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Abstract: The inner layer of the cornea, the corneal endothelium, is post-mitotic and unable to
regenerate if damaged. The corneal endothelium is one of the most transplanted tissues in the
body. Fuchs’ endothelial corneal dystrophy (FECD) is the leading indication for corneal endothelial
transplantation. FECD is thought to be an age-dependent disorder, with a major component related to
oxidative stress. Prdx6 is an antioxidant with particular affinity for repairing peroxidised cell
membranes. To address the role of Prdx6 in corneal endothelial cells, we used a combination of
biochemical and functional studies. Our data reveal that Prdx6 is expressed at unusually high levels
at the plasma membrane of corneal endothelial cells. RNAi-mediated knockdown of Prdx6 revealed
a role for Prdx6 in lipid peroxidation. Furthermore, following induction of oxidative stress with
menadione, Prdx6-deficient cells had defective mitochondrial membrane potential and were more
sensitive to cell death. These data reveal that Prdx6 is compartmentalised in corneal endothelial cells
and has multiple functions to preserve cellular integrity.

Keywords: Prdx6; cornea; Fuchs’ endothelial corneal dystrophy; lipid peroxidation; mitochondrial
membrane potential

1. Introduction

The cornea is a transparent refractive structure at the front of the eye. The cornea is approximately
500 µm thick and composed of several layers, including a protective outer epithelial cell layer;
an acellular Bowman’s layer; a stromal layer; an acellular Descemet’s membrane; and a single uniform
layer of cells on the posterior surface, termed the corneal endothelium (CE) [1–3]. Corneal endothelial
cells (CEnCs) are neural crest derived and have striking hexagonal morphology. The CE is essential for
maintaining corneal hydration and therefore optimal corneal transparency. This is achieved through a
pump-leak mechanism: nutrients from the aqueous humor are allowed to passively diffuse through the
‘leaky’ endothelium into the stroma and, concurrently, an ionic pump drives fluid from the stroma into
the aqueous humor. This dynamic ‘barrier and pump’ function serves to maintain corneal hydration
and transparency vital for visual acuity.

Corneal endothelial cells are growth-arrested and cannot regenerate [1–3]. Age-dependent
degeneration and decline in number of CEnCs is known to occur [4,5]. Furthermore, CEnCs are
metabolically active and subjected to persistent UV exposure. Indeed, UV exposure is known to
induce DNA damage and apoptosis of CEnCs [6]. Therefore, to maintain functional integrity and
corneal transparency, CEnCs must possess intrinsic mechanisms to control their level of oxidative
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stress. Damage to the CE due to age-related degeneration or genetic corneal dystrophies is one of the
leading causes of corneal blindness. Currently, CEnC dysfunction can only be remedied by a corneal
transplant, which replaces the dysfunctional cell layer and restores vision. Corneal tissue is the most
transplanted tissue in the body.

The most common corneal endothelial dystrophy is Fuchs’ endothelial corneal dystrophy
(FECD) [7]. A number of factors, including age, sex, and several genetic loci, are implicated in FECD.
However, oxidative stress is also thought to contribute to the pathogenesis of FECD: cornea tissues
from Fuchs’ patients display an overall increase in reactive oxygen species (ROS), and human CEnC cell
lines derived from FECD patients are more vulnerable to oxidative insults [8]. Interestingly, proteomic
analysis of pooled CE from FECD patients has revealed a specific downregulation of the peroxiredoxin
(Prdx) family of antioxidants [9].

The Prdx protein family contains six isoforms that are capable of reducing hydrogen peroxide
and alkyl hydroperoxides. The Prdx family is characterised by a conserved catalytic cysteine
(Cys) in the N-terminus. All Prdx proteins, with the exception of Prdx6, additionally contain
an additional conserved resolving cysteine in the C-terminus. However, Prdx6 possesses only
a single N-terminus catalytic cysteine. Furthermore, Prdx6 is the only member of the family to
possess both phospholipase A2 (PLA2) activity and lysophosphatidylcholine acyl transferase (LPCAT)
activity [2,10,11]. Peroxides such as hydrogen peroxide oxidize the N-terminal Cys to form sulfenic
acid. Normally, an intermolecular disulfide bond is formed with a second adjacent C-terminal Cys
residue, which is then reduced by thioredoxin to complete the catalytic cycle. However, for 1-Cys
Prdx6, glutathione is used as the reductant [12].

Although Prdx6 is primarily a cytosolic protein, its recruitment to the plasma membrane is
thought to be essential for its role in repairing peroxidised membranes [13]. We recently identified an
antibody, TAG-2A12, as a unique marker for CEnCs [14]. Interestingly, immunohistochemistry and
flow cytometry revealed that TAG-2A12 labelled the cell surface of CEnC. The target antigen bound
by TAG-2A12 was identified to be Prdx6 by mass spectrometry [14]. However, by flow cytometry,
commercially available antibodies to Prdx6 do not label the cell surface of CEnCs, suggesting that
TAG-2A12 recognises an epitope associated with membrane-bound Prdx6. This was the first report of
the expression of this protein on the corneal endothelial surface. However, membrane Prdx6 has also
been reported in activated neutrophils [15] as well as in the human lung carcinoma cell line, A549,
treated with peroxide [16]. It has been postulated that cytosolic Prdx6 can translocate to the plasma
membrane, bind oxidised phospholipids, and perform a fundamental role in repair of peroxidised cell
membranes [13].

In this study, we aimed to confirm the cell surface expression of Prdx6 and to characterise the
function of Prdx6 in human CEnCs. We report that high levels of Prdx6 can be isolated from the plasma
membrane of CEnCs. The level of Prdx6 diminishes during oxidative stress. Using siRNA to target
Prdx6 in a CE cell line, we demonstrate that Prdx6 is required to maintain both lipid peroxidation as
well as cell viability through the regulation of mitochondrial function.

2. Material and Methods

2.1. Chemicals and Reagents

All reagents were purchased from Sigma (now under Merck, Darmstadt, Germany) unless
otherwise stated.

2.2. Induction of Oxidative Stress

Specific reagents were selected to induce oxidative stress in different cellular compartments.
Cumene hydroperoxide (CH), which is lipophilic, was selected because it has been previously
demonstrated to induce lipid peroxidation at the plasma membrane [17]. Tert-butyl hydroperoxide
(tBHP) was selected as a stable alternative to hydrogen peroxide that initiates reactive oxygen
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species (ROS) and induces lipid peroxidation and apoptosis. Menadione (MN) was used to increase
intracellular ROS. Furthermore, MN treatment of normal CEnCs has been demonstrated to mimic
pathological changes seen in ex vivo FECD specimens [18]. Suitable doses of each compound were
chosen based on either manufacturers’ instructions or published data, or were empirically determined.

2.3. Human Corneal Tissue and Cell Culture

Primary human corneal endothelial cells (pCEnCs) obtained from cadaveric corneal tissue
unsuitable for transplantation were procured through Lions Eye Institute for Transplant and Research
(Tampa, FL, USA). Isolated pCEnCs were expanded using a dual-media approach until passage 2
or passage 3, in 6 cm plates, as previously described [19]. Thereafter, cultures were maintained
in M5 media consisting of Human endothelial-SFM (Life Technologies, Thermo Fisher Scientific,
Waltham, MA, USA) supplemented with 5% serum (EquaFetal® Atlas Biologicals, Fort Collins, CO,
USA). To isolate corneal stromal fibroblasts, stromal tissue fragments were digested with collagenase I
(1 mg/mL, Worthington, Lakewood, NJ, USA) for 24 h at 37 ◦C. Single cells were suspended in
Dulbecco’s Modified Eagle Medium (DMEM) 10% bovine serum and cultured until confluent. Human
retinal microvascular endothelial cells (RMECs, Angio Proteomie, cAP-0010) were maintained in M5
10% serum and used at passage 5.

The SV40-transformed human corneal endothelial cell line (B4G12, [20]), the human lung
adenocarcinoma A549 cell line (ATCC; CCL-185), HEK293T, and the spontaneous arising retinal
pigmented epithelial cell line ARPE19 were maintained at 37 ◦C, 5% CO2 in DMEM (high glucose)
supplemented with 10% bovine serum (Gibco; Thermo Fisher Scientific, Waltham, MA, USA) together
with antibiotics.

Where indicated, cells were treated with tert-butyl hydroperoxide (tBHP) 500 µm for 3 h at 37 ◦C.

2.4. Cell Fractionation and Western Blotting

Cell surface proteins were isolated using the Pierce Cell Surface Isolation Kit (Thermo Fisher
Scientific). Briefly, confluent cultures of cells were incubated with the cell membrane impermeable,
cleavable biotinylation reagent EZ-Link™ Sulfo-NHS-SS-Biotin at 4 ◦C for 30 min. Following cell
lysis, labelled proteins were isolated by incubation with NeutrAvidin agarose for 1 h. Following
extensive washing, proteins were eluted in sodium dodecyl sulfate-polyacrylamide gel electrophoresis
(SDS-PAGE) sample buffer containing 50 mM dithiothreitol (DTT).

Plasma Membrane Isolation

Plasma membrane fractions were isolated using the Plasma Membrane Protein Extraction Kit
(Abcam, ab65400, Cambridge, UK). Briefly, cells were chilled on ice, washed in ice-cold phosphate
buffered saline (PBS), and scraped into ice-cold PBS. Cell pellets were lysed in homogenization
buffer containing protease inhibitors. Homogenization was completed with low power sonication
at 4 ◦C. Total membrane proteins were pelleted by centrifugation at 10,000× g for 30 min at 4 ◦C.
The supernatant (cytoplasmic fraction) was removed. Plasma membrane proteins were purified by
resuspending the total membrane pellet in a combination of lower phase/upper phase solutions, and
centrifugation. The exact constituents of these solutions is proprietary, but most likely based on an
aqueous polymer two-phase separation system which separates plasma membranes based on their
affinity for two immiscible polymers, such as, polyethylene glycol and dextran [21]. Membrane
pellets were dissolved in 0.5% Triton X-100 in PBS. Proteins were quantitated by BCA assay
(Pierce, Thermo Fisher Scientific) and equivalent amounts loaded on 4–20% mini-PROTEAN® TGX™
Gels (Bio-Rad, Hercules, CA, USA). Gels were transferred to PVDF membranes and blocked in
5% non-fat milk. The following antibodies were used for immunoblotting: PRDX6 (4A3, ab16947,
Abcam), CD325 (N-Cadherin, clone 8C11,), and β-Catenin (clone 14) (both from BD Biosciences,
San Jose, CA, USA). Na+/K+-ATPase (sc71638, Santa Cruz Biotechnology, Dallas, TX, USA) and
GAPDH (clone FF26A/F9 and β-Actin clone 2F1-1, both BioLegend) served as loading controls.
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Blots were washed in PBST (PBS + 0.1% tween-20), probed with HRP-conjugated secondary antibodies
(Cell signalling Technology, Danvers, MA, USA), and visualised by chemiluminescence. Bands were
quantified using ChemiDoc™ MP imaging system and image lab software (Bio-Rad, Hercules,
CA, USA).

2.5. RNAi Knockdown of Prdx6

Confluent cultures of B4G12 cells were harvested and seeded in 12-well plates at 40k/cm2.
Cells were transfected with 10 µm Silencer® select validated siRNA (Ambion® by Life Technologies,
Thermo Fisher Scientific, Waltham, MA, USA) together with Lipofectamine™ RNAiMAX transfection
reagent (Thermo Fisher Scientific) at the time of seeding, according to the manufacturers’ instructions.
The following siRNA reagents were used: Silencer® select Prdx6 (ID# s18430) and, as control, Silencer®

select negative control #1. After 24 h of culture, media was changed and cells were re-transfected.
Cells were analysed the following day. Knockdown of Prdx6 was confirmed by 48 h post-transfection by
directly lysing cells in SDS-PAGE sample buffer and probing western blots with anti-Prdx6 antibodies.
Bands were quantified using ChemiDoc™ MP imaging system and image lab software (Bio-Rad,
Hercules, CA, USA). Alternatively, knockdown of Prdx6 was analysed by real-time PCR analysis.
Briefly, total RNA was extracted using RNeasy kit (Qiagen, Venlo, Netherlands) and 500 ng was
reversed transcribed with iSCRIPT (Bio-Rad). Real-time PCR was performed using TaqMan® gene
expression assays (Thermo Fisher Scientific). Relative quantification was normalised using GAPDH
and calculated by 2−∆∆Ct.

2.6. Lipid Peroxidation Assay

Lipid peroxidation was measured using the Click-iT™ Lipid Peroxidation Imaging Kit
(Thermo Fisher Scientific) according to the manufacturer’s instructions, with modifications for
adaptation for flow cytometry. Briefly, B4G12 cells were treated with 100 µm CH in media containing
50 µm linoleamide alkyne (LAA) for 2 h at 37 ◦C. Cells were harvested by cell dissociation in TrypLE
Express (Thermo Fisher Scientific) and washed in PBS/0.1% bovine serum albumin (BSA). Cells were
pelleted by centrifugation and resuspended in 100 µL of 3.7% paraformaldehyde (PFA) for 15 min
at room temperature. Cells were washed in PBS/0.1% BSA and resuspended in PBS/0.05% Triton
X-100 for 10 min at room temperature. Next, 1 mL PBS/1% BSA was directly added to cells and
incubated for 20 min at room temperature. Cells were pelleted and gently washed in PBS without
BSA. Cell pellets were incubated in Click-iT reaction cocktail containing Alexa Fluor 488 azide in the
presence of CuSO4, for 30 min at room temperature protected from light. Cells were immediately
analysed on a BD FACSVerse™ flow cytometer (BD Biosciences).

2.7. Cell Viability Assay: Flow Cytometry

Transfected B4G12 cells were treated with CH (100 µm) for 4 h at 37 ◦C in a tissue culture
incubator. Cells were washed in PBS and harvested by trypsinisation. Aliquots (100 µL) of cells
were transferred to Eppendorf tubes and incubated with 5 µL of FITC-Annexin V and 10 µL of PI
(BioLegend) for 15 min at room temperature in Annexin V binding buffer. Cells were re-suspended in
400 µL Annexin V buffer and immediately analysed on a BD FACSVerse™ flow cytometer.

2.7.1. Cell Viability Assay: xCELLigence

Cell viability was assessed using the xCELLigence real-time cell analyser (ACEA Bioscience,
Agilent, San Diego, CA, USA). siRNA-transfected B4G12 cells were seeded at 4 × 104 in triplicate
in an E-Plate 96 (ACEA Biosciences) and left to attach for 18 hrs. Cells were left untreated or
treated with indicated compounds. The electrical impedance readings of overall cell viability were
recorded, using the xCELLigence real-time cell analyser, throughout the experiment for at least 8 h.
The percentage of viable cells was calculated for each time point relative to time zero, which was
set as the last impedance reading prior to addition of compounds. Data shown are representative of



Antioxidants 2018, 7, 180 5 of 12

three independent experiments. Statistical analysis was performed using GraphPad software (Prism,
version 7, GraphPad, San Diego, CA, USA). Groups were compared with two-way ANOVA, followed
by post-hoc Bonferroni test, for multiple comparisons, with p-value < 0.05 considered significant.

2.7.2. Cell Viability Assay: Mitochondrial Membrane Potential (∆Ψm)

Mitochondrial membrane potential was measured using the TMRE assay (Cell Signalling
Technology). Briefly, siRNA-transfected cells were treated with 50 µm MN for 90 min or the potent
∆Ψm disruptor CCCP (50 µm) for 15 min. The mitochondrial membrane dye, TMRE, was added
at a final concentration of 200 nM for 20 min. Cells were trypsinised and immediately analysed by
flow cytometry.

3. Results

3.1. Membrane Expression of Prdx6 in Corneal Endothelial Cells

We compared the membrane localisation of Prdx6 in primary and transformed cell lines derived
from the eye. We incorporated in our analysis the human CEnC line B4G12 [20], as well as
the spontaneous arising retinal epithelial cell line ARPE19. As a non-eye control, we used
human embryonic kidney cells (HEK293T). Cell surface proteins were isolated by biotinylation of
cells and subsequent immunoprecipitation with neutravidin agarose, as detailed in Section 2.4.
Western blotting of eluted surface proteins with Prdx6 antibodies revealed that Prdx6 was primarily
detected in pCEnCs (Figure 1A). Prdx6 was similarly detected in B4G12 cells, albeit at low levels.
No detectable surface Prdx6 was detected in HEK293T or corneal stromal fibroblasts, despite the
abundance of cytosolic Prdx6 (Figure 1A). To verify that Prdx6 can be detected at the cell surface
in B4G12 cells, we repeated our experiments using a greater number of B4G12 cells, as well as
pCEnCs isolated from fresh donors (Figure 1B). Corroborating our previous result, high surface Prdx6
levels were detected in pCEnCs (Figure 1B). Low levels of Prdx6 were also detected in B4G12 cells.
The surface level of Prdx6 was not unique to pCEnCs because the cell line ARPE19 similarly had
detectable expression of Prdx6 in cell surface extracts. However, the greatest surface levels of Prdx6
were detected in pCEnCs.
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Figure 1. (A,B) Prdx6 is predominantly expressed at the cell surface in human corneal endothelial cells
(CEnCs). The indicated cells had their cell surface biotinylated using Sulfo-NHS-SS-Biotin. Cell lysates
were subjected to immunoprecipitation with NeutrAvidin™ agarose. Eluted proteins were probed with
Prdx6 antibodies. For comparative purposes, an aliquot of cell lysate prior to immunoprecipitation was
used for analysis of total cellular Prdx6 levels. Bands were quantitated, and relative surface Prdx6 levels
were normalised against total Prdx6 levels. Primary human corneal endothelial cell (pCEnC) levels
were arbitrarily set to 100. Fib: corneal fibroblasts. RMECs: retinal microvascular endothelial cells.
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3.2. Prdx6 Levels are Sensitive to Oxidative Stress

Western blot analysis of the cell surface fraction, from pCEnCs treated with tert-butyl
hydroperoxide (tBHP), revealed that Prdx6 levels were diminished in pCEnCs under oxidative stress.
The affect was apparent for both cell surface-bound Prdx6 as well the unbound fraction. Importantly,
membrane-levels of N-Cadherin, β-Catenin, and Na+K+-ATPase were not affected by tBHP treatment
(Figure 2A). Membrane proteins, such as N-Cadherin and Na+K+-ATPase, were not detected in the
unbound flow-through fraction, which validated our cell surface isolation protocol. To confirm
these data, we employed an alternative protocol for the isolation of plasma membrane (PM) proteins
(Section 2.4). Purified PM proteins were extracted from untreated or tBHP treated pCEnCs. Similar to
our previous observation, Prdx6 levels were downregulated during oxidative stress (Figure 2B).
As controls for these experiments, we used the lung carcinoma A549 cells. In contrast to pCEnCs, A549
demonstrated an overall increase in PM bound Prdx6 (Figure 2B and Figure S1), although statistical
analysis revealed the differences to be insignificant. However, our data is consistent with previous
reports demonstrating translocation of Prdx6 to the PM following tBHP treatment [16]. In B4G12 cells,
plasma membrane Prdx6 was not altered by tBHP, despite a decrease in levels of cytoplasmic Prdx6
following tBHP treatment (Figure S1). These results suggest subtle differences between primary and
transformed CEnCs.

Taken together, our data suggest that CEnCs have Prdx6 constitutively associated with the
plasma membrane.
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Figure 2. Prdx6 levels are sensitive to oxidative stress. (A) Primary cultures of human CEnCs) were
treated with tert-butyl hydroperoxide (tBHP) for 3 h. pCEnCs were biotinylated and cell surface
proteins purified by immunoprecipitation. The flow-through, unbound fraction served as a control
for membrane fractionation. (B) pCEnCs and (C) A549 cells were treated with tBHP for 3 h and
plasma membrane was isolated by density dependent centrifugation. Data from three independent
experiments ± SEM is shown. Prdx6 levels were normalized to Na+/K+-ATPase and expressed
relative to untreated (−) controls. Student t-test was performed to evaluate statistical significance
(** p-value < 0.005).

3.3. Prdx6 is Required for a Normal Lipid Peroxidation Response

To elucidate the function of Prdx6 in CEnCs, we employed RNAi-mediated knockdown of Prdx6
in CEnCs. Our initial attempts to knockdown Prdx6 in pCEnCs did not reveal significant loss of
gene and/or protein expression. Therefore, we utilised the CE cell line B4G12. B4G12 cells were
amenable to transient transfection of siRNA, resulting in downregulation of Prdx6 mRNA at 24
and 48 h post-transfection (Figure 3A). This resulted in a ~80% knockdown efficiency of protein
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48 h post-transfection compared to B4G12 cells transfected with negative control siRNA reagents
(Figure 3B).
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Figure 3. Targeted knockdown of Prdx6 in CEnCs reveals a role for Prdx6 in regulating lipid
peroxidation. (A) Prdx6 mRNA levels were determined by qPCR analysis. Expression levels are
shown relative to control siRNA treated B4G12 CEnCs and normalized to GAPDH. (B) Representative
western blot analysis of aliquots of siRNA-transfected B4G12 CEnCs probed with anti-Prdx6 antibodies.
Protein levels were quantitated relative to GAPDH and normalised to control siRNA. Data also
expressed as mean ± SEM (n = 6). * p-value (<0.05) was determined by student t-test. (C) Lipid
peroxidation was measured in B4G12 CEnCs incubated with linoleamide alkyne (LAA) in the presence
(cumene hydroperoxide (CH) treated) or absence of CH (not treated). B4G12 CEnCs incubated in the
absence of LAA served as negative controls. (D) Data are expressed as mean fluorescence intensity
(MFI) from three independent experiments. Two-way ANOVA with multiple comparisons was used to
test statistical significance. Asterix (*) indicates statistical significance; * p < 0.05, ** p < 0.005, *** p < 0.01,
n.s.: no significant difference.
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To explore the influence of Prdx6 on cellular membranes, we treated B4G12 cells with cumene
hydroperoxide (CH) and measured lipid peroxidation by flow cytometry. In cells transfected with
control siRNA, CH induced lipid peroxidation, as judged by a ~2-fold increase in mean fluorescent
(MFI) intensity of the Alexa Fluor 488 fluorophore (Figure 3C,D). Interestingly, the level of lipid
peroxidation in untreated Prdx6 knockdown B4G12 cells was slightly higher compared to controls.
However, this was not statistically significant (Figure 3D). Surprisingly, in response to CH, B4G12
cells lacking Prdx6 were unable to respond to CH and the fluorescence intensity of LAA-AF remained
comparable to untreated cells (Figure 3C,D).

3.4. Loss of Prdx6 Does Not Affect Cell Viability in Response to Cumene Hydroperoxide

To explore whether loss of Prdx6 will affect apoptosis, we labelled B4G12 cells with Annexin V and
propidium iodide (PI) following exposure to CH for 4 h. In response to CH, a large proportion (~40%) of
cells were judged to be apoptotic (AnV+/PI+) in both control and Prdx6 siRNA-transfected B4G12 cells.
However, the response between control and Prdx6-deficient cells to CH was not statistically significant
(Figure 4A). To verify these data, we employed xCELLigence for real-time monitoring of cell viability.
The addition of CH to both control and Prdx6-deficient cells resulted in a time-dependent decrease
in cell viability with overlapping kinetics (Figure 4B), suggesting Prdx6 expression is not required to
inhibit apoptosis in CEnCs.
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Figure 4. Normal apoptosis in the absence of Prdx6. (A) B4G12 CEnCs were treated with CH (100 µm)
for 4 h and stained with Annexin V and propidium iodide (PI). Representative FACS plots are shown
and the percentages of viable (AnV−PI−), early, (AnV+PI−), late apoptotic (AnV+PI+), and necrotic
(AnV−PI+) are shown. (B) B4G12 CEnC cells were seeded on xCELLigence plates and continuously
monitored for 8 h after the addition of CH (50 µm).
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3.5. Regulation of Mitochondrial Membrane Potential by Prdx6

Treatment of CEnCs with menadione (MN) has been demonstrated to reduce mitochondrial
membrane potential (∆Ψm), induce mitochondrial dysfunction, and to partially mimic phenotypes
associated with FECD [18]. Preliminary data demonstrated that the potent ∆Ψm disruptor CCCP
caused a significant loss in TMRE fluorescence, indicating loss of ∆Ψm in both control and Prdx6
siRNA-transfected B4G12 cells. However, MN did not cause ∆Ψm in this time frame (Figure 5A
and Figure S2). Therefore, we performed time courses to establish whether MN induces ∆Ψm
with prolonged incubation (Figure S2). Compared to tBHP, MN induced a more robust ∆Ψm in
a time-dependent fashion (Figure S2). Following a 90-min exposure to MN, differences between
control and Prdx6 knockdown cells could be detected, with Prdx6 knockdown cells displaying greater
loss of ∆Ψm compared to controls (Figure 5A). Therefore, in response to MN, loss of Prdx6 influences
mitochondrial function.

We treated control and Prdx6 knockdown B4G12 cells with MN or tBHP and measured cellular
viability with xCELLigence (Figure 5B). Compared to tBHP, MN rapidly decreased cell viability
in control and Prdx6 knockdown B4G12. However, for Prdx6-deficient cells, loss of viability was
consistently accelerated compared to controls. The augmented cell death in Prdx6 knockdown cells
was not seen with tBHP, suggesting the effects are specific to MN (Figure 5B). Taken together, it appears
that loss of Prdx6 renders B4G12 cells more susceptible to oxidative stress and accelerates cell death in
response to MN.
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Figure 5. Prdx6-deficient cells are susceptible to cell death induced by menadione
MN. (A) Representative FACS plots of TMRE mitochondrial membrane potential (∆Ψm) in
siRNA-transfected B4G12 cells following treatment with 50 µm MN (90 min) or 50 µm CCCP
(15 min). Percentage of cells with loss of ∆Ψm is shown as well as overall TMRE mean fluorescence
intensity (MFI). (B) Data are presented as mean values ± SEM (n = 4) of percentage TMRE negative.
Two-way ANOVA reveals statistical significance (*p < 0.005) between MN treated control and Prdx6
siRNA-transfected cells. (C) Viability in response to MN and tBHP was assessed as in Figure 4B. Data is
presented as mean values ± SEM (n = 3). Statistical analysis for each time point was carried out using
two-way ANOVA with Bonferroni post-hoc multiple comparisons test (* p < 0.0001, ** p < 0.001).
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4. Discussion

Corneal endothelial cells are susceptible to oxidative stress. In part, FECD is thought to be
an oxidative stress disease [22]. The late onset of FECD suggests that the continual exposure to
UV-induced oxidative stress gradually renders endothelial cells in FECD more susceptible to oxidative
damage. Consistent with this, a decrease in Prdx (including Prdx6) levels has been demonstrated [9].
Furthermore, an increase in oxidative damage in ex vivo FECD tissue has been reported [8]. Menadione
induces intracellular ROS in cultures of normal human CEnCs and produces effects similar to that
seen in cells derived from FECD tissue [18].

We report that Prdx6 levels are compartmentalised to the plasma membrane in both primary
cultures of CEnCs as well as the CE cell line B4G12. In A549 cells Prdx6 translocates to the plasma
membrane in response to oxidative stress in order to protect the cell membrane. We reasoned
that Prdx6 might play a similar function in CEnC. However, in primary CEnCs oxidative stress
resulted in a decrease in both cytosolic as well as PM Prdx6 levels. Likewise, cytoplasmic Prdx6
in B4G12 was reduced following oxidative stress. However, the PM levels did not change within
the 3-h timeframe. In an attempt to elucidate the function of plasma membrane associated Prdx6,
we performed knockdown of Prdx6 followed by treatment with CH. Cumene hydroperoxide induces
lipid peroxidation at the plasma membrane with no effect on mitochondria [17]. We predicted that
Prdx6-deficient cells would have increased sensitivity to lipid peroxidation. However, in response to
CH, the level of lipid peroxidation did not increase, suggesting Prdx6 is required for cells to
respond to CH. Our data on Prdx6 knockdown of B4G12 endothelial cells contradicts that described
for pulmonary microvascular endothelial cells (PMVECs) isolated from the lungs of Prdx6-deficient
mice. In response to tBHP, Prdx6-deficient PMVECs are more sensitive to lipid peroxidation [13].
Interestingly, both peroxidase as well as PLA2 activity was required for Prdx6 to mediate membrane
repair following lipid peroxidation [13]. The discrepancy between these results is unclear. Both CH
and tBHP induce lipid peroxidation and apoptosis to the same extent. We can only speculate that
in the absence of Prdx6, compensatory mechanisms might be induced to maintain cell membrane
integrity in CEnC.

Alternatively, Prdx6 might actively contribute to lipid peroxidation. Indeed, following oxidative
stress, Prdx6 PM levels were rapidly diminished, an effect not seen with other PM proteins.
In this scenario, loss of Prdx6 may be protective. Indeed, viability in the absence of Prdx6 was greater
compared to controls in response to tBHP. However, in response to CH, apoptosis was comparable
between control and Prdx6 siRNA-transfected B4G12 cells (Figure 4A). This suggests that the level of
Prdx6 may impact how cells respond to different types of ROS. These data do not rule out that
non-apoptotic cell death pathways such as ferroptosis [23] might be affected by Prdx6. Indeed,
similar to Prdx6, GPx4 also uses GSH as its physiological reductant, (which is required for repair of
peroxidised membranes), and loss of its expression drives ferroptosis [24].

Prdx6 is known to translocate to the PM in activated neutrophils and associate with components of
the NADPH oxidase complex, and is required to enhance the generation of superoxide [15]. Whether
or not PM Prdx6 in pCEnCs is associated with components of the NADPH oxidase is not currently
known. A role for Prdx6 in generating superoxide may appear contradictory to the antioxidant role of
Prdx6. However, localised peroxide is emerging as a niche for signal transduction. For example,
localised inactivation of Prdx1 in lipid rafts is required for the generation of highly localised H2O2

within a signalling microdomain [25]. Currently it remains unclear as to why CEnCs have high Prdx6
levels at the PM.

Prdx6 has been demonstrated to be rapidly recruited to mitochondrial in CCCP-treated HeLa
cells and is required to block the induction of mitophagy [26]. Prdx6 has also been revealed to
translocate to mitochondria in hepatocytes in response to an ischemia-reperfusion injury model [27].
Furthermore, Prdx6-deficient mice have increased generation of mitochondrial-produced H2O2 and
increased hepatocyte injury in response to ischemia-reperfusion injury [27]. Interestingly, loss of
mitochondrial membrane potential and induction of mitophagy is strongly implicated in FECD [18,28].
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5. Conclusions

Consistent with these findings, we report that loss of Prdx6 results in heightened loss of
mitochondrial membrane potential, together with accelerated cell death in B4G12 in response to
MN. Taken together, our data suggest that oxidative stress results in a decrease in Prdx6. In turn,
mitochondria become more sensitive to oxidative damage, which we suggest is responsible for the
increased mitochondrial dysfunction apparent in FECD.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3921/7/12/180/s1,
Figure S1. Cytoplasmic and plasma membrane (PM) proteins were purified from A549 and B4G12 cell lines left
untreated (−) or treated (+) for 3 h with tBHP. Figure S2. Menadione disrupts mitochondrial membrane potential.
B4G12 cells were treated with the indicated compounds for the desired times.
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