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Abstract

Dengue virus (DENV) is the etiologic agent for dengue fever, for which there is no approved vaccine or specific anti-viral
drug. As a remedy for this, we explored the use of compounds that interfere with the action of required host factors and
describe here the characterization of a kinase inhibitor (SFV785), which has selective effects on NTRK1 and MAPKAPK5
kinase activity, and anti-viral activity on Hepatitis C, DENV and yellow fever viruses. SFV785 inhibited DENV propagation
without inhibiting DENV RNA synthesis or translation. The compound did not cause any changes in the cellular distribution
of non-structural 3, a protein critical for DENV RNA synthesis, but altered the distribution of the structural envelope protein
from a reticulate network to enlarged discrete vesicles, which altered the co-localization with the DENV replication complex.
Ultrastructural electron microscopy analyses of DENV-infected SFV785-treated cells showed the presence of viral particles
that were distinctly different from viable enveloped virions within enlarged ER cisternae. These viral particles were devoid of
the dense nucleocapsid. The secretion of the viral particles was not inhibited by SFV785, however a reduction in the amount
of secreted infectious virions, DENV RNA and capsid were observed. Collectively, these observations suggest that SFV785
inhibited the recruitment and assembly of the nucleocapsid in specific ER compartments during the DENV assembly process
and hence the production of infectious DENV. SFV785 and derivative compounds could be useful biochemical probes to
explore the DENV lifecycle and could also represent a new class of anti-virals.
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Introduction

Dengue fever, the most prevalent arthropod-borne viral diseases

of humans [1], can be caused by four DENV serotypes (DENV-1,

DENV-2, DENV-3, and DENV-4). DENV belongs to the Flaviviridae

family, which comprises other medically important pathogens

including the Japanese encephalitis (JEV), yellow fever (YFV) and

hepatitis C (HCV) viruses [2]. There is no available effective anti-

viral therapy for DENV infection and the development of a dengue

vaccine is challenging because of the need to induce long-lasting

protection against all four DENV serotypes simultaneously. In fact,

infection with one DENV serotype does not produce lasting

immunity against the other three, and during secondary infections,

incomplete immunity against a new serotype can increase the

likelihood of life-threatening dengue hemorrhagic fever (DHF) or

dengue shock syndrome (DSS) [3]. With approximately 3.6 billion

people at risk, the global distribution of all serotypes [4], and the

complications inherent in vaccine development, it is essential to

obtain effective therapies against DENV infection.

The DENV replication cycle begins with receptor-mediated

endocytosis of the virus into cells, followed by fusion with the

endosomal membrane to release the viral genome into the

cytoplasm for translation and replication [2]. Replication of the

viral RNA genome takes place within virus-induced endoplasmic

reticulum (ER)-like vesicles, which are connected to the cytosol via

pores that allow entry of factors that are required for RNA

synthesis, and exit of newly synthesized viral RNA for assembly.

Virus assembly occurs within ER vesicles that are in close

proximity to these pores, with the ensuing accumulation of these

viruses in dilated ER compartments proximal to the Golgi. All

these processes occur within compartments of one ER-derived

network [5,6]. Virions are subsequently released from cells via the
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host cell secretory machinery. These different stages of DENV

replication require complex interaction between viral and cellular

factors [7,8]. Hence, small molecules that target critical host

factors could be useful for the biochemical characterization of

host–virus interactions and are anti-DENV drug candidates.

In this study we describe the anti-viral activity of SFV785, a

derivative of SRPIN340, a serine-arginine-rich protein kinase

(SRPK) inhibitor [9]. Here we show that SFV785 inhibited the

replication of HCV, and had potent anti-DENV and anti-YFV

activity. While SFV785 did not inhibit the accumulation of DENV

proteins and RNAs, it altered the distribution of the structural

envelope (Env) protein within ER-derived vesicles, which was

consistent with the altered morphology of the ER network it

caused in uninfected cells. Ultrastructural electron microscopic

analyses of DENV-infected SFV785-treated cells showed the

presence of virion-like particles devoid of the dense nucleocapsid

and thus distinctly different from viruses within enlarged ER

cisternae. SFV785 did not inhibit the secretion of the virion-like

particles, but inhibited the production of infectious virus. These

data indicate that SFV785 inhibited the recruitment and

encapsulation of the nucleocapsid in specific ER compartments

during the DENV assembly process.

Materials and Methods

This study was carried out in strict accordance with the

recommendations in the Guidelines for Proper Conduct of Animal

Experiments (Ministry of Education, Culture, Sports, Science, and

Technology of Japan), and approved by the Tokyo Medical and

Dental University (Approval number 100185).

Cell lines and viruses
The dengue virus 2 New Guinea C strain (DENV-2) and yellow

fever 17D strain (YFV) used in this study were propagated in the

C6/36 (ATCC) and Vero (ATCC) cells respectively as described

[10]. Baby hamster kidney (BHK-21; ATCC) and Vero cells were

used for the quantification of DENV and YFV by plaque assay

respectively. In brief, cells were grown in 24 well plates and

infected the next day with the virus. The cells were processed for

plaque forming unit (PFU) determination 6 days (DENV) or 3 days

(YFV) post-infection. All statistical analyses were carried out with

GraphPad Prism 4 (GraphPad Software). For the infection of

control and siRNA-treated HuH-7 cells, DENV was used at a

multiplicity of infection (MOI) of 1. The cells were incubated

with the virus for 1 hr at 37uC with occasional rocking. After 1 hr,

the cells were rinsed, overlaid with complete medium and

incubated for 36 hours post-infection. For drug-treated cells,

the compounds were added to the complete media after the

1 hr virus adsorption step, and incubated for the indicated

amount of time. HuH-7/Rep-Feo [11] cells were maintained

in DMEM and 200 mg/ml G418. HuH-7.5.1 cells [12] were

maintained in DMEM supplemented with 10% fetal calf serum.

The hepatitis C virus (HCV)-JFH1 was obtained from HuH-7.5-1

cells as described [13].

Kinase screen and anti-kinase activity
All kinases were assayed at an inhibitor concentration of 10 mM

and an ATP concentration of 10 mM, unless otherwise stated.

Radioisotope-based assays were performed for NTRK1, SRPK1,

SRPK2, CLK4 and DYRK1A as previously described [9]. The

inhibition on 66 kinases was assessed by Carna Biosciences

QuickscoutTM Custom Profiling Service using the phosphor-peptide

ELISA assays, IMAP assays and Off-chip Mobility Shift Assays

(MSA). The detailed assay protocols for these kinases and assays are

available from the Millipore website (http://www.carnabio.com/

output/pdf/ProfilingProfilingBook_en.pdf). The inhibitory effect

on the other kinases was examined with the Millipore Kinase

ProfilerTM Service using radioisotope-based assays. A detailed

assay protocol is available from Millipore website (http://www.

millipore.com/publications.nsf/a73664f9f981af8c852569b9005b4eee/

5b63719614ecf1aa85257367000523ee/$FILE/cd1000enus.pdf).

Evaluation of the effect of the compounds on the
replication of a HCV subreplicon

We synthesized ten derivative compounds (see Supporting

Information S1) based on the chemical structure of SRPIN340 [9].

All tested compounds were dissolved in 100% DMSO, and were

diluted with 100% DMSO, if necessary. Evaluation of the

inhibitory effect of the compounds on the replication of HCV

sub-replicon was performed as reported previously [11]. The Rep-

Feo subreplicon consists of the 59UTR of the HCV-N, the fusion

gene of neomycin phosphotransferase (Neo) with the firefly

luciferase (Fluc), the EMCV IRES driving translation of the NS3

to NS5B genes of HCV-N, and the 39UTR of HCV-N. In brief,

HuH-7/Rep-Feo cells were plated onto 96-well plates at 56103

cells/well 16 to 24 hrs prior to the addition of the compounds.

Each compound was added at a final concentration of 10 or

20 mM in the presence of 0.04% DMSO, and incubated for an

additional 48 hours. After incubation, cells were lysed with the Glo

lysis buffer (Promega) and the luciferase activity measured by

Bright-GloTM Luciferase Assay System (Promega) on the ARVO

MX multilabel counter (PerkinElmer Life Sciences). The lumi-

nescence intensity of each sample was reported relative to that of

the well treated with 0.04% DMSO (100% luciferase activity).

siRNA transfection procedures and analyses of gene
expression

The C2 siRNA (non-specific siRNA duplex) used has been

previously reported [14]. C2 and NTRK1-specific siRNAs (TrkA-

3) were synthesized from Sigma, and TrkA-12 siRNA was

obtained from Thermo Scientific (Table S1). siRNA transfections

were performed on HuH-7 cells with using Lipofectamine 2000 as

described [15]. At 78 h post-transfection, cells were plated at a

density of 36105 cells per 35 mm well, and infected the day after

with DENV-2 at an MOI of 1. The supernatant were harvested

36 hrs p.i., and the cells collected for plaque, western and

quantitative real time PCR analyses. For Western blot analysis,

harvested cells lysates were resolved on a 10% SDS-PAGE,

transferred onto a nitrocellulose membrane and the appropriate

proteins detected by labeling using a polyclonal anti-NTRK1

(Millipore) or anti-GAPDH (Cell Signaling Technology) antibod-

ies. The levels of proteins were quantified using Quantity One

(Bio-Rad).

DENV-2 replicon, RNA transfection and luciferase assay
The RNA from the pDRrep DENV-2 plasmid replicon [16]

was prepared as described. The replicon is shown to be able to

translate and replicate similar to wild type DENV RNA,

generating two peaks of luciferase activities indicative of

translation from input (within first 8 hrs) and newly synthesized

(48 hrs post-transfection) RNA. Briefly, the DENV-2 replicon

RNA was generated from linearised pDRep by in vitro transcrip-

tion using the RiboMax Large Scale RNA Production System

(Promega). The replicon transcripts were transfected into HuH-7

cells by electroporation together with a transfection control firefly

luciferase mRNA, obtained from in vitro transcription of a

linearized pTNT-Fluc plasmid containing the firefly gene in the

Kinase Inhibitor to Dengue Virus Assembly
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pTNT vector (Promega). The electroporated cells were first pooled

and then aliquoted into 24-well plates. Luciferase activity, which is

an indication of translation from the replicon, was measured 2 to

72 hrs post-transfection to assess for the effects of the drugs on

DENV replicon activity. The analyses of both firefly and Renilla

luciferase levels were performed using the dual-luciferase assay kit

(Promega) on a Tecan Infinite M200 luminometer.

RT-PCR and quantitative real-time PCR
Total RNA was prepared from infected cells using the

TRIzolHReagent (Invitrogen) according to manufacturer’s instruc-

tions. The RT reaction was performed at 42uC as described [17].

All quantitative real-time PCR was performed on the iCycler

iQTM Multi-Color Real Time PCR Detection System (Bio-Rad)

with the following conditions: 40 cycles of 30 s denaturation at

95uC, 30 s annealing at 55uC and 30 s extension at 72uC.

Fluorescent detection of SYBR Green I (iQ SYBR Green

Supermix, Bio-Rad) was carried out at the extension phase. All

cDNA standards used in quantitative real-time PCR were identical

in size and sequence to the targets and were generated by PCR

using Taq polymerase (Promega) and 50 nM of each primer, with

the following cycling conditions: a 95uC step for 3 min; 25 cycles

of 95uC for 30 s, 55uC for 30 s, and 72uC for 1 min; and an

elongation step at 72uC for 7 min. The quantification of viral and

cellular nucleic acids in cell culture studies was normalized against

the expression levels of actin. The sequences of the primers used

are shown in Table S1. All statistical analyses were carried out

with GraphPad Prism 4.

Immunofluorescence
DENV-2 infected HuH-7 cells or HCV JFH-1 infected HuH

7.5-1 cells were fixed with 4% paraformaldehyde or ice-cold

methanol, and processed for indirect immunoflourescence as

described [15]. The proteins were labelled with anti-NS3 rabbit

polyclonal (Abcam or from Dr. Padmanabhan, Georgetown

University), anti-DENV-2 Env 3H5 mouse monoclonal (Chemi-

con), anti-calnexin rabbit monoclonal (Cell Signalling), anti-sec31

(gift from Dr. Tang B.L., NUS), anti-ERGIC-53 (Sigma-Aldrich)

and anti-Giantin (Abcam) rabbit polyclonals, and visualized using

secondary antibodies conjugated to FITC, rhodamine (Jackson

Immunolabs) or Cy3 (Amersham). The double-stranded RNA

(dsRNA), the presumed intermediate of DENV replication, was

labeled with J2, a mouse monoclonal antibody (English and

Scientific Consulting, Hungary). Cellular DNA was visualised with

DAPI (Molecular Probes). Images were collected using a

fluorescence microscope (Olympus IX700). For the quantification

Figure 1. Structure-activity relationship of SRPIN340/nicotinoyl derivatives to the replication of the HCV subreplicon. The
comparison of the relative luciferase activity (luc activity) and viability (viability) with the solvent (0.04% DMSO) in the presence of 10 or 20 mM of the
compounds are shown. L/V is the ratio of relative luciferase activity to viability. L/V values less than 50 (20 mM) or 60 (10 mM) are highlighted. The data
are represented as the mean of triplicate experiments.
doi:10.1371/journal.pone.0023246.g001
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of JFH1-infected cells in the presence of compounds, NS3-

immunostained cells were analyzed using an ArrayScan VTi.

Infected cell number was defined as the number of nuclei which

average signal intensity of Cy3 signal around nuclei was greater

than the mean +4 S.D. of that from uninfected cells.

Results

Synthesis and characterization of SFV785, a kinase
inhibitor that inhibits HCV replication

SRPK inhibitor, SRPIN340, has been reported to have anti-

viral activity against several RNA viruses including HIV, Sindbis

virus, and HCV [9,18]. In an attempt to optimize the anti-HCV

reactivity of this inhibitor, we synthesized ten new (iso)nicotinoyl

derivatives of SRPIN340 and tested them for their effects on the

replication of a HCV subreplicon, Rep-Feo [11], which codes for

luciferase (Figure 1). The level of luciferase activity has been

previously reported to correlate with amount of HCV subreplicon

RNA produced, and hence serves as a useful tool for the

quantitative evaluation of the effects of compounds on HCV

replication. Among the ten SRPIN340 derivatives, 1-[2-(1-

azacyclooctanyl)- 5-(trifluoromethyl)] phenyl-3-nicotinoylthiourea,

designated as SRPIN785 [now renamed as suppressor of

flaviviridae-785 (SFV785)], had the most potent inhibitory effect

on the replication of Rep-Feo (cells treated with 20 mM SFV785

had luciferase activity that was 39% of control).

We investigated the possibility that SFV785 could also inhibit

the replication of HCV virus, JFH1. The percentage of cells

infected with JFH1 at 48 hrs post-infection (p.i.) was significantly

reduced in the presence 10 mM SFV785, as compared to vehicle

Figure 2. SFV785 inhibits HCV replication. (A) Detection of HCV JFH1-infected cells. HuH 7.5-1 cells were infected with HCV JFH1 and treated
with the compounds SFV785 or SRPIN614 for 48 hours. The cells were fixed and immunostained with an anti-HCV NS3 antibody. (B) Quantitative
analysis of HCV JFH1-infected cells. HuH-7.5-1 cells were seeded in 96 well plates, infected with HCV JFH1 and treated with the compounds SFV785 or
SRPIN614 as described above. The fixed cells were immunostained with an anti-HCV NS3 mouse monoclonal antibody, and the percentage of NS3-
positive cells measured using the ArrayScan VTi. The bars indicate the mean value 6 S.D. from triplicate experiments.
doi:10.1371/journal.pone.0023246.g002
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or to a structurally similar compound, SRPIN614 (Figure 2A;

Figure 1). Quantitative analysis of NS3 expression showed that

about 7% of the cells were infected in the presence 10 mM

SFV785, whereas about 60% of the cells were infected in the

presence of SRPIN614, or vehicle (0.1% DMSO) (Figure 2B).

Hence SFV785 also inhibited the replication of the intact HCV

JFH1 virus, possibly more efficiently than the replication of the

HCV Rep-Feo subreplicon.

The parent compound of SFV785, SRPIN340, is an inhibitor of

the SR protein kinases SRPK1 and SRKP2 [18]. In order to

determine if SFV785 retained its kinase inhibitory activity and

specificity for SRPK, we screened the effect of this compound on

the kinase activity of a library of 295 kinases in vitro. Kinases that

showed a reduction in activity of more than 50% were considered

to be potential targets for SFV785. Out of the 295 screened,

SFV785 inhibited the activities of the tropomyosin receptor kinase,

TrkA (NTRK1) and PRAK (MAPK-activated protein kinase 5;

MAPKAPK5) to 27% and 48% respectively (Table S2), suggesting

that these proteins were targets of SFV785.

SFV785 is a potent inhibitor of DENV
Given the evolutionary proximity of HCV and flaviviruses, and

the fact that several kinase inhibitors have been reported to inhibit

flavivirus replication at different stages of their replication cycle

[19,20,21,22], we asked whether or not SFV785 could exhibit

DENV anti-viral activity in human HuH-7 cells. SFV785 reduced

the titer of DENV produced in a dose-dependent manner

(Figure 3A). Ribavirin was used at a concentration of 40 mM for

DENV (IC50) in HuH-7 cells [23]. The observed anti-viral effect of

this compound was not due to cell toxicity as the maximum

concentration of SFV785 used in this study (10 mM) was below its

CC50 value (the compound concentration required to kill 50% of

cells), which is .100 mM in HuH-7 cells. We tested the effect of

SFV785 on YFV production and found that SFV785 treatment

led to even more potent inhibition of this flavivirus (Figure 3B).

DENV and YFV belong to different sero-groups within the

Flavivirus genus [2]. Taken together with Figure 2, these data

indicate that SFV785 has a broad-spectrum activity against

Flaviviridae. In addition, a preliminary in vivo toxicity data from

mice orally administered with SFV785 indicated no adverse effects

or loss in body weight 7 days post-administration (Figure S1),

suggesting a potential therapeutic use of this compound.

The in vitro kinase screens performed earlier had highlighted

NTRK1 as the kinase most inhibited by SFV785. Hence we asked if

silencing of endogenous NTRK1 would have any effect on DENV

propagation. NTRK1-specific siRNAs (TrkA-3 or TrkA-12; Table S1)

Figure 3. SFV785 inhibits DENV-2 and YFV propagation. (A) DENV anti-viral activity of SFV785. HuH-7 cells were infected with DENV and
treated with SFV785 (5 or 10 mM) or with ribavirin (40 mM). The culture media were collected 36 hrs post-infection (p.i) and measured for viral titer by
plaque assays. (B) HuH-7 cells were infected with YFV and treated with SFV785 (5 or 10 mM) or ribavirin (200 mM). The culture media were collected
12 hrs p.i and assessed by plaque assays for viral titer. The bars indicate the range of PFU/ml from three biological replicates. (C) Knockdown of
NTRK1, one of the targets of SFV785, inhibited DENV propagation. The culture media and cell lysates from DENV infected HuH-7 cells treated with
mock transfection, C2 or NTRK1 (TrkA-3) siRNAs, were collected 36 hrs p.i. and analysed for viral titer by plaque assays and Western blot analysis,
respectively. Cells treated with SFV785 (10 mM) and infected with DENV were used as a control. The bars indicate the range of PFU/ml from three
biological replicates, each in triplicates. Similar results were obtained when NTRK1 knockdown was performed using TrkA-12 siRNA.
doi:10.1371/journal.pone.0023246.g003
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were used to reduce NTRK1 levels in HuH-7 cells. Cells infected with

DENV and treated with SFV785 (10 mM) were used to compare the

effects of the compound on DENV propagation (Figure 3C). The

NTRK1-depleted cells were infected with DENV, the supernatants

harvested at 36 hrs p.i., and subsequently titrated for infectious virus.

NTRK1 knockdown resulted in a significant inhibition of infectious

DENV production, validating NTRK1 as one of the in vivo targets of

SFV785. While these data do not address how NTRK1 is involved in

DENV propagation, and do not rule out yet to be identified kinases as

the critical targets of SFV785, they do suggest NTRK1 as the best

candidate target for the compound.

SFV785 does not affect the intracellular accumulation of
DENV gene products

In order to assess the step of the viral life cycle affected by SFV785,

we measured the viral protein and RNA levels. SFV785 did not

inhibit viral protein or viral RNA synthesis (Figure 4A and B). These

observations were reaffirmed using HuH-7 cells electroporated with

the DRep DENV luciferase replicon, and grown in media with or

without SFV785. Cells treated with ribavirin, a guanosine ribonu-

cleoside analogue, were used as a control for the inhibition of viral

transcription without affecting input RNA translation. SFV785 did

not inhibit viral translation or RNA synthesis of the DENV replicon,

with a luciferase activity profile similar to that of untreated cells

(Figure 4C). As expected, cells treated with ribavirin showed

inhibition of viral RNA replication but not translation. These data

suggested that SFV785 did not inhibit viral RNA synthesis or

translation, and indeed, intracellular accumulation of DENV gene

products was unaffected.

SFV785 dislocates the DENV envelope protein from the
replication complex

We assessed the sub-cellular localization of DENV gene products

by indirect immunofluorescence using antibodies to the viral Env

Figure 4. SFV785 did not inhibit DENV viral RNA synthesis or translation. HuH-7 cells were infected with DENV, and untreated or treated
with SFV785 (10 mM) or with ribavirin (40 mM). The levels of (A) DENV protein in the cellular lysates by Western blot analysis, and (B) DENV RNA by
real-time PCR, are shown. The bars indicate the range of DENV copy number, normalized to cellular actin, from three biological replicates, each in
triplicates. (C) Effect on SFV785 on the replication of the DENV replicon. HuH-7 cells electroporated with the DENV replicons were pooled and
aliquoted in media untreated or treated with SFV785 (10 mM) or ribavirin (40 mM). The cells were harvested at the indicated time points and the
lysates assessed for luciferase activity. The bars indicate the S.D. from 4 separate experiments.
doi:10.1371/journal.pone.0023246.g004
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and non-structural 3 protein (NS3) proteins. In untreated HuH-7

cells the Env protein showed the expected reticulate distribution,

consistent with our earlier data [15]. In SFV785 treated cells,

however, Env protein displayed discrete enlarged vesicular

distribution at the periphery of the nucleus (Figure 5A). Unlike

the Env protein, the pattern of NS3 in SFV785-treated DENV-2-

infected cells was indistinguishable from that in the untreated

DENV-2-infected cells (Figure 5B), indicating that the distinct

punctuate distribution of Env was specific. We next determined the

distribution of the discrete vesicles of Env with respect to the

dsRNA. In untreated cells the large majority of Env signal

overlapped with dsRNA, which we interpreted as tight colocaliza-

tion of Env and dsRNA, a marker for the DENV replication

complex [5]. In SFV785 treated cells the pattern of Env distribution

was very different from the pattern observed for dsRNA and a large

portion of the Env signal did not overlap the dsRNA signal

(Figure 5C, arrows). This implies that SFV785 dislocated a

significant portion of Env away from the replication complex.

As the Env is one of three structural proteins of an infectious

DENV, it is possible that an altered distribution of this protein

may affect the production of infectious DENV. In order to

determine the sub-cellular localization of the Env protein in

SFV785-treated cells, we stained for cellular markers of the ER

(calnexin; CALN), the ER-Golgi intermediate compartment

(ERGIC), COPII vesicles (sec31) and the Golgi organelles (giantin;

GOLGB1) [5]. As with our earlier results, Env in untreated cells

showed a distribution profile consistent with a reticulate ER

distribution, as shown by the distribution of CALN. In contrast, in

SFV785 treated cells, Env was in enlarged vesicles, with the

majority of the Env protein found to co-localize with the ER

chaperone CALN (Figure 6A) and not with the other cellular

markers (Figure 6B–D). In addition, in both uninfected and

infected cells, SFV785-treatment altered the distribution profile

of the CALN, but not of the other markers. It is worth noting that

in this study, the level of CALN was observed to increase with

DENV infection, consistent with earlier reports of a bulk

up-regulation in its expression in infected and bystander cells

[24,25]. Taken together, the data suggest that SFV785 may

cause morphological changes to the distribution of the specific

compartments of the ER. These changes alter the sub-cellular

distribution of Env, but not of NS3, suggesting a block in virion

assembly.

SFV785 alters ER structure and results in the formation of
DENV viral particles with abnormal morphology

The presence of DENV Env protein within ER-derived vesicles

and the reduction of extracellular infectious virus, suggested that

the consequence of SFV785 treatment could be a failure to form

and/or release of infectious virus particles. In order to examine the

effect of SFV785 on DENV propagation in detail, we used

electron microscopy. HuH-7 cells were treated with 10 mM

SFV785, infected with DENV at an MOI of 1 and processed

for electron microscopy (EM). Enlarged vesicles (Vd) were

observed in SFV785 treated uninfected HuH-7 cells, but were

absent in untreated uninfected cells (Figure 7A and B). The close

proximity to the ER (arrows) suggested that these drug-induced

vesicles were derived from the ER. DENV-infected cells, whether

untreated (Figure 7C and E) or treated (Figure 7D and F),

contained virus-induced ER-derived convoluted membranes

(CM), tubules (T) and vesicles (Ve) that were characteristic of

flavivirus infection [5]. Stacks of enveloped virus with dense

nucleocapsid core (Vi, ,50 nm) were observed within the dilated

ER cisternae in DENV-infected cells (Figure 7C). In addition, viral

particles (D) that were devoid of the dense nucleocapsid core and

with diameters larger than the expected for DENV were found

within the ER cisternae, even in those containing stacks of virions

(white arrow). The presence of defective viral particles within the

cells was not surprising since the production of defective flaviviral

particles has been previously reported [26,27]. We observed a

significant amount of defective viral particles (,60 nm) in SFV785

treated DENV-infected cells, and these were in close proximity to

virus-induced membranous structures (Figure 7D and F). These

results suggested that SFV785 induced the formation of discrete

vesicles, likely of ER origin. When administered to DENV-infected

cells, SFV785 caused an abnormal morphological distortion of

these vesicles, which prevented the proper assembly of the

enveloped virus. The formation of these enlarged vesicles in EM

Figure 5. The distribution profile of the dengue viral Env, but
not the NS3, is altered in infected cells treated with SFV785,
and does not co-localize with the replication complex. HuH-7
cells were infected with DENV and were either untreated or treated with
SFV785 (10 mM) for 36 hrs. The distribution profiles of the DENV (A) Env
and (B) NS3 proteins were visualized by fluorescent microscopy.
(C) DENV Env (green) and dsRNA (red) were visualized by fluorescent
microscopy. Arrowheads indicate representative cells showing no co-
localization of the vescicular-distributed Env with the dsRNA, a
presumed marker for the DENV RNA replication. The nuclei in all
experiments were stained with DAPI (blue).
doi:10.1371/journal.pone.0023246.g005
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was consistent with the discrete vesicles observed in the immuno-

fluoresence studies above.

SFV785 does not affect the secretion of virus particles
In order to determine if the secretion of DENV was affected by

SFV785, the supernatants of treated DENV-infected cells were

harvested 36 hrs p.i., and the amounts of DENV infectious particles,

proteins and viral RNA determined by plaque, antigen-capture

ELISA and real-time PCR assays respectively. Consistent with our

previous results, treatment with SFV785 and ribavirin inhibited the

production of infectious virus (Figure 8A), with a concomitant

decrease in the level of viral DENV RNA in the culture superna-

tants (Figure 8B). As expected, the supernatants of ribavirin treated

cells contained lower levels of DENV proteins. In contrast, the

supernatants of SFV785-treated cells were found to have higher levels

of viral Env proteins (1.8 fold) as compared to untreated cells

Figure 6. Intracellular DENV protein is located within the endoplasmic reticulum in SFV785-treated cells. The subcellular localization of
DENV Env (green) proteins in DENV-infected HuH-7 cells, untreated or treated with SFV785 (10 mM), was visualized by fluorescent microscopy, with
the nuclei stained with DAPI (blue). Antibodies used for the detection of cellular marker proteins are indicated in the respective panels (red). The
cellular markers used were (A) calnexin (CALN) for the endoplasmic reticulum (ER), (B) ERGIC for the ER-Golgi intermediate compartments, (C) SEC31
for the COPII vesicles, and (D) GOLGB1 for the Golgi.
doi:10.1371/journal.pone.0023246.g006
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(Figure 8C). Taken together with the data in Fig. 3, these results

suggested that DENV RNA synthesis, translation, and subsequent

viral particle secretion were not affected by SFV785. The higher

production of defective viral particles in the culture supernatants of

SFV785-treated versus untreated infected cells (Figure 8C) was

somewhat surprising. Nonetheless, similar observations have been

reported in cultures of JEV with a change in the capsid protein that

prevents proper virus assembly [28].

EM analyses (Figure 7) and the above data suggested that the

DENV particles produced in SFV785-treated cells lacked a

nucleocapsid. To examine this, cell culture supernatants from

SFV785 treated and DENV-2 infected 36107 HuH-7 cells were

concentrated by ultracentifugation and analysed for the presence

of capsid (C) and pre-membrane (prM) structural proteins. The

supernatants from DENV-infected, SFV785 treated cells were

observed to express ,50% less C proteins, when normalised to the

level of the prM (Figure 8D), suggesting the presence of DENV

viral particles lacking capsid. Hence the results suggested that

SFV785 inhibited DENV propagation by disrupting the proper

assembly of the nucleocapsid into virions.

Discussion

Protein phosphorylation by kinases is known to modulate signal

transduction pathways that promote cell survival [29,30] and

immune evasion [31,32] during DENV infection, and the

regulation of endocytosis of other viruses (10). There are currently

a limited number of kinase inhibitors that has been documented to

inhibit DENV or flavivirus propagation at different stages of their

replication cycle [19,20,21,22]. Here we describe the synthesis and

characterization of the anti-viral activity of a kinase inhibitor,

SFV785. Our findings support the action of SFV785 at the

assembly stage of infectious DENV within the ER.

The effect of SFV785 on virus assembly, and not viral RNA

synthesis or translation within the ER compartment, can be placed

in context by a recent study of the three-dimensional architecture

and assembly sites of DENV replication [5]. The study showed

that the processes of DENV RNA replication and translation

occur in virus-induced vesicles within the lumen of ER, which are

in close proximity to, but distinct from, ER compartments that are

involved in virus assembly. These assembled viruses traverse the

Figure 7. Ultrastructural analysis of DENV-infected or uninfected HuH-7 cells that were either untreated or treated with SFV785.
HuH-7 cells were mock-infected (A, B) or infected with DENV (C–F) at an MOI of 1, and either untreated (A, C, E) or treated with SFV785 (10 mM) (B, D,
F). Cells were fixed at the late cycle of infection, incubated with 4% paraformaldehyde-PBS solution, and processed and analyzed by electron
microscopy. CM, convoluted membranes; D, probable defective virus; ER, endoplasmic reticulum; M, mitochondria; N, nucleus; T, virus-induced
tubules; Vd, probable drug-induced vacuoles; Ve, virus-induced vesicles; Vi, stacked DENV particles.
doi:10.1371/journal.pone.0023246.g007
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ER network to dilated ER cisternae proximal to the Golgi, where

they accumulate as densely packed stacks before being transported

into the secretory pathway [5]. Consistent with the above study,

we observed the accumulation of viral particles and stacked

enveloped viruses within the ER compartments in SFV785 treated

cells and no inhibition in their secretion despite perturbations of

the ER structure. The majority of the viral particles secreted,

however, lacked the nucleocapsid, resulting in a reduction of

infectious virus titers. It is interesting to note that while the cellular

localization of the Env proteins was disrupted in the presence of

SFV785, that of NS3 was not. DENV utilizes the viral RNA-

dependent RNA polymerase (NS5), in concert with the host and

other viral NS proteins (including NS3), to synthesize comple-

mentary negative-strand RNAs from the genomic RNA template,

which in turn serves as templates for the synthesis of new positive-

strand RNAs [2]. Currently it is not clear how the DENV RNA

genome is packaged within the ER-derived prM-Env vesicles after

RNA synthesis. Thus this unexpected dichotomy on the cellular

localization of Env and NS3 with SFV785 can be potentially be

useful in dissecting these steps in the DENV life cycle.

SFV785 was shown to be an inhibitor to the NTRK1 and

MAPKAPK5 kinases. Reports of the involvement of protein

phosphorylation in the assembly of flaviviruses have been limited.

In HCV, the phosphorylation of the NS5A protein is critical for its

interaction with the core protein for the production of infectious

virus particles in HuH-7 cells [33] and for viral RNA synthesis

[34]. Phosphorylation of the HCV NS2A by CK2 kinase is also

reported to be necessary for the maturation step that confers

infectivity on assembled particles, without affecting protein

processing or genome replication [35]. In Vero cells, the c-Src

tyrosine kinase is involved in the budding of the DENV

nucleocapsid into the ER lumen [19], while the c-Yes kinase is

required for the trafficking of the West Nile virus (WNV) through

the secretory pathway [36]. NTRK1 is a tyrosine kinase and is

closely involved in the diseases Hereditary Sensory and Autonomic

Neuropathy (HSAN) IV and V [37,38]. Reports on the involve-

ment of NTRK1in virus propagation is limited, with NTRK1

reported to be critical in maintaining the latency of herpes simplex

virus (HSV) in cells [39,40]. MAPKAPK5, a major stress-activated

kinase, activates the heat shock protein 27 [41], which has been

Figure 8. SFV785 induces the production of non-infectious virus lacking the nucleocapsid, without affecting viral secretion. HuH-7
cells were infected with DENV and either untreated or treated with SFV785 (10 mM) or with ribavirin (40 mM). The culture media were collected 36 hrs
p.i., and measured for (A) the titers of infectious DENV produced by plaque assay and (B) the supernatant viral RNA. The bars indicate the S.D. from at
least 3 separate experiments. (C) Comparison of the concomitant levels of DENV protein from the supernatants of treated cells in (A). The amount of
DENV proteins was quantified by antigen-capture ELISA and shown as a percentage of the DENV proteins in the control untreated (DENV)
supernatant. The bars indicate the range of DENV proteins from triplicates of 2 independent experiments. P values indicate significant difference by
1-way ANOVA and Tukey’s post-test. (D) Western blot analysis of the capsid (C) and pre-membrane (prM) structural proteins from ultracentifugation-
concentrated supernatants of HuH-7 cells that were uninfected (control) or infected with DENV-2 and treated with or without SFV785.
doi:10.1371/journal.pone.0023246.g008
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implicated to be involved in the replication of various viruses,

including HSV-1 [42], HCV as a NS5A interacting partner [43],

and influenza virus as one of the host proteins detected in the virus

particle [44]. It is formally possible that SFV785 inhibits other yet

to be identified proteins that act at multiple steps of the DENV

replication cycle, leading to improper assembly of infectious

DENV.

Our studies indicate that SFV785 impinges on the DENV life

cycle by exerting its effect on the ER network itself. The dynamics

of the ER network is maintained by a plethora of proteins

including reticulons and cytoskeletal proteins [45]. NTRK1 is

reported to be involved in signalling pathways that modulate

cellular or ER membrane dynamics at specific sites via the

reorganization of the cytoskeletal proteins [46,47,48]. The capsid

(C) of HCV, a basic protein that is responsible for genome

packaging, is reported to interact with the a- and b-tubulin for

efficient infection and to promote virus transport and/or assembly

in infected cells [49,50]. In HCV and DENV infected cells, the

accumulation of cytoplasmic viral C proteins on the surface of lipid

droplets, which are ER-derived organelles [51] , is thought to be

crucial for the formation of infectious viruses [52,53]. Hence

perturbations of assembly-associated ER compartments by

SFV785 may interfere with the recruitment of the nucleocapsid

with the structural proteins, thus reducing the production of

infectious viruses

SFV785 is a broad-spectrum Flaviviridae inhibitor and it is likely

that it targets a common pathway required for the replication of

these viruses. Our toxicity data indicated that SFV785 was well-

tolerated when fed to mice at a dose of 1 g/kg/day for 1 week.

Hence the current studies not only indicate the usefulness of

SFV785 as a tool for the biochemical characterization of critical

host–virus interactions, but also underscore the potential of the

compound as a chemical starting point for anti-DENV pharma-

cological agents.

Supporting Information

Figure S1 SFV785 did not affect the growth of mice. The

growth and body weight of ICR-mice were monitored pre- and

post-administration of SFV785 (1 g/kg/day) or vehicle alone at

day 0. No significant weight differences were detected in mice with

or without SFV785 administration. Error bars indicate the range

of weight (n = 6).

(TIF)

Table S1 Sequences of primers and siRNAs used in the
study. Sense and antisense primers were denoted with suffixes ‘f’

and ‘r’ respectively. The primers were designed according to

sequences reported in Genbank accession numbers M29095

(DENV-2) and NM001101 (actin).

(PDF)

Table S2 Kinase profiling of the inhibitory effect of
SFV785. The inhibitory effect of SFV785 was tested on 295

kinases. Kinases which showed a reduction of more than 50% in

activity with 10 mM of SFV785 were shaded in grey. The HUGO

nomenclatures of TrkA (NTRK1) and PRAK (MAPKAPK5) are

within the parentheses.

(PDF)
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