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Temporal lobe epilepsy is associated with MRI findings reflecting underlying mesial temporal sclerosis. Identifying these MRI fea-

tures is critical for the diagnosis and management of temporal lobe epilepsy. To date, this process relies on visual assessment by

highly trained human experts (e.g. neuroradiologists, epileptologists). Artificial intelligence is increasingly recognized as a promising

aid in the radiological evaluation of neurological diseases, yet its applications in temporal lobe epilepsy have been limited. Here,

we applied a convolutional neural network to assess the classification accuracy of temporal lobe epilepsy based on structural MRI.

We demonstrate that convoluted neural networks can achieve high accuracy in the identification of unilateral temporal lobe epi-

lepsy cases even when the MRI had been originally interpreted as normal by experts. We show that accuracy can be potentiated by

employing smoothed grey matter maps and a direct acyclic graphs approach. We further discuss the foundations for the develop-

ment of computer-aided tools to assist with the diagnosis of epilepsy.
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Introduction
The diagnosis of epilepsy-related radiological abnormal-

ities depends on the identification of subtle imaging fea-

tures.1 Their accurate interpretation requires considerable

expert training and can be prone to human error.2 Deep

learning and convolutional neural networks (CNNs) have

been increasingly recognized as promising aids in the

radiological evaluation of neurological diseases such as

Alzheimer’s disease, brain tumours, as well as other sys-

temic conditions that rely on imaging or pathological

findings, such as pneumonia or skin cancers.3 In spite of

the high prevalence of epilepsy, artificial intelligence has

not been equivalently explored for the radiological detec-

tion of epilepsy-related brain abnormalities.4

This gap is possibly related to several important char-

acteristics that set epilepsy apart from other neurological

conditions. First, even though epilepsy is prevalent, affect-

ing approximately 1% of the world population, it is a

heterogeneous disease. However, the most common form

of epilepsy in adults is temporal lobe epilepsy (TLE). In

addition to its high prevalence, TLE is also the most

common form of drug-resistant epilepsy,5 incurring con-

siderable healthcare costs. Identifying subtle radiographic

findings associated with TLE can be critical to the neuro-

logical evaluation of epilepsies, especially for cases that

may require surgical treatment. TLE is often part of the

differential diagnosis. Given that imaging findings can be

subtle in the various types of TLE, deep learning could

aid in the analysis of imaging, having a wide-ranging im-

pact in the diagnosis and treatment of epilepsy in

general.

Second, the most frequent subtype of TLE, medial TLE

(MTLE), is commonly associated with mesial temporal

sclerosis (MTS), which is a histological abnormality, often

with radiologic correlates, defined by cell loss and gliosis

in the hippocampus. Radiographically, this cell loss is

associated with reduced regional volume or loss of hippo-

campal internal structures, which can be appreciated on

T1-weighted images,6 while gliosis is associated with

increased T2 signal.7 Regional atrophy and increased T2

signal can be readily apparent in some instances, but

many MTLE cases are not clearly recognized on visual

inspection. Accordingly, manual or automated quantifica-

tion of medial temporal atrophy through volume meas-

urements relative to normative databases have been

helpful in increasing diagnostic accuracy in some cases.2,8

Likewise, T2 signal quantification may also increase imag-

ing-based diagnostic accuracy.9 Nonetheless, these

approaches do not detect the pattern of tissue damage in

MTLE, which has been shown to extend beyond both

the hippocampus and the medial temporal region.10,11

These abnormalities could be important for the diagnosis

of MTLE but are subtle and often not detectable by
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visual inspection of diagnostic images. Similarly, with the

wide array of other TLEs, including basal, lateral neocor-

tical and polar regional involvement, new approaches to

image analysis are warranted. CNN offers a unique op-

portunity to detect relevant hippocampal and extra-hippo-

campal changes, which are otherwise imperceptible to the

human eye, and leverage them for diagnosis.

Third, compared with other forms of neurological dis-

eases with abnormal brain signal, such as brain tumors

or demyelinating lesions, the abnormalities of TLE do

not involve prominent distortion of brain anatomy or un-

ambiguous lesions. Instead, they are composed by widely

distributed changes that can often be quite subtle.

Furthermore, normal individual differences in sulcal and

gyral positioning or anatomy12 can pose an additional

challenge in the correct identification of TLE-related

abnormalities. In this context, approaches such as spatial

normalization of statistical tissue maps can reduce indi-

vidual variability and increase the sensitivity to consistent

abnormalities.13

Fourth, because some MTLE-related abnormalities

within the medial temporal region may be confined to

small parcels of brain tissue, such as the hippocampal

formation, entorhinal cortex, or perirhinal cortex,14 the

conventional multilayered approach with progressively

larger filters may ‘overlook’ important abnormalities.

Therefore, CNN architectures that leverage smaller filter

approaches and bypass the sequential filtering architec-

ture, such as direct acyclic graphs (DAG), may be more

sensitive to MTLE and TLE regional changes that do not

lead to large scale distortions.15

Taking these four points in consideration, we aimed to

assess the feasibility of artificial intelligence (specifically,

using neural networks) in detecting unilateral TLE. This

is a proof-of-concept evaluation aimed at testing the abil-

ity of CNNs to identify MTLE, using the gold-standard

of patients with MTLE who underwent surgical treatment

(medial temporal resection including anterior temporal

lobectomy but also selective amygdalohippocampectomy

or laser ablation) and became seizure free, thus providing

undisputable confirmation of the MTLE as well as unilat-

eral seizure onset. We focused on a large sample of well-

defined such cases of unilateral (left sided only) MTLE to

test the classification accuracy, sensitivity, and specificity

of CNNs. Given the proof-of-concept approach, we

focussed on left MTLE to avoid lateralization issues16

and to increase sample homogeneity in this initial study.

Moreover, we evaluated the best CNN architecture to

identify regional features that are well-known to be asso-

ciated with TLE by testing conventional versus DAG

architectures of CNN models. Finally, we tested whether

regional feature importance of CNNs agreed with sites of

MTLE-related pathology extensively described in the

literature.

Materials and Methods

Participants

The study included a total of 95 patients with left-sided

MTLE from three different sites, including the Medical

University of South Carolina (MUSC, n¼ 30), Emory

University (n¼ 33) and University of Bonn (n¼ 32).

Patient diagnosis was achieved following standard of care

assessment batteries at each site, including neurophysi-

ology and neuroimaging studies. Only patients for whom

clinical semiology, radiographic findings, and neurophysi-

ology were concordant and strongly suggestive of a left

medial temporal focus were included. A total of 202

healthy controls (HC) were also recruited across all three

sites (MUSC n¼ 49, Emory n¼ 74 and Bonn n¼ 79) if

they had no prior history of psychiatric or neurological

disorders. The Institutional Review Board (IRB) approval

for anonymized data collection and data sharing was

obtained at each centre prior to enrollment into the

consortia.

The TLE cohort included patients with visually detected

hippocampal or medial temporal lobe atrophy (n¼ 48)

and patients without visually identifiable abnormalities

(n¼ 47). The patients with medial temporal lobe atrophy

were evenly distributed across all sites. There were no

patients with other abnormalities besides medial temporal

lobe atrophy, such as neocortical focal cortical dysplasia,

brain tumors, arachnoid cysts, or strokes. Among the

patients with left TLE, the majority underwent resection

surgery (n¼ 59) varying from selective amygdalohippo-

campectomy to complete anterior temporal lobectomy or

stereotactic laser ablation (n¼ 36) for the treatment of

epilepsy after the MRI used in this study was acquired.

Among those, at least one year after surgery, 57 became

seizure free postoperatively: n¼ 29 among patients with

hippocampal atrophy and n¼ 28 among those without.

For clarity, we will hereafter refer to patients with visu-

ally identified hippocampal atrophy as ‘lesional’ TLE,

and those without hippocampal atrophy as ‘non-lesional’.

Diagnostic gold-standard

In this study, the gold standard for the diagnosis of left

TLE were patients who became seizure-free at least one

year after surgery (lesional or non-lesional). This is the

most unequivocal diagnostic confirmation of the presence

and lateralization of TLE. This is a crucial aspect of this

study: the goal here is not to define a classifier that is as

accurate as humans in identifying hippocampal atrophy.

The translational benefit of such a tool would be limited.

Instead, if a classifier can accurately identify patients who

become seizure free with or without visually perceptible

hippocampal atrophy, this is a confirmation of diagnostic

accuracy using features beyond the hippocampus that are
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typically not appreciated on visual inspection and demon-

strates its potential benefit as a decision support tool.

MRI preprocessing and GM tissue
segmentation

All images were acquired preoperatively on a 3 T MRI

scanner. Scanner type and acquisition parameters varied

across institutions, as follows:

• MUSC: Siemens Skyra 3T scanner, isotropic voxel size

1 mm, 12-channel head coil, TR ¼ 2050–2250 ms,

TE ¼ 2.5–18 ms, FOV ¼ 256–320 mm, flip angle 10�;
• Emory: Siemens Prisma 3T scanner, isotropic voxel

size 0.8mm, 12-channel head coil, TR ¼ 2300 ms,

TE ¼ 2.75 ms, TI ¼ 1100ms, flip angle 8
• Bonn: Siemens Magnetom Trio 3T scanner, 8-channel

head coil, isotropic voxel size of 1mm, TR ¼ 650ms,

TE ¼ 3.97ms, TI ¼ 650ms, flip angle 10�

Image preprocessing was performed to normalize all

images in standard stereotaxic MNI space and to seg-

ment brain tissues. For normalization into standard

space, we used the normalize function from the software

package SPM with the following parameters: bias regu-

larization ¼ 0.0001, bias FWHM ¼ 60, tissue probabil-

ity map ¼ TPM.nii, voxel size ¼ 1 � 1 � 1 mm3, 4th

degree b-spline interpolation. FSL’s FMRIB’s Automated

Segmentation Tool (FAST) was used for tissue segmenta-

tion, with the following parameters: 3 classes, segmenta-

tion smoothness ¼ 0.1, 4 main-loop iterations, bias field

smoothing extent ¼ 20.

After tissue segmentation, the grey matter maps were

spatially smoothed using SPM’s smooth function using a

three-dimensional FWHM (8 mm). Grey matter maps

were smoothed to minimize individual variability in sulci

and gyri positioning. In other words, a pattern of region-

al atrophy may be undetected if there is considerable

variation in sulcal anatomy in the region. Spatial smooth-

ing is a common strategy in voxel-based morphometry

for this reason as well as to render datasets that are nor-

mally distributed for subsequent analysis. Nonetheless,

since CNN filters can be quite sensitive to contours, the

impact of atrophy on sulcal shape may also be an im-

portant feature. For these reasons, all deep learning anal-

yses described below were performed with smoothed as

well as unsmoothed grey matter maps for comparison.

MRI dataset group imbalance
correction

In order to avoid the potential imbalance caused by a

larger sample size of HC participants than patients with

TLE, which could lead to classification bias or overfitting

to the majority group, the synthetic minority over-sam-

pling technique (SMOTE) was used.17 This approach cor-

rects the group imbalance condition by increasing the

number of minority group samples to equal the number

of majority group samples. In our study, the TLE group

was the minority group. Thus, we balanced the cohorts

by using a k-nearest neighbour version of SMOTE that

generates synthetic minority image samples with similar

GM tissue patterns. In general, for each minority image

sample Xm, SMOTE applies a two-step approach to cre-

ate synthetic minority samples. First, a small subset of k

image samples fXigk
i¼1 in the remaining data set are iden-

tified if have similar spatial and pixel value patterns

using the Euclidean distance measurement

min8 2 X
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðX �XmÞ2

q
. Next, a sample X̂ from

fXigk
i¼1 is randomly selected and a synthetic minority

image sample Xs ¼ Xm þ Xm � X̂
� �

�Rd is estimated where

Rd is a displacement value that is randomly selected from

uniform distribution with mean equal to zero and standard

deviation equal to one. These two steps are repeated until

the number of minority samples equals the number of ma-

jority samples. The results reported in Section 3 use five

nearest neighbours (i.e. k¼ 5).

It should be emphasized that the imbalance correction

is a key step during the approach for out-of-sample pre-

dictions. Considering the sample used in this study

(MTLE n¼ 95 and controls n¼ 203): without imbalance

correction, the training group would have approximately

68% of controls. As such, a training model could ‘learn’

this imbalance and achieve 68% accuracy by simply pre-

dicting all individuals on the testing group as controls.

With imbalance correction, the number of controls and

patients in the training group is the same and the imbal-

ance is not taken into account to predict the test group.

This important step in the approach also underscores the

importance of evaluating predictive values for each

group, in addition to accuracy alone.

Deep-learning classification model

The overall approach is summarized in Fig. 1 and

detailed in the Materials and Methods section below. A

supervised deep-learning (DL) approach to MRI data was

applied to classify individuals into one of two group

labels (HC or TLE). CNN and DAG-CNN classification

models were used to identify GM tissue patterns in MRI

data that could recognize HC individuals or individuals

with TLE. Both classifications models (CNN and DAG-

CNN) were created using the deep-learning MATLAB

2020a toolbox and utilized high-performance GPU com-

puting resources to optimize computationally intensive

grid-search and cross-validation analysis techniques. The

details of both DL classification models are provided

below. The code for these models is publicly available

from https://github.com/brent-munsell/enigma_cnn (Accessed

3 December 2021).

The CNN classification model used three convolution

layers and one fully connected classification layer

(Fig. 2—CNN). When an image was input into the
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CNN model, the layers were applied sequentially: (i) the

input image was processed by the first convolution layer

and the GM tissue features learned by the first convolu-

tion layer were input into the second convolution layer;

(ii) subsequently, the GM tissue features learned by the

second convolution layer were input into the third convo-

lution layer; (iii) thereafter, the GM tissue features

learned by the third convolution layer were input into

the classification layer; and (iv) finally, the output of the

classification layer was the predicted group label. The

CNN classification model featured several hyperpara-

meters that were identified by a grid-search procedure to

fine-tune the model’s performance, including learning-

rate, number of epochs, validation frequency, filter (or

Figure 1 Summary of the methodological approach. This study evaluated 95 patients with left medial temporal lobe epilepsy (TLE) and

202 healthy controls (HC) from across three epilepsy centres. They all underwent 3 T structural MRI acquisition. The coronal slices were

employed by human experts (epileptologists and neuroradiologists) to visually diagnose each scan into either group while blind to the correct

label. Coronal slices were then processed to extract the grey matter tissue. Both the raw and smoothed grey matter of sequential coronal slices

were fed into a convolutional neural network (CNN) and a direct acyclic graph CNN (DAG-CNN) to probe the accuracy of a machine learning

approach.

Figure 2 CNN classification modelling approach. Schematic diagram that outlines the basic operation of our CNN and DAG-CNN

designs. Notice that contrary to CNN, DAG-CNN learns hierarchical grey matter tissue patterns and then combines convolution layers using an

addition operation.
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kernel) size for each convolution layer (i.e. a square n �
n matrix), and number of filters. Conceptually, the CNN

classification model is a pyramidal-based technique that

learns GM tissue features at different scales. For instance,

if a first layer applies a 2 �2 convolution kernel to the

image data the total number of GM tissue pattern fea-

tures is reduced by two (assuming stride is the size of

kernel with no padding). At this scale, with this kernel,

features may represent subtle GM tissue patterns that

may be related to precise folding patterns. However,

when the second layer applies a 2 �2 convolution kernel

to the GM features found by the first convolution layer,

the number of features is further reduced by two and

represents more coarse GM tissue patterns that maybe

localized to a specific region in the brain. Generally

speaking, this multi-scale feature approach greatly simpli-

fies the complexity of the learning approach and reduces

a high-dimension problem to a lower-dimension problem.

Similarly, the DAG-CNN classification model used

three convolution layers and one fully connected classifi-

cation layer. However, this approach also included one

addition layer (Fig. 2—DAG-CNN). Contrary to CNN,

the layers in the DAG-CNN can have inputs from mul-

tiple layers, as well as outputs to multiple layers. This is

evidenced by the aforementioned additional layer, i.e.

two inputs, one from the first convolution layer and a se-

cond from the third convolution layer. Additionally, like

the CNN model, each layer was applied, starting at the

first convolution layer processing the image data and

ending at the classification layer predicting the group

label. Also identical to the CNN classification model, our

DAG-CNN classification model featured the same hyper-

parameters that were identified by a grid-search proced-

ure. Conceptually, the DAG-CNN uses a multi-scale

approach to learn GM tissue patterns; however, this ap-

proach has the ability to combine subtle GM tissue fea-

tures (identified in the first convolution layer) with coarse

GM tissue features, and then use both feature representa-

tions for classification.

Classification model evaluation

Classification performance was evaluated using a 10-fold

procedure (Fig. 3A) that was introduced in a recent

study using machine learning to study the classification

of temporal lobe epilepsy using multicentric ROI-level

MRI data.18 More specifically, given a set fXig M
i¼1 of in-

put images where Xi is a 2D square resolution N � N

image for participant i and M is the total number of par-

ticipants, and a set flig M
i¼1 of labels that defines the cor-

responding group label (e.g. HC¼ 0 and TLE¼ 1) for

each participant, the following steps were sequentially

applied to identify the optimal modelling parameters:

(1) The image and participant label data sets were random-

ly shuffled together (participant image & label are

Figure 3 Classification model performance evaluation. (A) Diagram that illustrates our 10-fold grid search process to create a correctly

trained pipeline with the highest classification accuracy, and (B) Diagram that illustrates our 10-fold cross-validation process to create a pipeline

using shuffled labels to yield a random distribution to assess statistical significance.
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maintained) and then an 80/20 percent stratified (based

on participant label) split was applied to both data sets,

where 80% became training and validation data and

20% becomes test data.

(2) Using only the training and validation data split, a

10-fold stratified grid-search procedure was applied

to our classification model. In particular, the training

and validation data were equally split into ten stratified

folds. Next, one-fold was selected as validation data

and the remaining nine folds became the training data.

Using the training & validation data, a grid-search was

performed to estimate the optimal modelling parame-

ters (i.e. deep learning network hyper-parameters) in

2D coronal plane images that yielded the highest classi-

fication accuracy. The coronal orientation was chosen

because this is the most widely used plane when human

experts compare side-to-side hippocampal changes to

determine the presence or absence of underlying path-

ology. This process was repeated until each fold had

been selected as the validation fold, resulting in ten clas-

sification models (i.e. one for each fold).

(3) Using the ten classification models created by the grid-

search procedure above, the model that had the highest

classification accuracy (predicted the correct participant

label the greatest number of times) was selected and its

modelling parameters were identified to be optimal.

(4) A classification model was constructed using the opti-

mal modelling parameters and performance was eval-

uated using only the subjects in the test data. This was

achieved by creating a 2 �2 confusion matrix and then

calculating the positive predictive value (PPV), negative

predictive value (NPV), sensitivity (SEN), specificity

(SPC), area under the curve (AUC) and accuracy

(ACC).

To assess the stability of our analysis, steps 1 through

4 were repeated 1000 times. In total, 1000 confusion

matrices were created that were used to compute the

mean and standard deviation for each of our perform-

ance metrics (PPV, NPV, SEN, SPC, AUC and ACC).

Assessment of statistical significance
and model visualization

Statistical significance was defined by comparing the

accuracies of the model with real data versus random dis-

tribution. The random distribution was obtained by shuf-

fling the labels and repeating the training and testing

process multiple times, without contamination of testing

samples in the training group. Specifically, performance

was evaluated using a 10-fold procedure, however, steps

2 and 3 were modified so that the training and validation

participant labels were randomly permutated in step 2

and then a 10-fold stratified cross-validation procedure

(no grid-search) was applied using the optimal modelling

parameters, hence creating 10 random (or invalid) classi-

fication models (Fig. 3B). In step 4, the highest

performing random classification model was selected, a

random 2 � 2 confusion matrix was created, and each

of our performance metrics were computed. Similarly, to

assess the stability of our analysis this was repeated 1000

times. In total, 1000 random confusion matrices were

created that were used to compute the mean and stand-

ard deviation for each of our performance metrics.

Lastly, statistical significance was assessed by evaluating

how often the mean performance metric of the correctly

trained classification models was higher than the perform-

ance metric of the random trained classification models.

For instance, if the average classification accuracy of the

correctly trained model was greater than 98% of the

classification accuracies obtained in the random trained

model, the probability that the correct model classifica-

tion accuracy was merely due to chance was 2% or

P¼ 0.02. The same analysis was applied to each perform-

ance metric used in our analysis.

The 2D convolutional layers in the trained classification

model were then used to visualize GM tissue structures

that are able to differentiate TLE patients from HC sub-

jects. In general, the output of a convolution layer repre-

sents information about neighbouring data located in a

particular region in the brain. More specifically, when

the convolutional layer is given input data (e.g. image

data or data from a previous layer in the model) the

layer creates a 2D activation map where values in the

map indicate influence on classification performance. For

instance, a large positive or negative value in an activa-

tion map suggests the input data may represent an abnor-

mal structure in the brain that greatly influences

classification performance. Since we are only concerned

about the size of value, and not the sign (i.e. positive or

negative), the absolute value operator is applied to the

activation map. At each convolution layer in our model,

N convolution operations are performed that will create

N activation maps when data are input into the convolu-

tional layer. Next, the absolute value operator was

applied to the N activation maps, and the activation map

with the largest summed total value (i.e. all the values in

the activation map are added) was selected. Our visual-

ization approach was applied to each classification model

created by our evaluation procedure. In particular, for

each image sample in the test, three activation maps were

selected (one for each convolutional layer in the classifi-

cation model), and then the values in the activation map

were normalized to a value in [0 1] by simply identifying

the largest positive value and then dividing the map by

this value. This was repeated 100 times, which resulted

in 1000 normalized activation layer maps at each convo-

lutional layer. Lastly, at each layer the 1000 normalized

activation layer maps were added together creating one

activation map and then the values were normalized to a

value in [0 1] by identifying the largest positive value

and then dividing the map by this value.
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Comparison with human accuracy

A panel of epilepsy specialists (n¼ 6 neurologists and

n¼ 1 neuroradiologist) who routinely assess and treat

TLE evaluated a randomly chosen sub-sample of cases

n¼ 100, of which n¼ 28 were TLE and n¼ 72 were con-

trols. Among the patients with left TLE in this subset,

n¼ 19 had been considered to have TLE-HS based on

their clinical work-up. The panel of experts was not

aware of the diagnosis of each case. They were aware

that there were only cases of left TLE due to medial tem-

poral atrophy and no other pathologies. They were also

aware that there were more controls than epilepsy

patients in the sample, but they did not know the per-

centage of each group. All experts were presented with a

mosaic of evenly spaced (every 5 mm) coronal slices of

the T1-weighted images to demonstrate the entire hippo-

campal formation and surrounding structures, also

including more anterior and posterior planes beyond the

hippocampal formation (planes �41, �36, �31, �26,

�21, �16, �11, �6, �1, 4 mm, in reference to the anter-

ior commissure). A polling system was used where each

expert anonymously rated the scan as either being an HC

or TLE. A majority vote was obtained based on these

results. We also recorded the breakdown of individual

classifications.

TLE categories

As described above, CNN and DAG models were trained

and tested with all patients with TLE grouped together

to ensure that the model included features from patients

with visually identified hippocampal atrophy as well as

from those without such findings, since both groups may

have anatomical features that could be useful for classifi-

cation beyond the hippocampal region. Testing accuracies

were then assessed based on all patients, but also based

on specific sub-classes, namely: lesional TLE, non-lesional

TLE, seizure-free TLE (gold-standard) and non-seizure

free TLE. For comparison, the accuracy of classification

from human interpretation was also recorded for all

categories.

Data availability

The data that support the findings of this study are avail-

able from the corresponding author, upon reasonable

request.

Results

Patient demographics

The study included 95 with left-sided MTLE (‘TLE’) and

202 healthy controls (‘HC’). Participants were recruited

from three independent epilepsy centres as described in

the Materials and Methods section. As shown in

Table 1, there were no significant differences between

patients with TLE and controls in age and gender

proportion.

Machine learning approach

The CNN classification model used three convolution

layers and one fully connected classification layer

(Fig. 2—CNN) while the DAG-CNN classification model

also employed an addition layer (Fig. 2—DAG-CNN).

CNN TLE versus HC classification
performance

We initially performed 10-fold stratified grid-search ap-

proach to find the optimal CNN model parameters, re-

vealing a learning rate ¼ 0.0006, number of epochs ¼
160, validation frequency ¼ once every 80 epochs, first

convolution layer ¼ 40 filters with kernel size 20 � 20,

second convolutional layer ¼ 10 filters with kernel size

10 � 10, third convolution layer ¼ 15 filters with kernel

size 20 � 20, and the optimal 2D coronal image was

found in plane 113 (out of 156). The optimal model

parameters were then used to generate 1000 correct 2 �
2 confusion matrices using correct CNN classification

models (Fig. 3A) and 1000 incorrect 2 � 2 confusion

matrices using incorrect CNN classification models

(Fig. 3B). The accuracy and AUC of CNN were also sig-

nificantly higher than chance: CNN accuracy ¼
0.85 6 0.03 versus random model accuracy ¼ 0.46 6 0.12

(P< 0.0001); CNN AUC ¼ 0.83 6 0.03 versus random

model AUC ¼ 0.47 6 0.12 (P< 0.0001) (Table 2).

To better understand GM tissue patterns that the CNN

used to differentiate TLE participants from HC, the visu-

alization technique was applied to the three convolution

layers defined in the CNN classification model (Fig. 4).

In general, the grey matter volume of the motor cortex

and hippocampus GM surfaces (both hemispheres) was

identified by the 20 � 20 kernel in the first convolution

layer; the grey matter volume of the hippocampus GM

(both hemispheres) was identified by the 10 � 10 kernel

in the second convolutional layer; and the grey matter

volume of several right GM surfaces, which include the

Table 1 Summary of demographic and clinical informa-

tion for patients with temporal lobe epilepsy (TLE) and

control participants

TLE Controls Statistical test

n 5 95 n 5 202

Age at surgery 39.4 (18.7) 42.3 (14.5) t¼ 1.46, P¼ 0.14

Gender (% female) 62% 56% v2 ¼ 4.6, P¼ 0.31

Age at onset 16.2 (11.6) –

Median seizure

frequency/month

5 –

Surgery type 62% resection

38% laser

Seizure freedom 60%

Values are mean (SD) unless otherwise specified.
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temporal lobe, hippocampus and motor cortex regions,

was identified by the 15 � 15 kernel in the third convo-

lutional layer. The GM surface features identified by the

third convolution layer were used to differentiate TLE

participants from HC and have the largest impact on

classification performance (Table 2).

DAG-CNN LTLE versus HC
classification performance

The optimal DAG-CNN model parameters found by the

10-fold stratified grid-search approach were learning rate ¼
0.0004, number of epochs ¼ 160, validation frequency ¼
once every 10 epochs, first convolution layer ¼ 10 filters

with kernel size 30 � 30, second convolutional layer ¼ 40

filters with kernel size 15 � 15, third convolution layer ¼
20 filters with kernel size 15 � 15, and the optimal 2D

coronal image was found in plane 117 (out of 156). The

optimal model parameters were then used to generate 1000

correct 2 � 2 confusion matrices using correct DAG-CNN

classification models (Fig. 3A) and 1000 incorrect 2 � 2

confusion matrices using incorrect DAG-CNN classifica-

tion models (Fig. 3B). The accuracy and AUC of DAG-

CNN were significantly higher than chance: DAG-CNN

accuracy ¼ 0.87 6 0.04 versus random model accuracy

¼ 0.49 6 0.11 (P< 0.0001); DAG-CNN AUC ¼
0.86 6 0.04 versus random model AUC ¼ 0.5 6 0.12

(P< 0.0001) (Table 2).

To better understand GM tissue patterns that the

DAG-CNN used to differentiate TLE participants from

HC, the visualization technique was applied to the three

convolution layers and the addition layer defined in the

DAG-CNN classification model (Fig. 5). In general, the

overall cortical and sub-cortical GM volumes (both hemi-

spheres) were identified by the 30 � 30 kernel in the first

convolution layer, the grey matter volume of the left

motor cortex and the hippocampus (both hemispheres)

was identified by the 15 � 15 kernel in the second

convolutional layer, the grey matter volume of the hippo-

campus (both hemispheres) was identified the 15 � 15

kernel in the third convolutional layer, and then the cor-

tical and sub-cortical grey matter (first convolution layer)

combined with the hippocampus grey matter (third con-

volution layer) in the addition layer.

Accuracies and predictive values
per TLE category—comparison with

human accuracy

The accuracies and predictive values of CNN and DAG

across different categories of TLE are shown in Fig. 6

and in Supplementary Fig. 1 and Supplementary Table 1.

As described in the Materials and Methods section, the

categories of TLE were defined based on whether there

was visually identified hippocampal atrophy and based

on surgical results. Humans were able to very accurately

detect patients with hippocampal atrophy, as demon-

strated by the high sensitivity in lesional TLE patients

versus HC. Moreover, cases predicted as controls by

humans were also highly likely to be controls (high

NPV). However, humans misclassified controls as patients

relatively often, as demonstrated by the relatively lower

specificity across all classes.

Notably, the accuracies of CNN and DAG-CNN were

vastly superior to the human accuracies in cases of non-

lesional TLE, including non-lesional TLE who became

seizure free after surgery (Fig. 6). This last category is

particularly meaningful. Seizure freedom is the gold

standard, i.e. it provides the clearest marker of diagnostic

confirmation of left TLE and that CNN and DAG-CNN

are particularly useful in identifying these patients. The

Z-scores of human performance in comparison with

CNN and DAG performances are shown in

Supplementary Table 1. Note that sensitivity among

lesional cases was within 2 standard deviations of the

Table 2 TLE versus HC classification performance and statistical significance summary based on CNN and DAG-

CNN models

Correct Classification model Randomized Classification model P-value

Metric Mean SD Mean SD

CNN model

Accuracy 0.85 0.023 0.46 0.0117 <0.001

Positive predictive value 0.75 0.056 0.47 0.146 0.0180

Negative predictive value 0.91 0.026 0.46 0.149 <0.001

Area under the curve 0.83 0.028 0.47 0.113 <0.001

Specificity 0.87 0.025 0.61 0.113 0.0030

Sensitivity 0.82 0.042 0.33 0.104 <0.001

DAG-CNN model

Accuracy 0.87 0.040 0.49 0. 106 <0.001

Positive predictive value 0.84 0.070 0.55 0.257 0.2288

Negative predictive value 0.89 0.054 0.46 0.157 <0.001

Area under the curve 0.86 0.041 0.50 0.122 <0.001

Specificity 0.91 0.043 0.67 0.104 <0.001

Sensitivity 0.82 0.067 0.34 0.134 <0.001
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mean of DAG and CNN. However, for non-lesional

cases, the human performance was Z ¼ �6.9 standard

deviations below the average DAG and CNN performan-

ces for all non-lesional cases, and Z ¼ �3.73 standard

deviations below the average for seizure-free non lesional

cases. Overall, CNN and DAG-CNN were also better at

classifying controls, as demonstrated by the consistently

higher specificity of all DAG and CNN models.

Discussion
In this study, we evaluated the accuracy and the anatom-

ically important features of neural network classifiers

applied to radiological images of patients with epilepsy.

Using the identification of left TLE as a foundational ap-

proach, we aimed to investigate whether CNN or DAG-

CNN would be sensitive to quantifying grey matter

changes in epilepsy and aid in the classification of the

disease. Importantly, we used seizure freedom after sur-

gery as the diagnostic gold-standard (i.e. confirmation of

left TLE), and we were particularly interested in non-

lesional cases, since these pose a particular challenge to

diagnosis by human experts. Overall, we observed that

CNN and DAG-CNN did not differ from human experts

in terms of identifying patients with lesional TLE.

However, CNN and DAG-CNN were considerably better

at identifying presumed non-lesional cases. Furthermore,

CNN and DAG-CNN were generally better at discrimi-

nating patients from controls (i.e. were more specific in

their classification). CNN and DAG-CNN had compar-

able accuracies relative to each other, except that DAG-

Figure 5 DAG-CNN classification model visualization. For

each convolution and addition layer, the top left figure shows the

corresponding 2D coronal image, the bottom left figure shows the

feature activation map (red colour represents grey matter regions

that contribute most to classification accuracy), and the larger

figure on the right shows the feature activation map overlaid on the

2D coronal image.

Figure 4 CNN classification model visualization. For each

convolution layer, the top left figure shows the corresponding 2D

coronal image, the bottom left figure shows the feature activation

map (red colour represents grey matter regions that contribute

most to classification accuracy), and the larger figure on the right

shows the feature activation map overlaid on the 2D coronal image.
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CNN had fewer false positives (i.e. patients with TLE

being misclassified as controls) using smoothed grey mat-

ter maps, suggesting a higher affinity of the method for

TLE-related patterns of atrophy. Relevant implications of

these findings are discussed in more detail in subsequent

sections.

Classification model performance

The performance of a DAG-CNN classification model

was similar to that of the CNN classification model

(Table 2). Both approaches showed similar ACC, NPV,

AUC, SEN and SPC performance when the model was

used to predict the group label (i.e. LTLE-HS or HC)

when given a coronal plane oriented 2D GM image of a

participant. For all five metrics (ACC, NPV, AUC, SEN

and SPC), both modelling approaches were significantly

better (i.e. P-value < 0.05) than random models, confirm-

ing the statistical significance of our findings. The rela-

tively high DAG-CNN PPV for smoothed images may be

related to the DAG design, in particular the additional

layer that combines the GM tissue features in the first

and third convolution layers, likely allowing for learning

of patterns otherwise imperceptible to the more linear ap-

proach of conventional CNN. That is, the overall grey

matter pattern of the cerebral cortex (in the first convolu-

tion layer) may have an additive influence on classifica-

tion performance than the grey matter of the

hippocampus (in the third convolution layer).

From feature importance maps, both modelling

approaches appeared to be identifying the same type of

GM tissue patterns at the first, second, and third convo-

lution layers (Figs. 4 and 5), and the GM tissue features

that have the largest impact on classification performance

localized to the hippocampus and the temporal lobe

region.

Extra-hippocampal atrophy in TLE
as an important feature for
classification

The classic pathological findings in TLE are cell loss, at-

rophy and gliosis in the hippocampus, which appear

on MRI as atrophy of the hippocampal formation on

T1-weighted images and increased T2-weighted hippo-

campal signal.6,7 While these are visually apparent in some

patients, brain structural changes related to MTLE are not

restricted to the hippocampus, but extend beyond the med-

ial temporal structures and the temporal lobes.16,19 Extra-

hippocampal abnormalities are not often noticeable by vis-

ual inspection, but numerous quantitative MRI studies

have consistently demonstrated limbic system atrophy in

the context of MTLE.10,19–21 In fact, different approaches

used for brain quantification have provided converging evi-

dence that MTLE is associated with entorhinal cortex

damage, perirhinal cortex damage as well as atrophy

involving the anterior cingulate, the insula, neocortical

temporal and frontal structures and the thalamus, among

others.10,11 In general, tissue atrophy has been found to be

more pronounced in structures connected to the hippocam-

pus. However, in spite of its prevalence in TLE, the diag-

nostic importance of extrahippocampal atrophy is

somewhat unclear given the fact that it is seldom quantita-

tively defined on MRI.

Our findings indicate that many extra temporal regions

exerted a high influence in terms of classification of left

Figure 6 Results for the gold standard classification. The figure shows sensitivity, specificity, positive (PPV) and negative (NPV) predictive

values, as well as the area under the curve (AUC) for the gold standard classification of HC versus non-lesional patients with TLE who had

seizure freedom after surgery. Positive predictive value means the predictive value towards the identification of TLE. Negative predictive values

mean the predictive value towards the identification on controls. Note the superior performance of machine learning models relative to human

raters for this category. The error bars indicate 2 standard deviations. CNN NS: CNN non smoothed grey matter maps, CNN SM: CNN

smoothed grey matter maps, DAG NS: DAG non smoothed grey matter maps, CNN SM: DAG smoothed grey matter maps.
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TLE. These findings support previous literature on the

anatomical patterns of atrophy in TLE and demonstrate

their importance for the diagnostic classification in the

context of artificial intelligence. The pattern of atrophy

beyond the hippocampus so often seen with VBM,

Freesurfer, and manual morphometry studies can be har-

nessed for diagnosis.

The concept of non-lesional TLE

The high accuracy of CNN in classifying presumably

non-lesional TLE patients is the most important finding

of this study. This observation demonstrates that human

visual classification is overly reliant on hippocampal atro-

phy, whereas abnormalities in multiple other regions can

contribute to the diagnosis of MTLE/TLE, yet remain im-

perceptible to our qualitative inspection. This is particu-

larly important because these are the most challenging

cases to diagnose. In fact, this finding could have the

most profound implications for routine clinical practice

once these promising methods are generalized and con-

sistently validated. With our paradigm, neural networks

are not proposed as a mere replacement for human

judgement. On the contrary, this approach can serve as a

powerful complementary decision support tool to guide

subsequent investigative steps. In this vein, an important

consequence of this observation is the fact that so-called

‘lesional epilepsy’ as a term may need to be revised, since

it implies the finding of a visually (as in, humanly percep-

tible) identifiable lesion; however, computer-aided diagno-

sis may change this definition to include more subtle

quantitative lesional patterns. This is critical for patient

management, for instance, since an important aspect of

determining surgical candidacy for drug-resistant epilepsy

is the convergence of neurophysiological data with

‘lesional’ features on neuroimaging studies.

Classification based on T1 atrophy

This study employed 2D image classification patterns

based on spatially normalized grey matter maps. Clearly,

there is a large number of other features that were not

explored. For example, TLE has been associated with

white matter atrophy and microstructural damage,21 ab-

normal 3D hippocampal curvature shape,22 cortical and

subcortical thickness,19 T2 relaxation changes, etc. Based

on the findings presented here, the next natural step

would be the inclusion of one or more of these addition-

al features and to test whether they further aid in the

classification of TLE patients. It is also possible that

multimodal imaging could provide non-redundant infor-

mation and further increase classification accuracy. The

high accuracy obtained from 2D images alone provides a

very promising further avenue for this type of research.

Importantly, as we move towards more complex image

features, machine learning models will also need to dem-

onstrate whether they are detecting a specific condition

(e.g. epilepsy versus control) or associated confounders

(e.g. lower intelligence quotient [IQ], long-standing mood

or cognitive changes, etc.). The sensitivity and specificity

of CNN in this endeavour will be achieved by (i) com-

bining different disease populations with similar patterns

of atrophy but different clinical courses (e.g. Alzheimer’s

disease and temporal lobe epilepsy) while controlling for

confounding variables (e.g. age), and (ii) shuffling labels

to reflect an alternative clinical phenotype (e.g. age or

IQ) independently of disease and comparing the accuracy

of such classification when trained on disease-associated

labels.

Limitations

Besides the previously identified potential alternative

approaches, there are a number of limitations to this

study that must be highlighted. First, we employed a

small number of human experts and future studies should

expand the cohort of raters to include more numbers of

specialized neuroradiologists. Importantly, the presenta-

tion of images for these experts was by means of pre-

defined coronal slices that mirrored the type of input fed

into the CNN models. We did not intend to probe

whether machine learning outperforms human raters per

se but rather show that CNN is feasible in the detection

of TLE even in cases not recognized by human raters.

However, future studies with larger cohorts should allow

human raters to scroll in a 3D-viewer environment with

the ability to zoom in/out, change windows, etc. Second,

we focused on only one subset of epilepsy, i.e. left

MTLE. Naturally, the approach here should be tested for

right TLE, and also for other causes of epilepsy, particu-

larly focal cortical dysplasia, which are often difficult to

detect with the human eye. It should be emphasized,

however, that a radiological decision support tool could

be useful even if it can only be sensitive and specific for

the diagnosis of TLE-related abnormalities, since TLE is

prevalent and it is commonly a diagnosis that must be

excluded during the work-up of challenging epilepsy

cases. Third, this study did not evaluate raw native T1

images, i.e. non-processed native images. We attempted

to begin from a well-defined starting point that is analo-

gous to the approach extensively used before to detect

extra-hippocampal abnormalities. Furthermore, we

intended to compare images in standard space to evaluate

feature importance and facilitate the comparison across

subjects. Albeit simple to use, these pre-processing steps

require time (for spatial normalization and tissue segmen-

tation) and they are not routinely performed in clinical

practice. Further studies should thus assess whether native

raw images could achieve a similar classification perform-

ance, hence removing the need for pre-processing steps.

This, in turn, would make the approach even easier to

implement and distribute widely for centres across the

world. Finally, as we define what best constitutes a gold-

standard cohort to probe the accuracy of machine
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learning in the detection of TLE, we must consider the

issue of changes in seizure outcome after surgery.

Changes from seizure-free to non-seizure-free status have

been observed in either direction up to 15% per year.23

We elected to choose the longest follow up time point

available postoperatively as long as it was more than

12 months since surgery following the seminal Wiebe

et al. controlled trial for the efficacy of epilepsy surgery24

but future studies could tease apart patients whose seiz-

ure outcome status did not change over time.

To summarize, convolutional image processing applied

to 2D MRI images can achieve high accuracy in the iden-

tification of left TLE cases. The accuracy can be further

increased by using smoothed grey matter maps and a

DAG-CNN approach. Importantly, the accuracy of neural

networks is considerably higher for non-lesional cases,

which are notoriously difficult to diagnose based on quali-

tative analyses. The plots of anatomical regional feature

classification importance suggest that neural networks can

detect subtle patterns of atrophy both within and beyond

the medial temporal region, consistent with those exten-

sively described in the literature, and leverage these pat-

terns for diagnosis of TLE. These are foundational

findings for the ultimate goal of implementing computer-

aided tools for assisting with the diagnosis of epilepsy.

Supplementary material
Supplementary material is available at Brain
Communications online.
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