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The Adenosine Monophosphate-activated Protein Kinase (AMPK) and the Mechanistic
Target of Rapamycin (mTOR) are two evolutionarily conserved kinases that together
regulate nearly every aspect of cellular and systemic metabolism. These two kinases
sense cellular energy and nutrient levels that in turn are determined by environmental
nutrient availability. Because AMPK and mTOR are kinases, the large majority of studies
remained focused on downstream substrate phosphorylation by these two proteins,
and how AMPK and mTOR regulate signaling and metabolism in normal and disease
physiology through phosphorylation of their substrates. Compared to the wealth of
information known about the signaling and metabolic pathways modulated by these
two kinases, much less is known about how the transcription of AMPK and mTOR
pathway genes themselves are regulated, and the extent to which AMPK and mTOR
regulate gene expression to cause durable changes in phenotype. Acute modification
of cellular systems can be achieved through phosphorylation, however, induction of
chronic changes requires modulation of gene expression. In this review we will assemble
evidence from published studies on transcriptional regulation by AMPK and mTOR and
discuss about the putative transcription factors that regulate expression of AMPK and
mTOR complex genes.
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INTRODUCTION

Adenosine Monophosphate-activated Protein Kinase (AMPK) is a serine-threonine kinase that
exist as a heterotrimer of catalytic α and regulatory β and γ subunits (Davies et al., 1994; Mitchelhill
et al., 1994). Mammals express two catalytic α1 and α2 subunits, two regulatory β1 and β2
subunits and three additional nucleotide-binding regulatory γ1, γ2, and γ3 subunits genes (Viollet
et al., 2010; Carling et al., 2012; Hardie, 2014a). The N-terminus of the α subunits contain the
catalytic domain as well as a phosphorylation site for upstream kinases that regulate its activity
(Crute et al., 1998). The γ subunits bind to adenosine monophosphate/adenosine diphosphate
AMP/ADP and play a regulatory role, while the conserved C-terminus of the β subunit interacts
with the α and γ subunits and is required for AMPK complex formation (Spasic et al., 2008;
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Dasgupta and Milbrandt, 2009). The seven AMPK subunits are
expressed more or less ubiquitously. However, each of the twelve
possible αβγ AMPK complex display considerable variation
in tissue-specific expression, subunit association, subcellular
localization and function (Quentin et al., 2011; Dasgupta
et al., 2012). Two upstream kinases – liver kinase B1 (LKB1)
Serine/threonine kinase 11 (STK11) and calcium calmodulin-
dependent protein kinase kinase β (CaMKKβ) phosphorylate
the γ subunits to fully activate AMPK (Hawley et al., 2003,
2005; Shaw et al., 2004; Hurley et al., 2005; Oakhill et al.,
2010, 2011; Xiao et al., 2011). LKB1 exists in a ternary complex
with STRAD (STE20-related adaptor) and CAB39/MO25 (mouse
protein 25), and LKB1 activity in the complex is 10-fold higher
than LKB1 alone (Baas et al., 2003). While LKB1 activates
AMPK in response to AMP/ADP, CaMKKβ activates AMPK
in response to Ca2+. Both pathways can act in isolation or
synergistically (Woods et al., 2005). The interaction of LKB1
with the AMPK complex has been shown to be facilitated by
the cytoplasmic protein AXIN (Zhang et al., 2013), which also
interacts with numerous other proteins. Needless to say that
transcriptional regulation of the two upstream AMPK kinases
could also determine AMPK activation.

The mTOR kinase exists is two distinct complexes –
mTORC1 and mTORC2. The C1 complex is composed of
five proteins – mTOR kinase, RAPTOR (regulatory-associated
protein of mTOR), mLST8 (mammalian lethal with Sec13
protein 80), PRAS40 (proline-rich AKT substrate 40 kDa), and
Deptor (Dep-domain containing mTOR-interacting protein).
The C2 complex is composed of six proteins – mTOR
kinase, RICTOR (rapamycin-insensitive companion of mTOR),
mSIN1 (mammalian stress-activated protein kinase interacting
protein), Protor-1 (protein observed with Rictor-1), mLST8
and Deptor (Laplante and Sabatini, 2009, 2013; Saxton and
Sabatini, 2017). In some tissues, a negative feedback from
mTORC1 controls mTORC2 such that mTORC1 activation
reduces mTORC2 activity.

Excellent reviews have been written on the signaling
mechanisms regulated by AMPK and mTOR (Hardie, 2014b;
Hardie et al., 2016; Carling, 2017; Garcia and Shaw, 2017).
Therefore, we will not elaborate on this topic here. Instead, we
will emphasize on the transcriptional regulation of the AMPK –
mTOR pathway genes and how these two pathways regulate gene
expression, beyond signaling.

AMPK AND mTOR PATHWAY GENES

The genes that encode the seven subunits of AMPK in mammals
are Prkaa1 (α1), and Prkaa2 (α2), Prkab1 (β1), Prkab2 (β2),
Prkag1 (γ1), Prkag2 (γ2), and Prkag3 (γ3) (Viollet et al., 2010;
Carling et al., 2012; Hardie, 2014a). The rooted trees of the α

and β subunits suggest that vertebrate Prkaa1/a2 and Prkab1/b2
genes arose by duplications of ancestral genes in lower eukaryotes
(Rider, 2016). With one known exception, homologs of AMPK
subunits are present in all living organisms indicating that AMPK
subunits were selected early in evolution (Lin and Hardie, 2018).
AMPK subunits have been reported in the fruit fly Drosophila

melanogaster, the nematode Caenorhabditis elegans, the budding
yeast Saccharomyces cerevisiae, the flowering plant Arabidopsis
Thaliana and other plants (Polge and Thomas, 2007; Emanuelle
et al., 2015), and the primitive protozoon Giardia lamblia.
The lone exception known so far is the unicellular eukaryotic
microsporidian Cephalitozoon cuniculi whose genome does not
seem to encode any Prkaa AMPK gene (Katinka et al., 2001;
Miranda-Saavedra et al., 2007). The Drosophila genome encodes
three AMPK subunits in total – Dmel/Ampka, Dmel/alc (Alicorn
or Ampkb), and Dmel/SNF4Ag (FlyBase). C. elegans express two
catalytic α subunits (Aak1 and Aak2), two β subunits (Aakb1
and Aakb2), and five putative γ subunits (Aakg1-5) (WormBase
version Ws238). In the budding yeast AMPK subunits are
encoded by five genes - Snf1a (α subunit), Sip1, Sip2, and
Gal83b (β subunits) and Snf4g (γ subunit) (Hedbacker and
Carlson, 2008). In Arabidopsis the SNF1-related kinase 1 (Snrk1),
a homolog of yeast Snf1 and mammalian Prka are transcribed
by two typical α subunits (Kin10 and Kin11), two β subunits,
one γ subunit along with two atypical subunits - β3 and βγ

(Emanuelle et al., 2015). In addition to the AMPK holoenzyme,
upstream kinases that are required for full activation of AMPK
are also preserved across species. In mammals these upstream
kinase genes are Stk11 (Lkb1) and Camkk2. Their homologs
in lower eukaryotes include Par4 in C elegans, Dmel/Lkb1 in
D. melanogaster, Pak1, Tos3, and Elm1 in S. cerevisiae, and Grik1
and Grik2 in A. thaliana (Hawley et al., 2003; Hong et al., 2003;
Shaw et al., 2004; Shen et al., 2009).

Similar to AMPK which is a multimeric complex, the
mTORC1 complex contains five proteins in mammals. The
genes encoding these five subunits are Mtor, Raptor, Deptor,
Lst8, and Akt1s1 (PRAS40). The mTORC2 complex which
is composed of six proteins are encoded by Mtor, Rictor,
Sin1, Lst8, Prr5l (PROTOR2), and Deptor. Akin to mammals,
S. Cerevisiae also have TORC1 and TORC2 complexes (Loewith
and Hall, 2011) including homologs of Raptor (Kog1), mLST8
(Lst8), Rictor (Avo3), and mSin1 (Avo1), although additional
components are specific to yeast or mammals (Saxton and
Sabatini, 2017). In C elegans and D. melanogaster, the C1
and C2 genes are encoded by Tor, Raptor, Lst8, Rictor, and
Sin1. Beyond this, there appears to be a degree of unexplained
incongruity among organisms in the evolution of the mTOR
complex genes. While the protist Dictyostelium discoideum
(unicellular common slime mold, a species of soil-dwelling
amoeba) encodes all five mTORC1/C2 genes, all plants encode
the Tor, Raptor, Lst8 genes. Other unicellular organisms such
as the diatom Phaeodactylum tricornutum and the intestinal
parasite Giardia intestinalis encode only mTORC1 genes, while
the free-living ciliates such as Tetrahymena thermophila encodes
only TORC2 genes. Breaking the rule among lower organisms,
the free-living unicellular protist Naegleria gruberi and the
human parasite Leishmania major express genes for both TORC1
and C2 complex. The malarial parasite Plasmodium falciparum
seems to be an exception that does not encode any mTOR
complex genes (van Dam et al., 2011). Thus, it appears that
while some lower organisms and plants have adapted and
evolved successfully with just one TOR complex, perhaps specific
nutritional control mechanisms and environmental pressures
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necessitated the presence of both mTORC1 and C2 genes in
other organisms.

THE AMPK-mTORC1 SIGNALING AXIS

Mechanistic Target of Rapamycin1 is an anabolic kinase essential
for the biosynthesis of key macromolecules such as protein,
lipid and nucleotides (Laplante and Sabatini, 2009; Hindupur
et al., 2015; Saxton and Sabatini, 2017). AMPK on the other
hand functions to check mTORC1 activity when energy and raw
materials for macromolecule production becomes limiting, and
as a catabolic enzyme to simultaneously augment glucose import
and energy production through glycolysis and mitochondrial
oxidative phosphorylation (Mihaylova and Shaw, 2011; Hardie,
2014a; Dasgupta and Chhipa, 2016).

Adenosine Monophosphate-activated Protein Kinase
downregulates mTORC1 by two independent mechanisms -
through phosphorylation of the tumor suppressor Tuberous
Sclerosis Complex 2 (TSC2) and RAPTOR. Extensive literature
exists on this area (Laplante and Sabatini, 2009, 2013; Mihaylova
and Shaw, 2011; Hindupur et al., 2015; Dasgupta and Chhipa,
2016; Saxton and Sabatini, 2017; Herzig and Shaw, 2018), and
therefore the signaling axis will only be outlined here. Growth
factor signaling loads GTP to the small GTPase called Rheb
(Ras homolog enriched in brain), that activates mTORC1 on
the lysosomal surface. TSC which is a GTPase activating protein
(GAP) for Rheb, converts Rheb-GTP to Rheb-GDP, and thereby
inhibits mTORC1 activity (Saxton and Sabatini, 2017). Upstream
of TSC, growth factor signaling through Akt, Erk and other
kinases phosphorylate TSC to inhibit its GAP activity, and thus
enabling mTORC1 activation. On the other hand, under various
conditions including energy stress, AMPK phosphorylates TSC2
to enhance its GAP activity causing mTORC1 inhibition (Inoki
et al., 2003). While growth factor signaling-induced mTORC1
activation is controlled by AMPK-TSC2 interaction, amino acid-
induced mTORC1 activation is controlled by AMPK-RAPTOR
interaction (Gwinn et al., 2008). Amino acid adequacy allows
activation of the RAG family of small GTPases which binds to
RAPTOR and recruits mTORC1 to the lysosome for further
activation by Rheb-GTP (Kim et al., 2008; Sancak et al., 2008).
During energy stress, AMPK phosphorylates RAPTOR to directly
inhibit RAPTOR-mTOR interaction and mTORC1 activation.
Although AMPK is localized in nucleus or cytoplasm under
various physiological stress, a recent study showed its presence
in late endosomes/lysosomes, suggesting that lysosomes serve as
a site for AMPK/mTORC1 signaling (Zhang et al., 2014). The
preferential requirement of TSC2 versus RAPTOR for mTORC1
regulation under various physiological and pathological contexts
remains to be fully understood.

PROTEIN ABUNDANCE AS A
DETERMINANT OF KINASE FUNCTION

Protein phosphorylation by kinases is one of the most widely
studied post-translational modifications (PTM) (Levy et al.,

2012). While significant effort has been given to identify
phosphosites on kinase substrates and investigate the functional
consequences of site-specific phosphorylation, the abundance
and stoichiometry of kinases and substrates as functions of
proteins are less appreciated (Levy et al., 2012). Although
substrate phosphorylation is a regulated process where substrates,
kinases and phosphatases are organized via adaptor and scaffold
proteins (Bhattacharyya et al., 2006; Scott and Pawson, 2009),
a more abundant kinase or a substrate are indeed more
likely to come across each other than less abundant proteins
(Lienhard, 2008). On the other hand, less abundant proteins can
be focally concentrated on the surface of cytosolic organelles
such as lysosomes or the endoplasmic reticulum to achieve
high level of activity. Kinase-substrate stoichiometry is also
crucial – the probability of an abundant substrate to be optimally
phosphorylated becomes low if its kinase is suboptimally
expressed (Wu et al., 2011; Levy et al., 2012). Although protein
abundance at a given time can be regulated at multiple levels such
as translation efficiency and turnover rates, transcription rate is
also likely to be a key determining factor (Vogel and Marcotte,
2012; Li et al., 2014; Liu et al., 2016). Is transcription of kinases
and its context-specific substrates coordinated? How a kinase
and its specific substrates are made available in sufficient and
proportional quantities in response to an environmental input?
To the best of our knowledge, there are no in-depth studies
investigating whether and how subunit abundance of AMPK and
mTOR complexes are regulated in cell-type specific and context
dependent manner, and how that impacts the inhibitory effect
of AMPK on mTORC1. Transcription is an highly regulated
and complex process with TFs binding up to several kilobases
upstream and downstream of the transcription start site of
genes, and co-activators and co-repressors binding to distant
enhancers (sometimes located on different chromosomes) that
loop in to modulate transcription efficiency (Chen and Rajewsky,
2007). Inclusion of all these factors to determine how TFs self-
organize and identify binding sites to regulate transcription is
not only a formidable task but would require a comprehensive
review on this topic itself. Instead, in the next section, we
discuss about the transcription factors that bind to cis regulatory
elements proximal to transcription start sites of the AMPK and
mTOR pathway genes.

TRANSCRIPTION FACTORS
REGULATING AMPK AND mTOR
PATHWAY GENE EXPRESSION

The potential TF binding sites (TFBSs) can be predicted using
the known and inferred motifs, represented as position-specific
scoring matrices (PSSMs) derived from the various binding
models such as protein-binding microarrays (PBMs), high-
throughput SELEX (HT-SELEX), and manually curated models
including JASPAR1 and/or TRANFAC2 (Orenstein and Shamir,
2014; Hombach et al., 2016). Due to the presence of multiple

1http://jaspar.genreg.net
2http://genxplain.com/tf_class

Frontiers in Cell and Developmental Biology | www.frontiersin.org 3 July 2020 | Volume 8 | Article 671

http://jaspar.genreg.net
http://genxplain.com/tf_class
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-00671 July 27, 2020 Time: 18:28 # 4

Sukumaran et al. AMPK-mTOR Beyond Signaling

TFs in more than one binding model source, computationally
predicted sites can include many false hits. We therefore collected
human TF-binding locations from the ENCODE ChIP-seq hg38
dataset (v3)3. This dataset contains “in vivo” TF binding peaks
from 1256 experiments representing 340 TFs in 129 cell types. For
the sake of simplicity, we have only considered peaks supported
by at least 4 cell types and found within the 2 Kb upstream and
the 1 Kb downstream regions of the start site where most of the
TF binding sites (TFBS) are located. We would like to recognize
that although in most TF binding site (TFBS) distribution studies,
the most relevant TFBSs are generally located±2 Kb from the TF
start site, more complex regulatory circuits may be constructed
which are beyond the scope of this review. ChIP-seq has been
instrumental in the examination of TF-binding sites (Johnson
et al., 2007). Caveats about using ChIP-seq data are that the
method can clearly pick up indirect interactions (e.g., the ChIP
antibody binds to a TF which instead of directly interacting with
DNA interacts to another DNA-bound TF), and many antibodies
are not ChIP-grade and can cross-react. Another limitation of
ENCODE or similar databases such as ChIP-ATLAS, Cistrome,
and ReMap-ChIP is that all these databases are built upon
the availability of ChIP-grade antibodies, and therefore several
genuine TFs could be missed for which tools are not yet available.
Notwithstanding these cautions, we examined ENCODE ChIP-
seq data to identify potential TFs for the following genes: Prkaa1,
Prkaa2, Prkab1, Prkab2, Prkag1, Prkag2, Prkag3, Stk11, Strada,
Cab39 (MO25), Camkk2 in the AMPK pathway, and Tsc1, Tsc2,
Rptor, Rictor, Mtor, Mlst8, Akt1s1 (PRAS40), Mapkap1 (SIN1),
Prr5 (PROTOR), Rheb, Rraga (RAGA), Rragb (RAGB), Ragc
(RAGC), and Ragd (RAGD) in the mTOR pathway. This analysis
revealed that Prkab1, Prkab2, Prkag1, and the Stk11 (LKB1)
binding partners Cab39 and Strada in the AMPK pathway
(Figure 1), and Mtor, Mapkap1, Rraga, Rragc, Rptor, and Tsc2
in the mTOR pathway (Figure 2) have the highest number (10
or more) of TFs. On the contrary, Prkaa2, Prkag2, Prkag3, Stk11,
and Camkk2 in the AMPK pathway (Figure 1), and Akt1s1, Tsc1,
Rragd and Prr5 in the mTOR pathway (Figure 2) are transcribed
by the fewest number (1–4) of TFs. The genes with the fewest
number (only 1) of assigned TFs were Camkk2, Akt1s1, Tsc1,
while the genes with the highest number (21–23) of assigned TFs
were Prkag1, Prkab1, Strada, Rraga and Tsc2.

A simple explanation of these results is that transcriptional
regulation of some genes of the AMPK and mTOR pathways
are more flexible and more adaptive with several TFs able to
initiate transcription under various cues, while regulation of
other genes with just one or two TFs is tight and critically depend
on the abundance of these TFs. An alternative explanation is
that one or two TFs are sufficient for optimal transcription of
some genes, while other genes require cooperative interaction
of multiple TFs for optimal transcription. It is also possible
that the one or two TFs that we identified for some genes
in the 2 Kb upstream and 1 Kb downstream region of the
TSS are actually insufficient and require coordination of co-
activators and distant enhancers. Another intriguing observation
that is apparent from Figures 1, 2 is that there seems to

3https://www.encodeproject.org

FIGURE 1 | Heatmap-style “occurrence” plots of putative AMPK family TFs.
The occurrence plot is an intuitive way to visualize co-regulated genes whose
expressions are controlled by the same TF(s). Briefly, we assigned “1” if the
binding site(s) of a given TF’s (right) are reported “at least once” (in ENCODE)
within a reasonable distance from the transcription start site (TSS) of a gene
(bottom). Otherwise, we assigned “0” (i.e., no TFBS within a given range). The
result is a matrix filled with 0 (w/o TFBS) and 1 (w/ TFBS). The trees on the top
and the left sides were generated using the hierarchical clustering based on
vectors in rows and columns. AMPK pathway genes and TF-binding peak
occurrence are shown in the promoter regions. Each red cell represents a
gene with at least one binding sites of a given TF within 2 kb-upstream and
1 kb-downstream from its TSS.

be a cluster of common TFs that regulate multiple genes of
both AMPK and mTOR pathway. For example, the TFs YY1,
TBP, EP300, RAD21, REST, Myc, SIN3A, CTCF, and TAF1
has binding sites in half of the twenty-five AMPK and mTOR
pathway genes. We speculate that environmental cues probably
converge on common TFs to regulate transcription of AMPK
and mTOR pathway genes in a coordinated fashion such that the
required abundance and stoichiometry is maintained for optimal
signaling output.
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FIGURE 2 | Heatmap-style “occurrence” plots of putative mTOR family TFs.
The occurrence plot is an intuitive way to visualize co-regulated genes whose
expressions are controlled by the same TF(s). Briefly, we assigned “1” if the
binding site(s) of a given TF’s (right) are reported “at least once” (in ENCODE)
within a reasonable distance from the transcription start site (TSS) of a gene
(bottom). Otherwise, we assigned “0” (i.e., no TFBS within a given range). The
result is a matrix filled with 0 (w/o TFBS) and 1 (w/ TFBS). The trees on the top
and the left sides were generated using the hierarchical clustering based on
vectors in rows and columns. mTOR pathway genes and TF-binding peak
occurrence are shown in the promoter regions. Each red cell represents a
gene with at least one binding sites of a given TF within 2 kb-upstream and
1 kb-downstream from its TSS.

AMPK MAY CONTROL GENE
EXPRESSION THROUGH METABOLITES
OF INTERMEDIARY METABOLISM

It is now well-established that both metabolic enzymes and
metabolites synthesized in intermediary metabolism directly
or indirectly impact gene expression. DNA itself and DNA-
binding histones are modified and regulated by several
mechanisms that uses metabolites generated in intermediary

metabolism (Etchegaray and Mostoslavsky, 2016; van der Knaap
and Verrijzer, 2016; Nieborak and Schneider, 2018). These
include nicotinamide adenine dinucleotide (NAD) (used in
SIRT mediated histone deacetylation and histone polyADP-
ribosylation) (Vaquero et al., 2006; Michishita et al., 2008;
Kawahara et al., 2009; Nakahata et al., 2009; Zhong et al.,
2010; Barber et al., 2012; Etchegaray et al., 2013; Imai and
Guarente, 2014), flavin adenine dinucleotide FAD (used in
lysine-specific histone demethylation by LSD1/2) (Shi et al.,
2004; Shi and Whetstine, 2007; Ciccone et al., 2009; Karytinos
et al., 2009; Dimitrova et al., 2015), acetyl co-A (used in
histone acetylation), S-adenosylhomocysteine (SAM, used in
DNA methylation) (Takusagawa et al., 1996; Mentch et al., 2015),
α-ketoglutarate (used to regulate DNA methylation through
activation of the TET and JMJD family of DNA demethylases)
(Xiao et al., 2012; Pastor et al., 2013), succinyl CoA (used
in succinylation of the histone acyltransferase KAT2A) (Wang
et al., 2017), UDP-GlcNAc (used O-GlcNAcylation of histones)
(Sakabe et al., 2010; Fujiki et al., 2011; Nardini et al., 2013;
Lewis and Hanover, 2014), among others. Therefore, the activity
of metabolic enzymes that regulate intermediary metabolic
cycles in essence controls DNA and histone modifications
and thereby gene expression. Besides generating ATP from
glucose oxidation to maintain energy homeostasis, AMPK
enhances glycolysis and glucose oxidation through the TCA
cycle and mitochondrial oxidative phosphorylation by various
mechanisms. It increases glucose transporter expression and
cell surface translocation (Kurth-Kraczek et al., 1999; Xi et al.,
2001; Kishton et al., 2016; Siques et al., 2018), activates
phosphofructokinase 2 (PFK2) (Marsin et al., 2000), and cAMP
Responsive Element Binding Protein 1 (CREB1) (Chhipa et al.,
2018), and transcriptionally upregulates Peroxisome proliferator-
activated receptor gamma coactivator 1-alpha (PGC1α) (Terada
et al., 2002; Suwa et al., 2003). NAD is generated from
pyruvate especially in highly glycolytic lactate producing
cells, while both FAD and NAD are produced in the
mitochondrial electron transport chain complex I and II
(Rogatzki et al., 2015). Acetyl co-A, α ketoglutarate and succinyl
CoA are all produced in the TCA cycle, and UDP-GlcNAc
is produced in the hexosamine pathway that originates from
glucose phosphorylation in glycolysis (Jeremy et al., 2002).
Therefore, environmental cues that activate AMPK can in turn
regulate gene expression through glucose metabolism-derived
metabolites (Figure 3).

Glucose metabolism impacts gene expression. At the systemic
level, glucose stimulates insulin expression in the pancreas
(Schuit et al., 1988; Rorsman and Braun, 2013). In the liver,
glucose induces glucose transporter expression, glycolytic and
lipogenic enzymes (Rui, 2014; Han et al., 2016), and in the
muscle it induces glucose transporters for insulin-induced
glucose uptake (Klip and Paquet, 1990; Saltiel and Kahn, 2001).
However, glucose is metabolized by every cell outside these
three primary metabolic organs. What is the impact of glucose
on gene expression at the cellular level outside the primary
metabolic organs? The effects of AMPK on glucose metabolism-
dependent gene expression could be acute or chronic. In the
large majority of published studies, this effect of AMPK has
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FIGURE 3 | Indirect transcriptional control by AMPK through metabolites of intermediary metabolism. (a) Intermediary metabolism of glucose, fatty acids and
ketogenic amino acids leads to the formation of acetyl-CoA. By regulating glycolysis and fatty acid oxidation AMPK may determine cellular acetyl-CoA levels. Histone
acetyltransferases (HATs) use acetyl-CoA to transfer acetyl group to nucleosomal histones. (b) α ketoglutarate dehydrogenase subunit E2 (α-KGDH) complex binds
to lysine acetyltransferase 2A (KAT2A). α-KGDH synthesizes succinyl CoA locally and KAT2A succinylates histone H3 on lysine 79 (H3K79). AMPK regulates TCA
cycle thereby may influence this process. (c) NAD generated in the mitochondrial electron transport chain acts as a cofactor for SIRT1 and SIRT6 which deacetylates
histone H3K9/14 and H3K9/56, respectively. (d) α-ketoglutarate (α-KG), generated through TCA cycle acts as a cofactor for lysine demethylases (KDM) and
ten-eleven translocation (TET) enzymes. TETs oxidize 5-methyl-2′-deoxycytidine in genomic DNA to 5-hydroxymethylcytosine (5hmC), 5-carboxylcytosine (5caC),
and 5-formylcytosine (5fC) that is involved in epigenetic regulation. FAD generated in the mitochondrial electron transport chain acts as a cofactor for KDMs. (e)
AMPK potentially regulates the hexosamine pathway by providing precursors. UDP-GlcNAc is derived from glycolysis and glutamine, the latter being generated by
transamination of α ketoglutarate. O-GlcNAcyltransferase (OGT) transfers GlcNAc residues to various nuclear proteins including TETs and histone 2B (H2B), OCT4
and SOX2 to control transcription.

been studied in glucose-starved cells that were acutely re-
exposed to glucose in vitro, an experimental condition that
reduces AMPK activity in most if not all normal cells. In
several cancer cells, however, high basal AMPK activity is
insensitive to such manipulation of glucose levels (Chhipa
et al., 2018). While acute exposure of glucose-starved cells
depresses AMPK activation, active AMPK levels quickly reach
steady state levels, sometimes in minutes. It is imperative to
understand that following glucose addition, because of the
steady flux of glucose import and consumption through glucose
phosphorylation, intracellular glucose levels are not reduced
significantly by the time steady state levels of active AMPK
levels have been reached. What is the need for AMPK activity
to resurge so quickly when the cells are actively metabolizing
glucose? And what role active AMPK plays during steady state
cellular glucose metabolism in normal and tumor cells? It
will be interesting to learn if glucose metabolism-dependent
global gene expression is affected in the absence of AMPK.
If AMPK is required for the optimal generation of chromatin

modifying metabolites in glycolysis and TCA cycle, the prediction
is that global gene expression will be significantly altered in
AMPK null cells.

Recent reports demonstrating the involvement of AMPK in
regulating the tumor suppressor gene folliculin (FLCN) came
from Collodet et al. (2019). In this study, the authors have
shown that AMPK induces FLCN expression via the transcription
factors transcription factor EB (TFEB) and transcription factor
binding to IGHM enhancer 3 (TFE3) independent of mTOR.
This is one of the few reports that demonstrate the mTOR-
independent effects of AMPK on the transcription factors TFEB
and TFE3. mTOR independent effects of AMPK on these TFs
was also recently reported by El-Houjeiri et al. (2019) in which
the authors showed that TFEB and TFE3 regulate innate immune
response via AMPK/FLCN signaling axis. The role of AMPK in
regulating TFEB levels was also shown by Young et al., in mouse
embryonic stem cells (ESCs). ESCs lacking AMPK were normal
in the pluripotent state, but developed profound defects during
differentiation. TFEB was found to be the most significantly
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downregulated gene in AMPK deficient cells leading to reduced
endolysosomal activity. Similar defects were seen in TFEB null
ESCs linking TFEB and diminished lysosomal activity to germ
cell specification (Young et al., 2016).

mTORC1 REGULATION OF
TRANSCRIPTION

Many TFs require post-translational modifications (PTM) for
activity, nuclear/cytoplasmic translocation, interaction with
binding partners including other TFs, stability and DNA
binding (Benayoun and Veitia, 2009; Filtz et al., 2014). These
include phosphorylation, glycosylation, methylation, acetylation,
sumoylation and ubiquitination. Phosphorylation is a straight
forward and reversible modification that transmits signal from
extracellular cues through growth factor signaling to TF
activity. Phosphorylation can also cooperate with or antagonize
other PTM to modulate TF activity. Several TFs have been
shown to be regulated by mTORC1 – this includes yin
yang 1 (YY1), sterol regulatory element binding proteins
SREBPs, signal transducer and activator of transcription STAT3,
PGC1α, hypoxia inducible factor 1 alpha (HIF1α), peroxisome
proliferator-activated receptors PPARγ/α and TFEB (Laplante
and Sabatini, 2013). Nuclear Lipin 1 binds to SREBPs and impairs
SREBP-mediated transcription of lipogenic genes. mTORC1
phosphorylates Lipin 1 to cause its nuclear exclusion, thus
controlling lipogenic gene expression (Laplante and Sabatini,
2013). In response to excess amino acids or ciliary neurotrophic
factor (CNTF) signaling, mTORC1 directly phosphorylates
STAT3 at S727 to promote its transcriptional activity (Yokogami
et al., 2000; Kim et al., 2009). The SREBP family of bHLH
TFs regulate lipogenesis. Multiple studies have shown that
mTORC1 increases lipogenesis by augmenting SREBP1 mRNA
and protein levels, processing and nuclear enrichment (Li
et al., 2010, 2011; Wang et al., 2011; Yecies et al., 2011;
Bakan and Laplante, 2012; Owen et al., 2012). A recent study
by Li et al. (2019) has identified STAT5 phosphorylation by
mTORC1 in promotion of SREBP1 transcriptional activity,
thereby establishing a molecular mechanism by which mTORC1
controls SREBP1. The role of mTORC1 in PPARγ-mediated
adipogenesis is controversial. While some studies show a positive
effect on adipogenesis, others show a negative effect of mTORC1
on adipogenesis (Kim and Chen, 2004; Polak et al., 2008; Laplante
and Sabatini, 2012). Through its downstream kinase S6K2,
mTORC1 inhibits PPARα activity and PPARα- mediated hepatic
ketogenesis (Sengupta et al., 2010; Kim et al., 2012), however,
evidence for a direct phosphorylation event in this phenomenon
is lacking. During hypoxia, mTORC1 possibly increases HIF1α

transcription although mechanisms are unknown (Laughner
et al., 2001; Hudson et al., 2002; Brugarolas et al., 2003; Duvel
et al., 2010). Lysosomes that act as scaffold for AMPK-mTORC1
interaction responds to environmental signals and take part
in stress response during which rapid expansion of lysosomal
membrane takes place. mTORC1 phosphorylates TFEB which
triggers 14-3-3 binding and cytoplasmic sequestration of TFEB.
During nutrient stress which inhibits mTORC1, TFEB is released,

translocates to the nucleus to coordinate lysosomal membrane
synthesis (Martina et al., 2012; Roczniak-Ferguson et al., 2012;
Settembre et al., 2012). mTORC1 was also reported to orchestrate
mitochondrial biogenesis through its interaction with PGC1α

and YYI (Cunningham et al., 2007; Koyanagi et al., 2011). It is
well known that mTORC1 is present in the nucleus. However,
how mTORC1 interacts with PGC1α and YYI to coordinate
mitochondrial biogenesis remains unclear. mTOR regulation of
transcription is illustrated in Figure 4. Together, these studies
indicate that although not all mechanisms are fully understood,
the effect of mTORC1 on regulating TF activity is unequivocal.

AMPK REGULATION OF
TRANSCRIPTION: ROLE BEYOND
SIGNALING

Transcriptional Regulation of
Monosaccharide Sensing in Yeast and
Mammalian Cells
Adenosine Monophosphate-activated Protein Kinase’s role in
direct control of gene expression through TF regulation has
been documented from the budding yeast Saccharomyces to
mammalian cells. In the budding yeast Saccharomyces cerevisiae,
glucose suppresses expression of a set of genes that are used to
catabolize carbon sources other than glucose in glucose-limited
growth conditions. Derepression/activation of glucose-repressed
genes was found to rely on Snf1-dependent phosphorylation of
multiple serine residues on the zinc finger TF Mig1 (Treitel
et al., 1998; Smith et al., 1999). In contrast to yeast, mammalian
cells heavily rely on glucose for rapid proliferation and survival.
Some mammalian cells can sustain short periods of very low
glucose levels in the presence of starch or maltose (Rheinwald and
Green, 1974). However, glucose is the principle monosaccharide
required for cell division and survival of mammalian cells.
Growth of higher eukaryotic cells in secondary glucose sources in
the normal physiological context is rare and therefore, whether
AMPK plays an analogous role in glucose depleted conditions
in higher eukaryotes is unknown. The mammalian ortholog of
Mig1 are the Early Growth Response (EGR) family of TFs. It is,
however, unknown if AMPK phosphorylates EGR family of TFs
in mammalian cells.

Transcriptional Control of Cell Cycle,
Proliferation and Survival by AMPK
The role of AMPK in cell cycle control, proliferation, growth
and survival by direct phosphorylation and transcriptional
regulation of cell cycle proteins and TFs in the mammalian
system is a fundamental yet understudied area in the AMPK
field. Moreover, published results in this area need more
confirmatory studies to understand the cell type and context-
specific regulation of cell cycle and survival by AMPK. Studies
in Saccharomyces cerevisiae, showed that the AMPK homolog
Snf1 is required for transcription of genes for growth and
survival in low glucose media or alternate carbon sources
such as sucrose (Carlson, 1999). During inositol starvation,
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FIGURE 4 | Transcriptional regulation by mTORC1. (a) mTORC1 regulates fatty acid synthesis by enabling SREBP1 mediated transcription. Lipin 1 inhibits SREBPs
from binding to their target genes. mTORC1 phosphorylates Lipin 1 and prevents its translocation to the nucleus. S6K1 phosphorylation by mTORC1 is required for
cleavage and activation of SREBP1c through a yet unknown mechanism. (b) mTORC1 phosphorylates S6K1 and activates tripartite motif-containing protein-24
(TIF24) and promotes its interaction with Pol I. Phosphorylated S6K1 also promotes the interaction of upstream binding factor (UBF) with SL1 regulating rRNA
expression. mTORC1 phosphorylates MAF 1 which is a repressor of Pol III thereby controlling the expression of 5srRNA and tRNA. (c) mTORC1 phosphorylates
S6K2 which interacts with nuclear receptor corepressor 1 (nCoR1) promoting its translocation to the nucleus thereby inhibiting PPARα. (d) mTORC1 phosphorylates
TFEB in the surface of lysosomes promoting its binding to 14-3-3 proteins inhibiting its transport into nucleus. (e) Nuclear mTORC1 interacts with YY1 which in turn
modulates the transcriptional activity of PGC1α. (f) mTORC1 phosphorylates STAT5 and promotes SREBP1 transcriptional activity. (g) mTORC1 phosphorylates
STAT3 allowing transcription of STAT3 target genes. (h,i) mTORC1 regulates HIF1α and PPARG transcription through unknown mechanisms.

Snf1 phosphorylates histone 3 on S10 to allow recruitment of
the acetyltransferase GCN5, DNA unfolding and transcription
of INO1 transcription to promote survival (Lo et al., 2001).
Histone phosphorylation by AMPK seems to be conserved in
mammalian cells, since under various metabolic stresses, AMPK
phosphorylated H2B on S36 to enhance transcription of survival
genes (Bungard et al., 2010). Genetic studies in model organisms
confirmed that loss of AMPK causes defects in cell polarity,

growth and development of both early plants and animals
(Lee et al., 2007; Mirouse et al., 2007; Bartkova et al., 2010;
Wang and Kaufman, 2014). Active AMPK localized to the
mitotic spindle of mammalian cells (Thaiparambil et al., 2012),
although its significance is still unknown. Genome-wide survey of
kinases required for mitosis, and genetic screen using AMPKα2
shRNA identified 28 novel proteins involved in chromosomal
segregation, mitosis, cytokinesis and cytoskeletal reorganization
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that were phosphorylated by AMPK (Bettencourt-Dias et al.,
2004; Fukuyama et al., 2007; Banko et al., 2011; Stenesen et al.,
2013). AMPK was also found to be required for cell cycle
progression of mammalian and Drosophila cells (Vazquez-Martin
et al., 2009; Bartkova et al., 2010; Banko et al., 2011; Lu et al.,
2011). About a decade ago, we reported that nuclear AMPK
phosphorylates retinoblastoma protein (RB) to regulate G1-S
transition of neural stem cells (Dasgupta and Milbrandt, 2009).
RB phosphorylation by AMPK was independently confirmed
in glioblastoma cells (Rios et al., 2013). Why a kinase that is
known to generally counter growth would inhibit RB to allow
proliferation? Whether this is true only in the neuroepithelial
compartment or in other cell types outside the neuroepithelial
compartment is yet to be determined. Intriguingly, AMPK was
found to directly phosphorylate p53 on Ser15 to promote G1
arrest under nutrient stress. P53 is ubiquitinated and degraded to
allow cell cycle progression, and its stabilization in dividing cells
can lead to apoptosis or senescence (Lavin and Gueven, 2006).
Another TF whose transcriptional activity is increased upon
phosphorylation by AMPK is FoxO3 (Greer et al., 2007). FoxO
family of TFs play important roles in growth factor signaling,
proliferation, glucose metabolism and longevity (Lin et al., 1997;
Ogg et al., 1997; Nakae et al., 2002; Giannakou et al., 2004;
Hwangbo et al., 2004; Paik et al., 2007). AKT phosphorylates
and sequesters FoxO family of TFs in the cytoplasm (Brunet
et al., 1999; Kops et al., 1999; Tang et al., 2002). AMPK was
shown to phosphorylate FoxO3 on six serine residues in vitro
and in two residues (S413 and S588) in endogenous FoxO3 to
enhance its transcriptional activity (Greer et al., 2007) toward
its target genes including the cell cycle inhibitor p27 (Morgan,
1997; Medema et al., 2000). Therefore, it is conceivable that the
contexts in which AMPK may phosphorylate RB, P53 or FoxO
are discrete. The cell cycle machinery senses available cellular
energy, and ATP depletion by as little as 15% has been found
to cause G1 arrest, and a depletion by 35% caused G2M arrest
of human promyelocytic leukemia cells (Sweet and Singh, 1995).
It is not understood if AMPK’s role in mitosis is uncoupled
from or linked to its energy sensing function. It is possible
that basal nuclear AMPK activity phosphorylates a set of TFs
to enable cell cycle proliferation when growth conditions are
permissive, while a TF code switch during severely restrictive
growth conditions signals cell cycle arrest to allow survival. This
is an important yet unanswered question, and hopefully analysis
of the nuclear phosphoproteomes integrated with single cell
RNA-seq of proliferating cells will be able to address this issue.

Transcriptional Control of Glucose and
Mitochondrial Metabolism by AMPK
The requirement of AMPK for optimal glucose metabolism
through glycolysis and oxidative phosphorylation has been
reported in several cell culture and animal models. We have
recently shown that AMPK phosphorylates the TF CREB1
on S133 to orchestrate transcription of HIF1α and GABPA,
which are master regulators of the glycolysis and mitochondrial
biogenesis transcriptional programs, respectively (Chhipa et al.,
2018). CREB1 regulation by AMPK was also shown previously.

In skeletal muscle, AMPK phosphorylates CREB1 on S133 to
activate CREB1-dependent transcription. Interestingly, this is the
same site targeted by PKA (Thomson et al., 2010). Thomson
et al., showed that AMPK also phosphorylates other TFs such
as CREM, ATF1 and CREBL2 in the skeletal muscle. CREB
phosphorylation is not required for binding to CREB responsive
elements, but it augments recruitment of coactivators such as
CBP/p300 (De Cesare and Sassone-Corsi, 2000). Intriguingly,
one study showed that AMPK can phosphorylate CBP/p300
at S89 to reduce its interaction with nuclear receptors such
as PPARγ, thyroid receptor and retinoic acid receptors, but
not with other TFs including CREB1, p53, E1A, and GATA1
(Yang et al., 2001). Reduced interaction of coactivators like
CBP/P300 with PPARγ, seems at odds with the well-established
evidence that AMPK promotes mitochondrial biogenesis and
oxidative phosphorylation (OXPHOS) through activation of
the PPARγ coactivator 1α (PGC1α) (Bergeron et al., 2001;
Terada et al., 2002; Jorgensen et al., 2005; Reznick and
Shulman, 2006; Garcia-Roves et al., 2008; Canto et al., 2010).
The transcriptional coactivator PGC1α is a master regulator
of mitochondrial biogenesis and OXPHOS. PGC1α activates
two key nuclear respiratory factors NRF1 and NRF2 that
activate the mitochondrial transcription factor TFAM which is
essential for mitochondrial DNA replication and transcription
of mitochondrial genes (Fisher et al., 1992; Virbasius and
Scarpulla, 1994; Scarpulla, 2006). Several studies confirmed that
AMPK enhances PGC1α expression and activity, and PGC1α

- dependent mitochondrial gene expression (Suwa et al., 2003;
Jorgensen et al., 2005; Jager et al., 2007; Irrcher et al., 2008;
Canto et al., 2009), but the mechanisms remain contested. One
study showed direct phosphorylation of PGC1α by AMPK on
T177 and S538 (Jager et al., 2007), however these results need
further confirmation. We have shown that in glioblastoma,
AMPK promotes mitochondrial metabolism through CREB-
dependent activation of NRF2 (Chhipa et al., 2018). PGC1α also
controls energy homeostasis and mitochondrial biogenesis by
interacting with estrogen-related receptors (ERRs) (Huss et al.,
2002; Kamei et al., 2003; Schreiber et al., 2003; Laganiere et al.,
2004; Handschin and Spiegelman, 2006; Sonoda et al., 2007;
Charest-Marcotte et al., 2010).

Arguments about the role of AMPK in the regulation of
glucose metabolism still exist. AMPK activation has been shown
to promote expression and cell surface translocation of the
glucose transporter GLUT4 through the TF MEF2. On the other
hand, PGC1α was shown to function as a coactivator of the
MEF2 to regulate GLUT4 expression and surface translocation
(Lin et al., 2002; Knight et al., 2003; Holmes et al., 2005; McGee
et al., 2006). Whether AMPK directly phosphorylates MEF2 is
uncertain, but it has been proposed that AMPK phosphorylates
the GLUT4 Enhancer Factor (GEF) to promote its nuclear
translocation and interaction with MEF2 (McGee et al., 2006).
Another study linked GLUT4 transcription by AMPK through
the HDAC5-MEF2 axis. HDAC5 is a histone deacetylase and
a transcriptional repressor. It binds to MEF2 and by removing
lysine acetyl marks from histones, inhibits MEF2-dependent
transcription. In light of these findings, it is worth noting
that nuclear AMPK phosphorylates HDAC5 on S259 and 498
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disrupting its binding to MEF2 and enabling MEF2-dependent
transcription of GLUT4 (McGee et al., 2008).

When overwhelming evidence supports the role of AMPK
as a survival kinase during energy crisis, some of the findings
about its role in systemic glucose homeostasis during energy
crisis seems counterintuitive to its role as a survival kinase.
When glucose level drops during fasting, liver glycogenolysis
produces glucose; if fasting continues beyond glycogen depletion,
gluconeogenesis triggers to provide the much-required glucose
for tissue function, particularly the brain and red blood cells.
While AMPK phosphorylates CREB1 in muscle to enhance
its transcriptional activity, it was shown to reduce CREB1-
dependent gluconeogenesis in the liver (Koo et al., 2005).
Following depletion of glycogen-derived glucose production,
gluconeogenesis is induced in the liver in periods of energy
crisis. Glucagon activates cAMP-PKA signaling during which
PKA phosphorylates the CREB1 coactivator called transducer
of regulated CREB (CRTC2 or TORC2 not mTORC2) causing
its nuclear translocation, CREB1 binding and transcription
of key gluconeogenic genes such as phosphoenolpyruvate
carboxykinase (PEPCK) and glucose-6-phosphatase (G6P).
AMPK was shown to phosphorylate CRTC2 on S171 causing
cytoplasmic sequestration through 14-3-3 binding and inhibition
of gluconeogenesis (Koo et al., 2005). This study showed that
AMPK activation even in the presence of cAMP agonists
sequestered CREB regulated transcription coactivator 2 (CRTC2)
in the cytoplasm and argued that AMPK inhibits gluconeogenesis
even in periods of energy crisis which is known to trigger
AMPK activation. This phenomenon seems counterintuitive to
AMPK’s role as a survival kinase. In fact, the role of CRTC2
in fasting-induced gluconeogenesis and glucose homeostasis has
been questioned because fasting-induced glucose homeostasis
remained unaffected in CRTC2 knockout mice (Le Lay et al.,
2009). Similarly, it is reasonable to assume that AMPK
might promote glycogenolysis during starvation. Indeed, initial
reports supported this assumption when AMPK was shown to
phosphorylate and increase glycogen phosphorylase activity (the
rate limiting enzyme for glycogenolysis) (Carling and Hardie,
1989; Young et al., 1996), although this was later disputed
by other studies (Viollet et al., 2003a,b; Barnes et al., 2004;
Jorgensen et al., 2005). We have conclusively shown that fasting
and exercise –induced glycogenolysis in the skeletal muscle
(that almost exclusively express β2 and not β1 subunit) is
reduced by over 20% in the AMPKβ2 knockout mice (Dasgupta
et al., 2012). Together, it seems that AMPK may indeed
stimulate glycogenolysis through phosphorylation of glycogen
phosphorylase and / or through yet unknown transcriptional
control of glycogenolysis.

AMPK Activity in the Nucleus
Which kinase phosphorylates AMPK in the nucleus or does
AMPK get phosphorylated in the cytoplasm before translocating
to the nucleus? We and others have shown that AMPK is present
in the nucleus. Both α1 and α2 subunits, but the α2 subunit
in particular has been found in the nucleus (Salt et al., 1998;
Vincent et al., 2001; Leff, 2003; McGee et al., 2003; Kodiha
et al., 2007). Unlike the α2, the α1 does not seem to have

a nuclear localization signal and its nuclear localization could
depend on cytoplasmic-nuclear chaperones. We have shown that
active AMPK is present in the nuclei of mouse neural stem
cells, and while the regulatory β2 subunit was restricted mainly
to the cytoplasm, the β1 subunit was enriched in the nucleus
(Dasgupta and Milbrandt, 2009). Examining glioblastoma clinical
samples we observed copious amounts of active AMPK both
in the cytoplasm and the nucleus (Chhipa et al., 2018). The
presence of the AMPK kinase CAMKK2 has been shown in
the nucleus of prostate cancer cells (Karacosta et al., 2012), and
nuclear AMPKα1 was recently shown to be phosphorylated by
CAMKK in HeLa and A549 lung cancer cells (Vara-Ciruelos
et al., 2018). Whether LKB1 is present in the nucleus is unknown.
Much work is necessary to understand the mechanisms of AMPK
activation in the nucleus.

mTOR Activity in the Nucleus
Accumulating evidence shows the presence of mTOR in the
nucleus. mTOR regulates RNA polymerase (Pol)-mediated
transcription either directly in the nucleus or indirectly by
regulating nuclear translocation of TFs (Giguere, 2018). It is
well known that environmental cues (nutrients) regulate the
transcriptional activity of Pol I and Pol III. However the
mechanism by which nutrients modulate the activity of Pol I
and III was ill-defined until the role of mTOR in Pol I and
III-mediated transcription of ribosomal DNA and transfer RNA
genes was established (Tsang et al., 2010). mTOR associates
with the 45s rDNA promoter and 5s rDNA and tRNAs genes,
thus, regulating ribosome biogenesis and protein synthesis.
mTOR controls the transcriptional activity of Pol I and III by
phosphorylating TFs and regulating their activity. For e.g., in
Saccharomyces cerevisiae, mTORC1 phosphorylates the TF Maf1
through S6K1, thereby controlling Pol-III mediated transcription
(Wei et al., 2009). In mammals, mTORC1 phosphorylates
TIF1A and UBF, the TFs involved in the formation of Pol I
transcription initiation complex (Mayer et al., 2004; Figure 4).
Whether cytoplasmic activation of mTORC1 is necessary for its
translocation to nucleus or it is activated in the nucleus itself
requires further confirmatory studies.

CONCLUDING REMARKS

Since its discovery as a cytosolic metabolic kinase that purified
with and inhibited Acetyl Co-A carboxylase (the rate limiting
enzyme for long chain fatty acid synthesis) (Lent and Kim, 1982),
we have come a long way to have discovered the many facets of
AMPK function in cellular and systemic metabolism, regulation
of cell cycle, longevity, stress resistance, tumor pathology,
circadian rhythm among other functions. Since the generation of
the first AMPK subunit knockout animals, seminal studies have
provided evidence on its role in glucose and lipid homeostasis
in the liver and skeletal muscle and in type II diabetes. The bulk
of AMPK research after its discovery as a key negative regulator
of mTORC1 was devoted to understand signaling pathways
around the AMPK-mTORC1 axis in normal physiology and
pathology, particularly cancer. Despite the important findings
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about AMPK’s direct involvement in gene expression and cell
cycle control in the nucleus, frank transcriptional regulation
by AMPK beyond signaling has remained a less-explored area.
Equally important but also poorly understood is how the
individual subunits of AMPK are transcriptionally regulated by
cellular and environmental cues. Here, we described an abridged
summary of TFs that coordinate transcription of AMPK and
mTOR pathway genes. We hope that this preliminary report will
engender interest in the field to examine the context-dependent
transcriptional regulation of the energy sensing AMPK and
biosynthetic mTOR pathway genes.
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