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Abstract

Patients with major depressive disorder (MDD) have clinically relevant, significant decreases in 

bone mineral density (BMD). We sought to determine if predictive markers of bone inflammation

—the osteoprotegerin (OPG)-RANK-RANKL system or osteopontin (OPN)—play a role in the 

bone abnormalities associated with MDD and, if so, whether ketamine treatment corrected the 

abnormalities. The OPG-RANK-RANKL system plays the principal role in determining the 

balance between bone resorption and bone formation. RANKL is the osteoclast differentiating 

factor and diminishes BMD. OPG is a decoy receptor for RANKL, thereby increasing BMD. OPN 

is the bone glue that acts as a scaffold between bone tissues matrix composition to bind them 

together and is an important component of bone strength and fracture resistance. Twenty-eight 

medication-free inpatients with treatment-resistant MDD and 16 healthy controls (HCs) 

participated in the study. Peripheral bone marker levels and their responses to IV ketamine 

infusion in MDD patients and HCs were measured at four time points: at baseline, and post-

infusion at 230 minutes, Day 1, and Day 3. Patients with MDD had significant decreases in 

baseline OPG/RANKL ratio and in plasma OPN levels. Ketamine significantly increased both the 

OPG/RANKL ratio and plasma OPN levels and significantly decreased RANKL levels. Bone 

marker levels in HCs remained unaltered. We conclude that the OPG-RANK-RANKL system and 

the OPN system play important roles in the serious bone abnormalities associated with MDD. 
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These data suggest that in addition to its antidepressant effects, ketamine also has a salutary effect 

on a major medical complication of depressive illness.

INTRODUCTION

More than 20 studies have found that patients with major depressive disorder (MDD) have a 

clinically significant loss of trabecular bone mineral density (BMD) at the hip and spine (1–

23). Older women with depression experience increased fracture rates, and our group 

previously reported that even premenopausal women with depression (age 40–50 years old) 

had osteopenia or osteoporosis (1). These women had an unusual pattern of loss, with 

greater losses of BMD at the hip than at the spine. This pattern is found more frequently 

when inflammatory mediators are thought to be a particularly important etiologic factor in 

bone loss (1, 24).

Bone formation is a dynamic, ever-evolving process in which bone production and bone 

resorption are taking place all the time (25, 26). If production is the predominant mode, bone 

tissue increases. If resorption is the predominant mode, bone tissue and BMD are lost. Bone 

production is mediated by osteoblasts, while bone resorption is mediated by osteoclasts (27). 

One function of osteoblast and osteoclast-mediated bone turnover is to allow the skeleton to 

be as light as possible while meeting biomechanical needs, with a safety margin sufficient to 

avoid most fractures. Another reason is to accommodate changes in the pattern of activity 

that might benefit from a shift in BMD from one spot to another. A third would be to correct 

as many cracks or micro-fractures that accumulate over time as possible.

Receptor activator of nuclear factor-κB ligand (RANKL) is the osteoclast differentiating 

factor and thus causes bone loss (28–30). Osteoprotegerin (OPG) is a decoy for RANKL and 

thus preserves BMD (31, 32). The OPG/RANKL ratio is a widely accepted index of the 

balance between bone resorption and bone formation (29, 32–35). Osteopontin (OPN) is 

secreted by osteoblasts in the early stages of osteogenesis. It is thought to act as a scaffold 

between bone tissues with different matrix compositions and to provide cohesion between 

them (36–38). It has been suggested that OPN is the bone ‘glue’ that promotes fiber matrix 

bonding as well as crack bridging in the case of micro-crack formation. Our bones are full of 

microscopic cracks, but they are highly resistant to fracture. OPN knockout mice show a 

40% increase in bone fractures, independent of changes in whole bone mass, structure, or 

matrix porosity (39). This is important because BMD cannot always predict fracture risk in 

humans or laboratory animals. While OPN also helps anchor osteoclasts, data clearly show 

that OPN is crucial to the maintenance of bone toughness and resistance to fracture (37, 39, 

40). Thus, the effect of osteoclast binding is not enough to materially influence its important 

role in bone strength. OPN may play a particularly important role as bone ages and becomes 

more fragile and subject to fracture.

This study addressed three questions: 1) is the OPG/RANKL ratio altered in MDD patients 

compared to healthy controls (HCs), and if so, does ketamine correct the deficit?; 2) are 

OPN plasma levels reduced in patients with MDD compared to HCs, and if so, does 

ketamine correct the deficit?; and 3) what are the potential clinical implications of these 

findings? As part of the study, we also measured other relevant bone markers involved in 
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bone remodeling, including osteocalcin (involved in bone metabolism and mineralization 

(41)), eotaxin-1 (originally associated with inflammatory chemotaxis in mood disorders 

(42)), and fibroblast growth factor 23 (FGF-23, a key regulator of phosphorus and vitamin D 

metabolism (43)).

MATERIALS AND METHODS

Patient selection, study design, and outcome measures

Forty-four subjects (females (n=25) and males (n=19), ages 18–65 years) were included in 

the study; 28 had treatment-resistant MDD and 16 were HCs. Patients with MDD were 

currently experiencing a major depressive episode lasting at least four weeks. Data were 

drawn from previous studies exploring ketamine’s mechanism of action (NCT00088699); 

results of these studies have been previously published (44, 45). Briefly, each study was a 

double-blind, randomized, placebo-controlled, crossover trial assessing the antidepressant 

efficacy of ketamine for treatment-resistant depression. Treatment-resistance was defined as 

a current or past history of lack of response to at least two adequate antidepressant or 

neuromodulatory (including electroconvulsive therapy) trials as assessed by our modified 

version of the Antidepressant Treatment History Form (46). Participants enrolled in this 

protocol had to meet DSM-IV-TR criteria for MDD without having a comorbid diagnosis of 

alcohol or substance abuse or dependence in the past 90 days, as determined by the 

Structured Clinical Interview for DSM-IV-TR (47). All participants had a Montgomery-

Asberg Depression Rating Scale (MADRS) score of at least 20 at baseline, were 

unmedicated for at least two weeks (five weeks for fluoxetine) before their first ketamine/

placebo IV infusion, and were in good medical health, as determined by medical history, 

physical examination, and routine blood and urine laboratory tests. All patients had similar 

diets during the studies. HCs had no DSM-IV-TR Axis I disorders nor any medical 

comorbidities. The studies were approved by the NIH Combined Neuroscience institutional 

review board and written informed consent was provided by all participants before study 

entry.

Subjects received a single infusion of ketamine hydrochloride (0.5 mg/ kg) over 40 minutes. 

Here we report results from 60 minutes prior to infusion (baseline) as well as 230 minutes, 

Day 1, and Day 3 post-infusion. Ratings included the MADRS and the 17-item Hamilton 

Depression Rating Scale (HAM-D), both of which were administered at the same time 

points as those used for peripheral blood collection. Bone marker levels were examined 

using samples only through Day 3, given that maximum antidepressant response to ketamine 

generally reaches its maximum by that point (48).

Bone Marker Measurements

Whole-blood samples were collected using the Vacutainer system. Baseline samples were 

obtained at 0800 hours for all patients. Samples were centrifuged at 3000 r.p.m. at 4°C for 

10 minutes and stored at −80°C until assay performance. We measured the four most critical 

mediators in bone turnover—circulating plasma levels of RANKL and OPG as well as the 

OPG/RANKL and OPN/RANKL ratios—using the high-sensitivity multiplex Luminex 

immunoassay (xMAP Technology, Austin, TX, USA) and fluorescently color-coded 
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magnetic microsphere beads (R&D Systems; Minneapolis, MN, USA) according to the 

manufacturer’s instructions; we used the same method to measure the three other bone 

markers of interest (osteocalcin, eotaxin-1, and FGF-23). Samples were diluted 1:2, 

measured in duplicate, and blinded to clinical information. The standard cocktail was 

created as a fourfold dilution series to concentrations ranging from 4.81–10,510 pg/ml for 

RANKL, 13.4–29,310 pg/ml for eotaxin, 0.46–7500 pg/ml for OPG, 9.16–150000 pg/ml for 

osteocalcin, 6.1–100000 pg/ml for OPN, and 2.29–37500 pg/ml for FGF-23. After the 

addition of a biotinylated antibody cocktail and streptavidin-PE, levels of all analytes were 

determined with a Bio-Plex Magpix Multiplex Reader (Bio-Rad; Hercules, CA, USA). 

Concentration values were calculated automatically with Bio-Plex Manager MP Software 

(Philadelphia, PA, USA) by generating a five-parameter logistic curve-fit standard curve for 

each analysis. Bone marker measurements were measured at baseline (60 minutes prior to 

IV ketamine infusion) and at 230 minutes, Day 1, and Day 3 post-IV ketamine for both 

MDD patients and for HCs at the same time points except for Day 3, due to lack of HC data.

Statistical Analysis

Data for RANKL, OPN, and eotaxin were used in their original form. Osteocalcin, OPG, 

and FGF-23 values were transformed using a natural log to make their distributions closer to 

normal. Fisher’s exact tests were used for categorical variables and independent t-tests were 

used with continuous variables to compare MDD patients and HCs on demographic and 

clinical characteristics and on bone markers.

Linear mixed models with time as fixed factor and a compound symmetry covariance 

structure were used to examine changes over time in MDD patients. Bonferroni adjusted 

post-hoc tests were used to examine change from baseline to each point. Observations at 60 

minutes pre-infusion and 230 minutes, Day 1, and Day 3 post-infusion were included. An 

additional series of models included diagnosis as a second fixed factor as well as the 

interaction between diagnosis and time. Baseline was used as a covariate, and post-hoc tests 

compared diagnostic groups at each time point.

Bivariate associations were assessed with Pearson correlations. Correlations examined 

baseline demographic factors, baseline bone marker levels, and antidepressant response 

measured as a 50% decrease in MADRS scores at any time point as well as changes in bone 

marker levels in response to ketamine infusion at 230 minutes, Day 1, and Day 3 (see Figure 

1).

All tests were two-tailed with significance set at P<0.05. A Bonferroni correction was 

applied for the number of bone markers examined with each type of analysis, so a cutoff of 

P<0.01 was used. Data are presented as mean±standard deviation. All statistical analyses 

were completed using IBM SPSS Version 21 (Armonk, NY, USA).

RESULTS

Clinical and demographic characteristics for all 44 subjects are summarized in Table 1. The 

OPG/RANKL ratio, which indicates a process of positive bone balance between resorption 

and formation, was strikingly increased after acute ketamine infusion in MDD patients (230 
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min (p>0.004)); it maintained an increased trend but did not reach significance at Day 1 

(p=0.736) or Day 3 (p=0.27) (Fig 1A). Interestingly, ketamine infusion had no effect on 

bone markers for HCs, and there were no significant changes from baseline. Plasma OPN, a 

factor in bone strength, was also significantly reduced in MDD patients (22296.8 ± 2953.4 

pg/ml) compared to HCs (28062.5 ± 2673.8 pg/ml). While OPN was relatively unchanged in 

HCs, MDD patients showed a significant increase in response to ketamine infusion at Day 1 

(31219.7 ± 2953.5 pg/ml; P<0.001) and Day 3 (29912 ± 2953.5 pg/ml; P<0.001) (Fig 1B).

Notably, patients with MDD who had a lower OPN/RANKL ratio compared to HCs 

(indicating a bone loss state) had a significant increase in the OPN/RANKL ratio in response 

to ketamine infusion at 230 minutes (p<0.005), Day 1 (p<0.043), and Day 3 (p<0.002). HCs 

had no significant change in OPN/RANKL ratio to ketamine administration (Fig 1C). 

Similarly, while RANKL (a key peripheral and central osteoclastogenenic cytokine) levels 

were relatively comparable at baseline among MDD patients (7.8 ± 0.74 pg/ml) and HCs 

(8.17 ± 0.86 pg/ml), MDD patients had significant decreases in RANKL levels in response 

to ketamine infusion at 230 minutes (p<0.0007) and Day 3 (p<0.003) but not at Day 1 

(p<0.622); no such changes were noted in HCs (Fig 1D). Thus, in patients with MDD, 

ketamine corrected an adverse bone metabolic state, returning it to normal.

Table 2 summarizes the estimated marginal means for the peripheral blood levels of bone 

markers involved in bone remodeling, including osteocalcin, eotaxin-1, and FGF-23. These 

factors were largely not associated with significant changes.

DISCUSSION

MDD patients have clinically significant decreases in BMD (1, 5, 7, 8, 10, 11, 13, 15, 16, 

19). A previous study from our laboratory found that reduced BMD was a function of both 

decreased production and increased resorption (1). The present study found that the OPG/

RANKL ratio, a recognized index of bone formation/resorption, was altered in MDD 

patients and increased significantly after ketamine infusion, thus suggesting that ketamine 

may have mediated a possible increase in BMD. OPN, a critical factor in maintaining bone 

strength, was also significantly reduced in MDD patients compared to HCs and increased 

significantly in response to ketamine both at Day 1 and Day 3. Although RANKL, the 

osteoclastic differentiating factor, was not altered at baseline in MDD patients compared to 

HCs, its levels fell significantly after ketamine infusion. Ketamine had no impact on any of 

these indices in HCs. To our knowledge, this is the first study to examine levels of the OPG-

RANK-RANKL system and of OPN in MDD patients, and the first to study their response to 

ketamine. We also found that plasma levels of osteocalcin, eotaxin-1 and FGF-23 were 

normal at baseline in MDD patients and not affected by ketamine infusion.

Interestingly, circulating proinflammatory cytokines, including tumor necrosis factor alpha 

(TNF-α) and interleukin-6 (IL-6), are involved in the pathophysiology of depression for a 

subgroup of MDD patients known to be in a heightened proinflammatory state (49, 50). 

Both TNF-α and IL-6 alone can directly stimulate osteoclastogenesis and bone resorption 

(51, 52) and both can also affect RANKL production by osteoblastic cells and act 

synergistically with RANKL (30, 53). While IL-6 and other cytokines impair BMD, 
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RANKL can promote osteoclast bone resorption even in the absence of IL-6 (54). Thus, 

though not obligatory to bone resorption, IL-6 is one of the stimuli that promotes the 

production of RANKL (55). IL-6 and other cytokines may also work in synergy with 

RANKL. This suggests that proinflammatory cytokines likely contribute to the bone 

pathology associated with depression and to the pattern of greater loss at the hip than the 

spine. Relatedly, estrogens and androgens promote the maintenance of BMD, in part because 

their receptors can bind to transcription factors that prevent RANK and DNA binding. 

Estrogens and androgens also repress IL-6-mediated BMD loss, thus further promoting the 

integrity of BMD in MDD patients (52, 55, 56).

Another possible mechanism underlying ketamine’s salutary effects on bone could be its 

ability to inhibit inducible nitric oxide synthase (iNOS)-mediated inflammation, which is 

known to trigger cytokine effects on bone, potentially in synergy with RANKL (57, 58). 

Ketamine-induced inhibition of iNOS partly occurs via its inhibition of TNF-α, which acts 

as an autocrine stimulatory factor for iNOS (58), but not via the N-methyl-D-aspartate 

(NMDA) receptor, which is involved in neuronal nitric oxide production. Under this 

scenario, ketamine-induced inhibition of iNOS could promote bone growth.

Ketamine also antagonizes neuronal nitric oxide synthase (nNOS) release from cerebral 

cortex after ischemia-induced middle cerebral artery ligation (59), a process associated with 

ketamine-induced amelioration of ischemic injury. However, the relationship between this 

ketamine-induced amelioration of ischemia-induced tissue damage in the brain and 

ketamine’s antidepressant efficacy is unknown. Whether inhibiting nNOS in the periphery 

would impact ketamine’s antidepressant effect is also unknown. It should be noted that total 

nNOS knockout mice were found to have increased BMD, suggesting that nNOS 

antagonizes bone growth regardless of whether it acts in the brain or on bone (60). In 

contrast to iNOS and nNOS, endothelial nitric oxide synthase (eNOS) is necessary for 

normal osteoblast functioning. To the best of our knowledge, ketamine’s putative ability to 

modulate eNOS is unknown, as a study of the role of eNOS on BMD mediators has not yet 

been performed.

It is interesting to note that selective serotonin reuptake inhibitors (SSRIs) significantly 

increase the yearly loss of BMD in children (61), adults (61), and elderly subjects (6, 62) 

with MDD. An elegant recent animal study with a mechanistic, molecular approach found 

that three weeks of fluoxetine administration resulted in a local antiresorptive response by 

impairing the maturation of osteoclastic cells, and that after six weeks of treatment, 

fluoxetine mediated a centrally-triggered increase in sympathetic nervous system activity 

(63), which is known to cause substantial bone loss (64). To further validate this premise, the 

authors showed that the administration of a beta blocker antagonized fluoxetine’s effect on 

lowering bone mass at six weeks, thereby resulting in no loss of bone mass overall (63).

Relatedly, in vitro and in vivo experimental animal data also indicate a functional role for 

the serotonergic system on bone formation (65–67). Functional receptors for serotonin and 

the serotonin transporter have been identified in osteoblasts, osteoclasts, and osteocytes (68). 

Genetic disruption of the serotonin transporter produces a phenotype of decreased bone 

mass, altered architecture, and decreased mechanical properties (69). Serotonin transporter 
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inhibition results in a significant loss in bone accrual (70). Thus, in the periphery, serotonin 

seems to have proinflammatory effects and a detrimental outcome on BMD. This could 

further contribute to fluoxetine-mediated loss of BMD and a possible increased fracture rate.

Another issue of potential interest is that many systems influenced by ketamine may affect 

RANKL levels. For example, sympathetic nervous system activation reduces BMD and also 

plays a role in SSRI-induced decrements in BMD (71, 72). Ketamine stereospecifically 

stimulates noradrenergic neurons and inhibits catecholamine uptake, leading to an increased 

hyperadrenergic state (71). Under these circumstances, ketamine would be expected to lower 

BMD. Nevertheless, we observed that ketamine ultimately reduced RANKL plasma levels, 

regardless of its impact on noradrenergic function, underscoring its overall ability to increase 

BMD in individuals with depression.

Finally, several clinical trials using a recombinant fusion protein of OPG, the endogenous 

inhibitor of RANKL, provided strong proof-of-principle evidence that RANKL was critical 

for bone resorption in humans (73, 74). Denosumab is a targeted antibody that binds and 

inhibits RANKL to reduce bone resorption. A large trial of denosumab was conducted in 

7808 women aged 60 to 90 years with postmenopausal osteoporosis and baseline BMD T 

scores between −2.5 and −4.0 at the lumbar spine or total hip. After three years of treatment, 

denosumab significantly reduced the risk of new radiographic vertebral fractures by 68% 

compared with placebo. Reductions in nonvertebral and hip fracture risk were also observed 

(20% (P = 0.01) and 40% (P = 0.04), respectively) (75). Denosumab also proved superior to 

the bisphosphonates in treating osteoporosis, but its effect is chronic as opposed to the acute 

effects of ketamine (76, 77).

Our study has several clinical implications. First, it adds to the growing literature showing 

that decreases in the OPG-RANK-RANKL system are an important contributing factor to 

osteoporosis (29, 34) and also affect the final common pathways for proinflammatory 

cytokines (33, 54). Thus, the ability of acute ketamine administration to restore the OPG/

RANKL ratio could potentially protect bone and reduce inflammation. In addition, the 

ability of ketamine to normalize decreased OPN levels and the OPN/RANKL ratio and, 

inversely, to decrease RANKL levels in MDD patients, indicates that ketamine or other 

ketamine-like drugs with a more favorable side effect profile—in addition to having potent 

mood effects—may also help ameliorate a serious medical complication of depressive 

illness. Although we studied 28 medication-free MDD patients in this study, studies in a 

larger group of patients would help to substantiate these findings.

As noted above, ketamine influences many mediators that could have either positive or 

negative effects on BMD, including multiple proinflammatory cytokines and the central and 

peripheral serotonergic system. The present study measured compounds, such as RANKL, 

that serve as the final common mediator for many of the effects that cytokines and other 

compounds have on reducing BMD (28, 29, 35, 53). The fact that RANKL decreased 

significantly in MDD patients after acute ketamine administration suggests that the impact 

of ketamine on BMD will be positive. The singular importance of RANKL is demonstrated 

by the fact that studies have shown that an antibody to RANKL increases BMD when given 

over long periods of time (75, 78–80). However, only studies of long-term ketamine 
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administration over multiple cycles of bone formation and resorption can definitively answer 

this question.
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Figure 1. 
(a) Osteoprotegerin (OPG)/receptor activator of nuclear factor kappa-B ligand (RANKL) 

ratio, (b) osteopontin (OPN), (c) RANKL, and (d) OPN/RANKL ratio plasma levels of 

healthy control (HC) and major depressive disorder (MDD) subjects at baseline (pre-

treatment), 230 minutes post-ketamine infusion, Day 1, and Day 3 post-ketamine infusion. 

*P<0.001, **P<0.001.
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