK
CD93
PTPRB
DLL4
CD36
ACVRL1
ESAM
BCL6B
SVEP1
NPR1
LDB2
CLEC14A
SLIT3
ARHGEF15
GPX3
ECSCR

0.0016752
0.000001

0.0000208
0.0004287
0.0008223
0.0005998
0.0000478
0.0000182
0.0000168
0.0018445
0.0000327
0.0000598
0.0000137
0.0036205
0.0002872
0.0005388
0.0000033
0.0000224
0.0000067
0.0034329
0.0000006
0.0002585
0.0000024
0.0006171

1 1.5 2
Differences in assessment indicators between relevant pairs

Genes P value HR(95CI)

CALCRL

ABCC9
ECM2

VWF

RASGRF2

PCDH12

EPAS1

MYCT1
RECK

CD93

PTPRB
DLL4

CD36

ACVRL1
ESAM

BCL6B

SVEP1
NPR1

LDB2

CLEC14
A
SLIT3

ARHGEF15
GPX3

ECSCR
0.0

0.1

0.2

0.3

0.4

0.5

C
oe

ffi
ci

en
t

E
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cancer need to be further elucidated22. Tumor-associated macrophages (TAM) are the chief component of breast 
cancer microenvironment23. The increased density of macrophages in breast cancer tissues is related to the poor 
prognosis of patients, since macrophages are involved in the immune escape of breast cancer and the angiogen-
esis of tractable tumors24. In addition, B cells, T cells and neutrophils have all been reported to participate in the 
immune escape and metastasis of breast cancer16,25,26. These results indicate that our analysis results are correct 
and reasonable in terms of cell clusters and immune cell infiltration.

After cell clustering and annotation, a multi-factor interaction network of the ligand-receptor combined 
with transcription factors is constructed to discover modules significantly related to the prognosis of breast 
cancer. The results showed that the blue module had the highest correlation with the overall survival time of 
breast cancer (P = 3e−05). The functions of the blue module are mainly enriched in the aspects related to cell 
developmental, locomotion, and proliferation. The decrease of cell development has something to do with the 
poor differentiation level and cell stem characteristics of breast cancer; the enhancement of cancer cell motility 
is related to tumor invasion and metastasis; the disorder of cell proliferation is the basis of tumor tumorigenesis 
and progression. The enrichment results of KEGG showed that the primary signaling pathways for differential 
gene enrichment in the blue module include the pathway in cancer, transcriptional mis-regulation in cancer, the 
PI3K-AKT signaling pathway, the Ras signaling pathway, the MAPK signaling pathway, cytokine-cytokine recep-
tor interaction, the MAPK signaling pathway, etc. PI3K-AKT, over-activated in most breast cancers, promotes 
the excessive proliferation of cancer cells through the mTOR complex27. For instance, the expression loss of the 
negative regulatory proteins PTEN and INPP4B (tumor suppressor genes) in the PI3K-AKT pathway is associ-
ated with the occurrence and progression of triple-negative breast cancer, and the loss of PTEN expression is 
found in more than half of TNBC patients28. In the Ras signaling pathway, activated Ras promotes the cell cycle 
and cell proliferation by recruiting Raf1 protein to initiate a kinase cascade to activate MAPK (ERK1/2) and 
transcription factors Fos and c-Jun29,30. In addition, activation of the Ras-MAPK pathway has been reported to 
facilitate TNBC immune escape31. p38MAPK signal was found to promote the invasion and metastasis of breast 
cancer by enhancing the epithelial-mesenchymal transition of cancer cells32. AMPK and its downstream mTOR 
are involved in the regulation of the material and energy metabolism of cancer cells 30,903,363. For example, 
AMPK-mediated lipid metabolism reprogramming promotes breast cancer cell proliferation and migration33. 
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Figure 6.   Efficiency evaluation of multivariate regression analysis and risk scoring. (A) The results of the 
multi-factor analysis displayed by the forest map. (B) Kaplan–Meier survival curves of high-risk and low-risk 
groups. (C) Time-dependent ROC applied to evaluate the accuracy of the model in predicting 1-, 3-, and 5-year 
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These results indicate that the cellular functions and signal pathways enriched in the blue module play a key part 
in the occurrence and progression of breast cancer. The validation results of the breast cancer prognosis model 
constructed by multivariate regression risk analysis showed that PCDH12, SLIT3, ACVRL1 and DLL4 genes 
are considerably different in the high-risk and low-risk breast cancer group, which can be used as risk factors 
for breast cancer prognosis.

Recent reports have found the association between high expression of PCDH12 and the high pathological 
grade of papillary renal cell carcinoma34. As a novel type of tumor suppressor gene, SLIT3 has been reported 
to play a role in breast, liver, lung, and colon cancer, and the promoter methylation of SLIT3 has been reported 
to be involved in tumor occurrence and progression35,36. ACVRL1 (the activin receptor like protein 1) encodes 
ALK1, which is a member of transforming growth factor—β receptor family and is associated with angiogenesis37. 
ACVRL1 expression can be used as a prognostic marker for patients with metastatic colorectal cancer who 
receive chemotherapy and bevacizumab38. DLL4, a major component of the Notch pathway, is reported to be 
highly expressed in breast cancer and associated with the advanced stage and distant metastasis of the patient39. 
These studies confirm the correctness of PCDH12, SLIT3, ACVRL1 and DLL4 genes as risk factors for breast 
cancer prognosis.

Conclusion
MeBlue is a prognostic module in triple negative breast cancer. The expressions of PCDH12, SLIT3, ACVRL1 
and DLL4 not merely relate to the type and proportion of immune cells, but also contribute to the prognosis of 
breast cancer.
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Figure 7.   Efficiency evaluation of multivariate analysis and risk scoring. (A) The results of the multivariate 
analysis are displayed by forest map. (B–F) Cumulative survival of different molecular subtypes of breast cancer. 
(B: Basal-like, C: Her2-enriched, D: Luminal A, E: Luminal B, F: Normal-like.
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Figure 8.   The accuracy of the breast cancer risk model constructed by prognostic related genes in predicting 
patient survival. (A) KM survival curves of high-risk and low-risk groups in ICGC data. (B) Accuracy of 
the time-dependent ROC assessment model in ICGC data for 1-year survival of breast cancer patients. (C) 
Accuracy of the time-dependent ROC assessment model in ICGC data for 3-year survival of breast cancer 
patients. (D) Accuracy of the time-dependent ROC assessment model in ICGC data for 5-year survival of breast 
cancer patients.
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Figure 9.   The accuracy of the breast cancer risk model constructed by prognostic related genes in 
clinicopathological indicators and prognosis (N0 indicates no lymph node metastasis and N1 lymph node 
metastasis). (A–C) Correlation between the risk score and clinical factors (AGE < 60 vs AGE > 60; N0 vs N1; 
Non-radiation vs Radiation). (D–F) Prognostic accuracy of risk scoring.

Figure 10.   The multivariate regression analysis was performed in combination with the clinical factors and the 
distribution of molecular subtypes. (A) The multivariate regression analysis was performed in combination with 
the clinical factors. (B) The distribution of molecular subtypes in their high and low risk groups.
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Data availability
The dataset supporting the conclusions of this article is available in GSE75688, GSE118389, TCGA-BRCA and 
ICGC(GSE75688:https://​www.​ncbi.​nlm.​nih.​gov/​geo /query/acc.cgi?acc = GSE75688.GSE118389:https://​www.​
ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE11​8389.​TCGA-​BRCA:​https://​xenab​rowser.​net/​datap​ages/?​cohort=​
GDC%​20TCGA%​20Bre​ast%​20Can​cer%​20(BRCA)​&​remov​eHub=​https%​3A%​2F%​2Fxena.​treeh​ouse.​gi.​ucsc.​edu%​
3A443.​ICGC:​https://​xenab​rowser.​net/​datap​ages/?​cohort=​ICGC%​20(speci​men%​20cen​tric)​&​remov​eHub=​https%​
3A%​2F%​2Fxena.​treeh​ouse.​gi.​ucsc.​edu%​3A443).
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