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The development of genetic technologies has led to the identification of several copy number variations (CNVs) in the human
genome. Genome rearrangements affect dosage-sensitive gene expression in normal brain development. There is strong evidence
associating human psychiatric disorders, especially autism spectrum disorders (ASDs) and schizophrenia to genetic risk factors and
accumulated CNV risk loci. Deletions in 1q21, 3q29, 15q13, 17p12, and 22q11, as well as duplications in 16p11, 16p13, and 15q11-
13 have been reported as recurrent CNVs in ASD and/or schizophrenia. Chromosome engineering can be a useful technology
to reflect human diseases in animal models, especially CNV-based psychiatric disorders. This system, based on the Cre/loxP
strategy, uses large chromosome rearrangement such as deletion, duplication, inversion, and translocation. Although it is hard to
reflect human pathophysiology in animal models, some aspects of molecular pathways, brain anatomy, cognitive, and behavioral
phenotypes can be addressed. Some groups have created animal models of psychiatric disorders, ASD, and schizophrenia, which
are based on human CNV. These mouse models display some brain anatomical and behavioral abnormalities, providing insight
into human neuropsychiatric disorders that will contribute to novel drug screening for these devastating disorders.

1. Introduction

Copy number variation (CNV) is a structural genomic vari-
ation of the human genome that may either be inherited or
caused by de novo mutation. It includes translocation, inver-
sion, duplication, triplication, and deletion. CNVs can range
in size from kilobases (Kbs) to several megabases (Mbs) that
have not been identified by conventional chromosomal anal-
ysis. However, recent technology of genome-wide analysis
such as comparative genomic hybridization (CGH) has led
to the discovery of extensive genomic structural variation
[1–3]. A recent report using microarray technology revealed
that as much as 12% of the human genome are variable in
copy number [4]. These known CNVs are available from
the interactive web-based database DECIPHER (Database
of Chromosomal Imbalance and Phenotype in Humans
Using Ensembl Resources, http://decipher.sanger.ac.uk/).
The DECIPHER database is a Consortium comprised of an

international network of more than 100 centers and has
uploaded more than 2000 cases (current statistics can be
found on the DECIPHER homepage) [5].

CNVs can be de novo or familial. De novo mutations
are more likely to contribute to the development of sporadic
genomic disorders [6, 7]. In psychiatric disorders, ASD and
schizophrenia, extension of genome-wide association studies
(GWAS) have led to the discovery of both inherited and de
novo sporadic CNVs. Such CNVs resulted in altering gene
dosage and dosage-sensitive gene expression, which may
contribute to these disorders complexities [8]. These human
genetics studies have detected several CNVs (e.g., 1q21, 3q29,
10q26, 11p14, 15q11, 15q13, 16p13, 17p12, and 22q11). This
discovery suggests an important role for the strict regulation
of gene dosage in ASD and schizophrenia.

To understand psychiatric disorders, animal models
are needed because particular experiments in human are
impossible. While it is difficult to model human psychiatric
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Figure 1: Chromosome engineering in mouse embryonic stem cells.

phenotypes in animals (e.g., hallucinations and delusions
characteristic of schizophrenia that are human specific),
animal models may contribute to the elucidation of brain
anatomy, behavioral characteristics, and molecular mecha-
nisms that reflect aspects of human phenotypes.

Although there is a strong association between genetic
rearrangement and psychiatric disorders (e.g., ASD and
schizophrenia), valid animal models that reflect etiology are
rare. Several efforts have been made to generate mouse mod-
els of psychiatric disorders by conventional gene targeting,
conditional gene targeting, and point mutation by chemical
mutagens. But these techniques are not enough to reflect
complex human genomic rearrangements, such as large
deletions, inversions, and duplications. In this regard, the
Cre/loxP-based chromosome engineering technique is useful
to generate this kind of complex genomic rearrangements in
the mouse genome. By using this chromosome engineering
technique, we can accomplish CNV-based unbiased animal
models of psychiatric disorders. In this paper, we focus
on animal model of ASD (and schizophrenia) which was
generated by chromosome engineering, principle of this
technology, and discuss for future directions.

2. Chromosome Engineering in Mice

Genetic abnormalities such as point mutations, deletions,
duplications, inversions, and translocations can be induced
by exposure to X-ray radiation, chemical mutagens (e.g., N-
ethyl-N-nitrosourea (ENU)), conventional gene-targeting,
or chromosome engineering. X-ray causes DNA double-
strand breaks, inducing genomic instability [16]. The chem-
ical mutagen, ENU, induces single-base-pair substitutions in
the genome causing mutations with partial functions [17,
18]. Animal models containing genes with point mutations
can be used to reveal the gene’s functional domain in vivo
[19]. Both techniques are valuable but cannot predict the
mutated position within the gene. Conventional gene target-
ing (replacement) is used to disrupt a gene (inserting mark-
ers or reporters) to determine a gene’s function. Conditional
gene-targeting utilizing the Cre/loxP and Flp/FRT system
allows spatial and temporal control of gene expression. It has
been increasingly used for gene function analysis in vivo.

Chromosome engineering is based on Cre/loxP tech-
nology, which can induce chromosome rearrangements

(deletions, duplications [10, 20, 21], and inversions [22, 23])
in the mouse genome (Figure 1).

Targeting vectors can be targeted in two orientations that
result in deletion, duplication, or inversion. Each targeting
vector has a loxP site and drug selection marker, neomycin
resistance (Neo), or puromycin-resistant gene (Puro). Cis
and Trans indicate loxP sites.

Two loxP sites are sequentially inserted by each targeting
vector into the mouse embryonic stem (ES) cell genome.
Each targeting vector contains a selection marker, neomycin,
or puromycin resistance gene. The vectors are manipulated
by hypoxanthine phosphoribosyl transferase (HPRT) expres-
sion following Cre recombinase expression in ES cells. Tran-
sient expression of Cre recombinase induces rearrangement
between loxP sites in the mouse genome. Clones which
carry the desired chromosomal rearrangement are identi-
fied by various methods: drug selection by hypoxanthine-
aminopterin-thymidine (HAT) media, genomic Southern
blot analysis, fluorescent in situ hybridization (FISH), and
CGH (comparative genomic hybridization) array. Although
CGH array cannot identify structural chromosome aberra-
tions such as balanced reciprocal translocations and inver-
sions, this technique is a powerful tool to detect CNVs from
genome.

To inactivate a target gene or locus by chromosome
engineering, a gene target vector must be chosen or cre-
ated. The Mutagenic Insertion and Chromosome Engineer-
ing Resource (MICER) (http://www.sanger.ac.uk/resources/
mouse/micer/) was developed by Dr. Allan Bradley’s group,
the Wellcome Trust Sanger Institute and is useful as a gene-
targeting vectors resource [24]. These ready to use targeting
vectors can be accessed through the Ensembl mouse genome
browser (http://www.ensembl.org/index.html). It is impor-
tant to note that these targeting vectors use an insertion vec-
tor system rather than a replacement vector system. Given the
same length of homologous sequence insertion vectors have a
ninefold higher targeting efficiency than replacement vectors
[25].

3. Animal Models Based on Human CNVs

In spite of a strong association between ASD (and
schizophrenia) and CNV, animal models of CNV that
reflect human genomic rearrangement are few. These animal

http://www.sanger.ac.uk/resources/mouse/micer/
http://www.sanger.ac.uk/resources/mouse/micer/
http://www.ensembl.org/index.html


Neural Plasticity 3

Table 1: Behavioral phenotypes of mouse models.

Human chromosomal region Behavioral phenotypes Reference

7q11.23 (deletion)

Increased sociability

[9]Increased acoustic startle response

Cognitive deficits

Growth retarded (male)

15q11-13 (duplication)

Decreased sociability

[10, 11]
Behavioral inflexibility

abnormal ultrasonic vocalizations

decreased spontaneous activity

Increased anxiety

16p11.2 (deletion)

Hyperactive

[12]
difficulty adapting to change

sleeping abnormalities

repetitive or restricted behaviors

16p11.2 (duplication) Hypoactive [12]

17p11.2 (deletion)
cranio facial abnormalities

[13]Seizures

Obesity

22q11.21 (deletion)
Deficits in sensorimotor gating

[14, 15]Working memory deficit

Deficit in both cued and contextual fear memory

models were generated by chromosome engineering and
have several psychotic phenotypes similar to those seen
in patients with genomic rearrangement (Table 1). In this
section we focus on 15q11-13, 16p11.2, and 22q11 locus,
which are well-known copy number variant linked to ASD
(or/and schizophrenia).

3.1. 15q11-13 Duplication Syndrome (ASD). Human chro-
mosome region, 15q11-13, is a complicated region that
contains γ-aminobutyric acid receptor A (GABAA receptor)
clusters and several imprinting genes[26]. Paternally express-
ing genes include MKRN3, MAGEL2, NDN, and SNURF-
SNRPN. Maternally expressing genes include UBE3A and
ATP10A. In addition to these genes, this locus includes
noncoding small nucleolar RNAs (snoRNAs) that are located
between SNURF-SNRPN and UBE3A, which are paternally
expressed and brain specific [27, 28]. Deletion or duplication
of this locus causes severe neurological phenotypes. Prader-
Willi syndrome (PWS) and Angelman syndrome (AS) are
affected by changes in the 15q11-13 locus. Most notably,
deletion of UBE3A has been identified to lead to AS
phenotypes. Major clinical features of PWS include low
birth weight, short stature, small hands and feet, severe
hypotonia, feeding difficulties, obesity associated with hyper-
phagia starting in early childhood, mild to moderate mental
retardation, and learning and behavioral problems including
obsessive-compulsive disorder and autism [29, 30]. AS
patients exhibit developmental delay, gait ataxia, balance dis-
order, frequent laughter/smiling, easily excitable personality,
hyperactivity, speech impairment, microcephaly, seizures,
epilepsy, and abnormal EEG (electroencephalogram) [31].

Additionally, AS patients often exhibit socialization and
communication deficits, which are diagnostic criteria for
ASD [32, 33].

Duplication of the 15q11-13 locus was first reported as
a partial trisomy of chromosome 15 [34], and then two
individuals with autistic disorder were reported [35]. This
locus has been known as the most frequent cytogenetic
abnormality in ASD [36, 37]. Generally patients with 15q11-
13 duplication show hypotonia, delay in motor skills and
language development, epilepsy, and cognitive and learning
problems. Recently, Michelson et al. reported a patient with
severe intractable epilepsy who has familial partial trisomy
15q11-13 inherited from a mother who has schizophrenia
[38]. Autistic phenotype associated with 15q11-13 dupli-
cation, usually believed that maternal origin, UBE3A is
involved [39–46]. Although maternal locus supposed to
critical, paternally inherited patients had also developmental
delay [44, 46–49]. Clinical reports have been accumulating
but no mechanism has been addressed.

To address this question, Nakatani et al. generated a
mouse model of human 15q11-13 duplication [10]. This
mouse was generated by chromosomal engineering based on
the Cre/loxP system, and it has a 6.3 Mb duplicated locus
in mouse chromosome 7c which is highly similar to human
15q11-13 (Figure 2(a)).

Gene expression analysis revealed that paternally
expressed genes, both Ndn and Snrpn, were twofold
higher in paternally inherited mice (patDp/+) than wild-
type (WT) mice. Similarly, maternally expressed gene
Ube3a was twofold higher in maternally inherited mice
(matDp/+) than WT mice. Histological analysis revealed no
gross brain abnormalities. Monoamine levels in patDp/+
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(a) Mouse Chr. 7: 6.3 Mb duplication (Human Chr. 15p11-13)

C
O

R
O

1A

M
A

P
K

3

G
D

P
D

3

Y
P

E
L3

T
B

X
6

P
P

P
4C

A
LD

O
A

FA
M

57
B

49
30

45
1L

11
R

IK

D
O

C
2A

IN
O

80
E

H
IR

IP
3

TA
O

K
2

T
M

E
M

21
9

K
C

T
D

13

A
SP

H
D

1

SE
Z

6L
2

C
D

IP
T

M
V

P

29
00

09
2E

17
R

IK

P
R

R
T

2

M
A

Z

K
IF

22

Z
G

16

A
L4

67
60

6

Q
P

R
T

SP
N

(b) Mouse Chr. 7: 0.4 Mb deletion/duplication (Human Chr. 16p11)

D
G

C
R

2

ST
K

22
A

ST
K

22
B

E
S2

E
L

G
SC

L

SL
C

25
A

L

V
P

R
E

B
2

D
G

C
R

6

P
R

O
D

H

R
T

N
4R

Z
D

H
H

C
8

R
A

N
B

P
1

H
T

F9
C

D
G

C
R

8

T
10

A
R

V
C

F

C
O

M
T

T
X

N
R

D
2

G
N

D
Ll

T
B

X
1

G
P

1B
B

SE
P

T
5

C
LD

N
5

C
D

C
45

L

U
FD

1L

M
R

P
L4

0

H
IR

A

(c) Mouse Chr. 16: 1.3 Mb deletion (Human Chr. 22q11)

Figure 2: Schematic representation in studies applying chromosome engineering. Published in (a) Nakatani et al. [10], (b) Horev et al. [12],
(c) Stark et al. [14]. The paternally, maternally expressed, and nonimprinting genes were labeled with blue, red, and black, respectively.

adult mice, serotonin (5-HT), and their metabolites 5-
hydroxyindoleacetic acid (5-HIAA) were significantly
downregulated in the midbrain and olfactory bulb. Also
5-HT content in developmental stage from postnatal 1 to
3 weeks in patDp/+ brain regions (cortex, hippocampus,
cerebellum, midbrain, hypothalamus, pons, and medulla)
was downregulated. This indicates 5-HT signaling during the
developmental stage was significantly impaired in the brains
of patDp/+ mice [10]. 5-HT influences not only mental
condition (mood, social behavior, appetite, aggression and
sleep) but also normal development of the central nervous
system [50–52]. In addition to this, abnormal 5-HT levels
have been found in ASD patient blood cells. For these
reasons, 5-HT is one of the drug targets for ASD therapy.
Treatment with serotonin reuptake inhibitors (SSRIs)
have shown moderate success in recovering behaviors
[53].

Behavioral tests revealed that patDp/+ mice display
autistic behaviors such as less social interaction in the three-
chamber social interaction test [54], abnormal ultrasonic
vocalizations (USVs) [55] in postnatal developing pups
separated from their dams, and behavioral inflexibility
in the Morris Water Maze and Barnes Maze [10]. The
phenotypes seen in patDp/+ mice indicate that these mice
have impaired behaviors that include social interaction,
communication, restricted interest, and resistance to change.
These deficits correspond to human autistic phenotypes
[56, 57]. Furthermore, patDp/+ mice showed anxiety-related

phenotypes: decreased locomotor and exploratory activities
in the open field and Y-maze test, and long latencies in
novelty suppressed feeding test [11]. These anxiety-related
phenotypes frequently accompany autistic symptoms in
humans [58, 59]. Also the marble burying test, which is
a useful test for the study of anxiety, obsessive-compulsive
disorder (OCD), and neophobia, found that the number of
buried marbles was significantly low in patDp/+ mice [11].

3.2. 16p11.2 Deletion/Duplication Syndrome (Deletion: ASD,
Duplication: Schizophrenia). Deletion or duplication of the
chromosome 16p11.2 locus was observed in nearly 1%
of multiplex families with ASD [60]. Meta-analysis of
patients with ASD and/or developmental delay estimated
that 16p11.2 locus deletion is associated with a 38.7-fold
increase in the odds of ASD/developmental delay. On the
other hand, 16p11.2 locus duplication is associated with
a 20.7-fold increase in the odds of ASD/developmental
delay [60–63]. In addition to these, 16p11.2 deletion is
associated with obesity [64], and duplication is associated
with schizophrenia [65] as well as ASD [60, 66]. Notably,
a brain anatomical abnormality (abnormal head size) has
been reported to be associated with this locus. For instance,
patients with the 16p11.2 deletion had statistically significant
macrocephaly and those with duplication had microcephaly
[67].

A mouse model of human 16p11.2 deletion (df/+) as well
as duplication (dp/+) has been reported [12] (Figure 2(b)).
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This mouse model was generated by Cre/loxP-based
chromosome engineering. This locus includes 27 genes,
SPN, QPRT, c16orf54, KIF22, MAZ, PRRT2, c16orf53, MVP,
CDIPT, SEZ6L2, ASPHD1, KCTD13, LOC124446, HIRIP3,
CCDC95, DOC2A, FAM57B, ALDOA, PPP4C, YPEL3,
GDPD3, MAPK3, and CORO1A.

Young df/+ mice (before weaning) tend to be smaller
than WT siblings, but as adults they are almost the same
size as WT siblings and look healthy. Interestingly, 16p11.2
CNV mice, df/+ and dp/+ mice have opposite phenotypes.
In a novel environmental cage, df/+ mice displayed longer
distance traveled and time spent walking as compared with
WT mice. In contrast, dp/+ mice traveled a shorter distance
and spent less time walking as compared with WT mice.
Additionally, df/+ mice were significantly active in both dark
and light period. These results indicate that 16p11.2 locus
affects not only physical activity but also diurnal activity
and sleeping related symptoms. Also, a brain anatomical
study using Magnetic resonance imaging (MRI) identified
several regional changes in 16p11.2 CNV mice. For instance,
df/+ mice showed increased volume of several brain regions
(percentage of total brain volume): forebrain, superior
colliculus, fornix, hypothalamus, mammillothalamic tract,
medial septum, midbrain, and periaqueductal grey. These
brain regional volumetric changes were more significant
between df/+ and dp/+ than betweendf/+ and WT mice.

3.3. 22q11.2 Deletion Syndrome (22q11.2DS, DiGeorge
Syndrome (DGS), Velo-Cardio-Facial Syndrome (VCFS))
(Schizophrenia). Microdeletion of chromosome 22q11 is
found in 1 out of every 4000 live births, making it one of
the most common interstitial deletions [68]. This 22q11.2
microdeletion causes craniofacial, cardiovascular abnormal-
ities, immunodeficiency, hypocalcaemia, short stature, and
cognitive dysfunctions [69–71]. Microdeletion of this region
accounts for 1-2% of the cases of people with schizophrenia
[72, 73]. Also, this locus accounts for up to 1-2% of cases
of sporadic schizophrenia [74–76]. Some neuroanatomical
changes have been reported in patients with 22q11.2DS as
well. Volumetric reduction in total brain volume includes
cortical regions (e.g., frontal, parietal, temporal, and occip-
ital lobes), hippocampus, and cerebellum [77–86]. However,
inconsistency in these neuroimaging reports may be due
to the small numbers of subjects used and differences in
methodology [72]. Yet these neuroanatomical reports are
informative because some abnormalities are consistent with
phenotypes of those who have non-22q11.2 DS-associated
schizophrenia [76].

The majority of deletions in this locus are 3 Mb deletions
(−90% of the cases), but 1.5 Mb deletions (<10% of the
cases) contain 28 known genes which include critical genes
and increased risk of mental disorders [73, 87].

The mouse chromosome 16 region is conserved with
human 22q11.2. Animal models of the human 22q11.2
deletion were generated by 2 groups, and both groups
used chromosome engineering [14, 88] (Figure 2(c)). These
mouse models, Df(16)A+/− [14] and LgDel/+ [88], include
1.5 Mb critical regions, and both of them display several

behavioral abnormalities, such as deficits in working mem-
ory, sensorimotor gating, and fear conditioning [14, 89–
92]. Working memory deficits are becoming one of the
main features of patients with schizophrenia, thus these
animal models are supposed to reflect some aspects of
22q11.2 DS syndrome phenotype. In addition to behavioral
abnormalities in this mouse, diminished 22q11 locus dosage
disrupts cortical neurogenesis, interneuron migration [93],
dendritic complexity, and formation of excitatory synapses
[94]. Although, several interesting phenotypes have been
reported in this mutant mouse, there are no studies pub-
lished about brain structural abnormalities even though
several brain abnormalities have reported in human studies.
These brain anatomical changes and molecular mechanisms
that underlie these phenotypes will be interesting to elucidate
and will be addressed by using brain imaging techniques.

4. Future Perspectives

Application of new technologies, such as Compara-
tive Genomic Hybridization (CGH) and next-generation
sequencing, will reveal more additional genomic rearrange-
ments related to psychiatric disorders. Thus, to analyze
both phenotypes and underlying molecular mechanisms
that originate from genetic rearrangements, animal models
will be a powerful tool. In this context, chromosome
engineering will be a valuable tool. Recently Ruf et al.
[95] reported that they generated several hundred mice
and embryos which have one loxP and LacZ site at a
random genomic positions that inserted by sleeping beauty-
based transposition system. These lines are mapped in
Transposon and Recombinase Associated Chromosomal
Engineering Resource database (TRACER, http://tracerdata-
base.embl.de/fmi/iwp/res/iwp home.html). This database is
useful in creating chromosome rearrangements in vivo.

A logical next step is to identify responsible gene(s)
in CNV. It is an orthodox approach to narrow down the
region by systematically insertion of loxP combining the
existed lines such as above TRACER. Generating Bacterial
Artificial Chromosome (BAC) transgenic mice is another
way to identify critical genes. BAC transgenes inserted to
the genome faithfully recapitulate chromosomal endogenous
gene expression, since BAC transgenic mice may appro-
priate animal model of gene duplication. Also transient
overexpressing (or knockdown) each transcript in devel-
opmental brain is possible strategy. Recently Golzio et al.
[96] identified a responsible gene KCTD13 in 16p11.2 locus
which causes brain malformation by using zebrafish. Use
of these technologies in generating valid and etiology-based
animal model of psychiatric disorders will contribute to
the development of drugs against disorders and elucidation
of molecular mechanisms that underlie these psychiatric
disorders.
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