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Nadarajah and Haghighi distribution (NHD) inferences problem has been discussed under unified 
hybrid censoring scheme (UHCS) in the existence of competing risks model. Competing risks 
model is defined by time-to-failure under more than one cause of failure, which can be dependent 
or independent. This study focuses on discussing the case of failure partially observed causes of 
failure competing risks model. We obtain various inferences: we first obtain the MLE, in addition, 
we construct approximate confidence intervals (ACIs). Second, we obtain the Bayes estimator 
via SELF and related highest posterior density (HPD) using Markov Chain Monte Carlo (MCMC). 
Finally, an electrical appliances data set and simulation studies have been analyzed for further 
illustrations.

1. Introduction

In survival analysis, most of the study uses censored data due to the time and cost circumstances. In the statistical literature, the 
two most famous schemes are: type-I (T-I) and type-II (T-II) censoring schemes. Hybrid censoring scheme (HCS) is a combination of 
T-I and T-II censoring schemes; which is divided to: T-I HCS and T-II HCS, see [1]. The HCS can be characterized statistically by: 
let 𝑋𝑚∶𝑛 be denoted as the 𝑚𝑡ℎ failure time in which 𝑛 items are employed in a lifetime and the prescribed test termination time 
presented by 𝑇 . Under T-I HCS, the test is completed at a random time 𝑇 ∗ = min{𝑋𝑚∶𝑛, 𝑇 }: 𝑇 ∈ (0, ∞) and 1 ≤𝑚 ≤ 𝑛. However, T-II 
HCS satisfied fixed number of failures. Thus, in T-II HCS random completed time of the test is 𝑇 ∗ = max{𝑋𝑚∶𝑛, 𝑇 }, to satisfy that, at 
least 𝑚 failures are observed.

There is more information about T-I HCS presented by [2,3]. Also, [4] has some considerable discussion on T-II HCS. However, 
T-I and T-II HCS both have some drawbacks, absence of elasticity test in a small period of time and getting a large number of failures

are the foremost disadvantages of them. Thus, we are driven straight forward to the range of generalized HCS (GHCS), see [5].

Therefore, the concept of GHCS emerged. In generalized T-I HCS (GT-I HCS), let 𝑛 be the independent units on the experiment 
and 𝜚 the placed object number that should be observed. The prior integers (𝜚, 𝑚), satisfy that 1 < 𝜚 < 𝑚 ≤ 𝑛. When the failure time 
𝑋𝜚 < 𝑇 , the test is completed at min(𝑋𝑚, 𝑇 ). Also, if 𝑋𝜚 > 𝑇 , the test is completed at 𝑋𝜚. Then, (𝑇 ∗, 𝑅) is defined by

Abbreviations: NHD, Nadarajah-Haghighi distribution; 𝑇 ∗, The termination point of the experiment; GHCS, Generalized Hybrid censoring scheme; UHCS, Unified 
hybrid censoring schemes; MLE, Maximum likelihood estimator; HCS, Hybrid censoring scheme; S(.), Survival function; h(.), Hazard rate function; HPD, Highest 
posterior density; CI, Confidence intervals; SND, standard normal distribution; pdf, Probability density function; SELF, Squared error loss functions; df, density 
function; cdf, Cumulative distribution function; ACIs, Approximate confidence intervals; MCMC, Marcov Chain Monto Carlo; LINEX, linear exponential loss functions.
Available online 5 March 2024
2405-8440/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC license
(http://creativecommons.org/licenses/by-nc/4.0/).

E-mail address: taabushal@uqu.edu.sa.

https://doi.org/10.1016/j.heliyon.2024.e26794

Received 3 July 2023; Received in revised form 23 January 2024; Accepted 20 February 2024

http://www.ScienceDirect.com/
http://www.cell.com/heliyon
mailto:taabushal@uqu.edu.sa
https://doi.org/10.1016/j.heliyon.2024.e26794
http://crossmark.crossref.org/dialog/?doi=10.1016/j.heliyon.2024.e26794&domain=pdf
https://doi.org/10.1016/j.heliyon.2024.e26794
http://creativecommons.org/licenses/by-nc/4.0/


Heliyon 10 (2024) e26794T.A. Abushal

(𝑇 ∗,𝑅) =
⎧⎪⎨⎪⎩
(𝑋𝜚,𝜚), if 𝑋𝜚 > 𝑇 ,

(𝑇 ,𝑅), 𝜚 ≤𝑅<𝑚, if 𝑋𝜚 < 𝑇 <𝑋𝑚,

(𝑋𝑚,𝑚), if 𝑋𝜚 <𝑋𝑚 < 𝑇 .

Where 𝑅 is the observed number of failure times, 𝑇 ∗ is the experiment completed time and 𝑇 is the ideal test time.

The concept of generalized T-II HCS (GT-II HCS) is demonstrated as follows: consider 𝑛 independent units are put in the test where 
the integer 𝑚 ∈ {1, 2, ..., 𝑛}, and the two prior times 0 < 𝑇1 < 𝑇2 <∞. The time to failure 𝑋𝑖 is recorded until the time 𝑇1 appears.

When the time to failure 𝑋𝑚 < 𝑇1, the experiment is terminated at 𝑇1. But if 𝑇1 <𝑋𝑚 < 𝑇2, then the experiment is terminated at 𝑋𝑚. 
Covered by this scheme, if 𝑇1 < 𝑇2 <𝑋𝑚, then the experiment is terminated at 𝑇2. Accordingly, (𝑇 ∗, 𝑅) is given by:

(𝑇 ∗,𝑅) =
⎧⎪⎨⎪⎩
(𝑇2,𝑅), 1 <𝑅 ≤𝑚 if 𝑇1 < 𝑇2 <𝑋𝑚,

(𝑋𝑚,𝑚), if 𝑇1 <𝑋𝑚 < 𝑇2,

(𝑇1,𝑅), 𝑚 ≤𝑅 ≤ 𝑛, if 𝑋𝑚 < 𝑇1.

Both systems GT-I HCS and GT-II HCS have some drawbacks, where, in a GT-I HCS, we may not have the 𝑚𝑡ℎ failure due to the 
prefixed time, and in GT-II HCS, it may take a lot of time to get a sufficient number of effective samples.

Unified hybrid censoring schemes (UHCS) have been suggested by [6] to overcome the drawbacks of the above two schemes by 
combining them. In this scheme, let 𝑚 be the predetermined observation number and 𝜚 be the object number that must be observed, 
it is assumed that the two prior fixed integers 𝜚, 𝑚 ∈ 1, 2, ..., 𝑛 satisfy 1 < 𝜚 < 𝑚 ≤ 𝑛. 𝑇1, 𝑇2 ∈ (0, ∞) are denoted as the predetermined 
experiment completed time and the extended experiment completed time respectively, where 𝑇1 < 𝑇2. 𝑅𝑖 (𝑖 = 1, 2) is the number of 
observed objects until 𝑇𝑖 (𝑖 = 1, 2). In accordance with the end point and observed number, UHCS is divided into six cases

Case I: For 0 < 𝑋𝜚∶𝑛 < 𝑋𝑚∶𝑛 < 𝑇1 < 𝑇2, we get 𝑇 ∗ = 𝑇1,
Case II: For 0 < 𝑋𝜚∶𝑛 < 𝑇1 < 𝑋𝑚∶𝑛 < 𝑇2, we get 𝑇 ∗ = 𝑋𝑚∶𝑛,
Case III: For 0 < 𝑋𝜚∶𝑛 < 𝑇1 < 𝑇2 < 𝑋𝑚∶𝑛 , we get 𝑇 ∗ = 𝑇2,
Case IV: For 0 < 𝑇1 < 𝑋𝜚∶𝑛 < 𝑋𝑚∶𝑛 < 𝑇2, we get 𝑇 ∗ = 𝑋𝑚∶𝑛,
Case V: For 0 < 𝑇1 < 𝑋𝜚∶𝑛 < 𝑇2 < 𝑋𝑚∶𝑛 , we get 𝑇 ∗ = 𝑇2,
Case VI: For 0 < 𝑇1 < 𝑇2 < 𝑋𝜚∶𝑛 < 𝑋𝑚∶𝑛 , we get 𝑇 ∗ = 𝑋𝜚∶𝑛.

(1.1)

When the (𝜚 − 𝑡ℎ) observation happens before 𝑇1, the test will be completed at 𝑚𝑖𝑛(𝑚𝑎𝑥(𝑋𝑟∶𝑛, 𝑇1), 𝑇2) and when the (𝜚 − 𝑡ℎ) obser-

vation happens between 𝑇1 and 𝑇2, the test will be terminated at 𝑚𝑖𝑛(𝑋𝑟∶𝑛, 𝑇2). If it happens after 𝑇2, the test will be terminated at 
𝑋𝜚∶𝑛.

Additionally, when 𝑇1 → 0, this scheme becomes GT-I HCS. When 𝜚 → 0, it tends to GT-II HCS. In the case of if both 𝑇1 → 0 and 
𝜚 → 0, it becomes T-I HCS. Finally, when 𝑇2 →∞ and 𝜚 → 𝑛, UHCS becomes T-II HCS. Thus, UHCS provides a sufficient number 
of failures in between a fixed period of time. In recent years, statistical inference based on UHCS has been studied by various 
researchers. For more details one may be referred to [7], [8], [9], [10], [11]. [12], [13], [14], [15].

The Nadarajah-Haghighi distribution (NHD) is a generalization of the exponential distribution first suggested by [16]. [16]

demonstrated that the PDF of the NHD may have a decreasing value, and that unimodal forms, as well as the HRF of NHD, can 
be decreasing, increasing, or constant shape, which is analogous to the generalized exponential distributions, Gamma, and Weibull. 
Parameter estimations for NHD have been the subject of research by several writers in the last few years. One may be referred to 
[17], [18], [19], [20]. [16] indicate that NHD has the fascinating feature of always having the zero mode. For 𝜃 = 1, NHD reduces 
to the exponential distribution. This distribution in some literature is called as extended exponential distribution (EED) where the 
pdf and cdf are expressed as

𝑓𝑗 (𝑥, 𝜃, 𝛽𝑗 ) = 𝜃 𝛽𝑗 (1 + 𝛽𝑗𝑥)𝜃−1𝑒1−(1+𝛽𝑗𝑥)
𝜃
, 𝑥 > 0, 𝜃 > 0, 𝛽𝑗 > 0, 𝑗 = 1,2, (1.2)

𝐹𝑗 (𝑥, 𝜃, 𝛽𝑗 ) = 1 − 𝑒1−(1+𝛽𝑗𝑥)
𝜃

𝑦(𝑥, 𝜃, 𝛽𝑗 ) = (1 + 𝛽𝑗𝑥)𝜃 , then the parameters of life, ℎ(.) and 𝑆(.) of the NHD are given, respectively, by

ℎ𝑗 (𝑡, 𝜃, 𝛽𝑗 ) = 𝜃 𝛽𝑗 (1 + 𝛽𝑗𝑡)𝜃−1, (1.3)

and

𝑆𝑗 (𝑡, 𝜃, 𝛽𝑗 ) = 𝑒1−𝑦(𝑥,𝜃,𝛽𝑗 ), 𝜃 > 0, 𝛽𝑗 > 0. (1.4)

The second direction involves the use of competing risks data under UHCS to estimate the parameters 𝛽1, 𝛽2 and 𝜃. For more 
details on recent studies using partially observed competing risks data, see [21], [22], [23], [24], [25], [26], and [27].

From the statistical literature, it has been seen that the studies of NHD mainly utilize complete, T-I or T-II and PCS. Even in 
competing risks model, NHD distribution has been considered based on T-II censoring. In addition to the significance of the UHCS, 
we got motivation to obtain estimators for NH distribution based on competing risks data under UHCS. Furthermore, no study has 
been mentioned in the literature about this issue, as far as we are aware. Thus, the study plays an important role in helping to close 
2

this gap.
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The following is the outline of the paper. The MLE and the ACIs have been constructed and are shown in sect.2. Sect.3 investigates

the Bayesian analysis under two loss functions. The hypothesis testing has been discussed in sect.4. A simulation study has been 
presented in sect.5. Further, we examine a real data set to demonstrate the estimating methods presented in this research in sect.6. 
Finally, concluding remarks end the paper in sect.7.

2. Model construction and MLE

Let’s inspect 𝑛 independently and identically distributed (i.i.d.) units proposed on a life-testing experiment with belief ordered 
failure times 𝑋1, ⋯ , 𝑋𝑛. Suppose the random failure time 𝑋𝑗𝑖, 𝑖 = 1, 2, 3, ⋯ , 𝑅 under two competing causes of failures 𝑗 = 1, 2, 
satisfies

𝑋𝑖 =min{𝑋1𝑖, 𝑋2𝑖}, 𝑖 = 1, 2, ..., 𝑛.

The notation 𝜂𝑖, 𝑖 = 1, 2, ⋯, 𝑅 is value indicating whether failure cause for ith unified censored time is detected or not, i.e.

𝜂𝑖 =

{
1, if unit fails due to the first cause;
0, if unit fails due to the second cause.

The study of inference problems associated with the case of partially observed causes of failure competing risks model, where failure 
causes cannot be detected clearly, has recently gained practical significance. 𝑅1 =

∑𝑅
𝑖=1 𝐼(𝜂𝑖 = 1) and 𝑅2 =

∑𝑅
𝑖=1 𝐼(𝜂𝑖 = 0) indicate 

sums of failures attributable to causes 1 and 2, respectively. Here 𝑅1 +𝑅2 = 𝑅. In addition, assume that 𝑋 = {𝑋1∶𝑛, 𝑋2∶𝑛, ..., 𝑋𝑅∶𝑛}
represent UHCS available from the distribution given in (1.2). As a result, note that for the corresponding competing risks data we 
have the six cases using (1.1) under this UHCS:

Case I: (𝑋1∶𝑛, 𝜂1), ..., (𝑋𝑚1∶𝑛, 𝜂𝑚1
) If 0 < 𝑋𝜚∶𝑛 < 𝑋𝑚∶𝑛 < 𝑇1 < 𝑇2, then 𝑇 ∗ = 𝑇1,

Case II: (𝑋1∶𝑛, 𝜂1), ..., (𝑋𝑚∶𝑛, 𝜂𝑚) If 0 < 𝑋𝜚∶𝑛 < 𝑇1 < 𝑋𝑚∶𝑛 < 𝑇2, then 𝑇 ∗ = 𝑋𝑚∶𝑛,

Case III: (𝑋1∶𝑛, 𝜂1), ..., (𝑋𝑚2∶𝑛, 𝜂𝑚2
) If 0 < 𝑋𝜚∶𝑛 < 𝑇1 < 𝑇2 < 𝑋𝑚∶𝑛, then 𝑇 ∗ = 𝑇2,

Case IV: (𝑋1∶𝑛, 𝜂1), ..., (𝑋𝑚∶𝑛, 𝜂𝑚) If 0 < 𝑇1 < 𝑋𝜚∶𝑛 < 𝑋𝑚∶𝑛 < 𝑇2, then 𝑇 ∗ = 𝑋𝑚∶𝑛,

Case V: (𝑋1∶𝑛, 𝜂1), ..., (𝑋𝑚2∶𝑛, 𝜂𝑚2
) If 0 < 𝑇1 < 𝑋𝜚∶𝑛 < 𝑇2 < 𝑋𝑚∶𝑛, then 𝑇 ∗ = 𝑇2,

Case VI: (𝑋1∶𝑛, 𝜂1), ..., (𝑋𝜚∶𝑛, 𝜂𝜚) If 0 < 𝑇1 < 𝑇2 < 𝑋𝜚∶𝑛 < 𝑋𝑚∶𝑛, then 𝑇 ∗ = 𝑋𝜚∶𝑛.

Quantities 𝑇 ∗ are denoting the experiment termination point. The two positive integers 𝑚1 and 𝑚2 are defined by 𝑋𝑚1∶𝑛 < 𝑇1 <
𝑋𝑚1+1∶𝑛 and 𝑋𝑚2∶𝑛 < 𝑇2 <𝑋𝑚2+1∶𝑛.

The joint probability function of UHCS competing risk data 𝑥= {𝑥1∶𝑛, ..., 𝑥𝑅∶𝑛}, with partially observed causes of failures obtained 
by combining the above mentioned cases, is given by

𝐿(𝐱) ∝
𝑅

Π
𝑖=1

(ℎ1(𝑥𝑖))𝑅1 (ℎ2(𝑥𝑖))𝑅2
[
𝑆1(𝑥𝑖)𝑆2(𝑥𝑖)

] [
𝑆1(𝑇 ∗)𝑆2(𝑇 ∗)

]𝑛−𝑅
, (2.1)

where 𝑅 refers to the total number of failures up to time 𝑇 ∗ and 𝑋𝑖∶𝑛 =𝑋𝑖.

The values of 𝑅 and 𝑇 ∗ in (2.1) are given by

(𝑇 ∗,𝑅) =

⎧⎪⎪⎨⎪⎪⎩
(𝑇1,𝑚1), case I ,

(𝑋𝑚∶𝑛,𝑚), case II and case IV,

(𝑇2,𝑚2), case III and case V,

(𝑋𝜚∶𝑛, 𝜚), case VI.

Following 𝑚1 and 𝑚2 represent the number of failures prior to 𝑇1 and 𝑇2. For the failure times, follow the two parameters of NHD

with 𝑆𝑗 (𝑥) and ℎ𝑗 (𝑥) given by (1.3) and (1.4). Thus, the likelihood function (LF) (2.1) can be re-written as

𝐿(𝜃, 𝛽1, 𝛽2) ∝ 𝛽
𝑅1
1 𝛽

𝑅2
2 𝜃𝑅 𝑒𝑥𝑝[(𝑛−𝑅)[(1 − 𝑦(𝑇 ∗, 𝜃, 𝛽1)) + (1 − 𝑦(𝑇 ∗, 𝜃, 𝛽2))]

𝑒𝑥𝑝[(𝜃 − 1)[
𝑅1∑

𝑙𝑜𝑔(1 + 𝛽 𝑥 ) +
𝑅2∑

𝑙𝑜𝑔(1 + 𝛽 𝑥 )]𝑒𝑥𝑝[−
2∑ 𝑅∑

𝑦(𝑥, 𝜃, 𝛽 )]. (2.2)
3

𝑖=1
1 𝑖

𝑖=1
2 𝑖

𝑗=1 𝑖=1
𝑗
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Taking the natural log, LF of (2.2) is now given as

𝑙𝑜𝑔𝐿 ∝𝑅 log𝜃 +𝑅1 log𝛽1 +𝑅2 log𝛽2 − (𝑛−𝑅)[𝑦(𝑇 ∗, 𝜃, 𝛽1) + 𝑦(𝑇 ∗, 𝜃, 𝛽2)]

−
2∑

𝑗=1

𝑅∑
𝑖=1

𝑦(𝑥, 𝜃, 𝛽𝑗 ) + (𝜃 − 1)[
𝑅1∑
𝑖=1

𝑙𝑜𝑔(1 + 𝛽1𝑥𝑖) +
𝑅2∑
𝑖=1

𝑙𝑜𝑔(1 + 𝛽2𝑥𝑖]. (2.3)

Following are the first derivative of Eq. (2.3) with respect to 𝛽1, 𝛽2 and 𝜃 and solution to the corresponding LE given as

𝜕𝐿(𝜃, 𝛽1, 𝛽2)
𝜕𝛽𝑗

=
𝑅𝑗

𝛽𝑗
− (𝑛−𝑅)

2∑
𝑗=1

́𝑦𝛽𝑗 (𝑇
∗, 𝜃, 𝛽𝑗 ) −

𝑅∑
𝑖=1

́𝑦𝛽𝑗 (𝑥𝑖, 𝜃, 𝛽𝑗 )) + (𝜃 − 1)
𝑅𝑗∑
𝑖=1

𝑥𝑖
1 + 𝛽𝑗𝑥𝑖

= 0, 𝑗 = 1,2 (2.4)

where 𝜕𝑦(𝑥𝑖,𝜃,𝜓(𝛽𝑗 ))
𝜕𝛽𝑗

= ́𝑦𝛽𝑗 (𝑥𝑖, 𝜃, 𝛽𝑗 ) = 𝜃𝑥𝑖(1 + 𝛽𝑗𝑥𝑖)𝜃−1, 𝑗 = 1, 2, 𝑖 = 1, 2, ..., 𝑅.

𝜕𝐿(𝜃, 𝛽1, 𝛽2)
𝜕𝜃

∝ 𝑅

𝜃
− (𝑛−𝑅)

2∑
𝑗=1

𝑦𝜃(𝑇 ∗, 𝜃, 𝛽𝑗 ) −
2∑

𝑗=1

𝑅∑
𝑖=1

𝑦𝜃(𝑥𝑖, 𝜃, 𝛽𝑗 ) +
𝑅1∑
𝑖=1

𝑙𝑜𝑔(1 + 𝛽1𝑥𝑖) +
𝑅2∑
𝑖=1

𝑙𝑜𝑔(1 + 𝛽2𝑥𝑖) = 0, (2.5)

where 𝜕𝑦(𝑥𝑖,𝜃,𝛽𝑗 )
𝜕𝜃

= 𝑦𝜃(𝑥𝑖, 𝜃, 𝛽𝑗 ) = 𝑦(𝑥𝑖, 𝜃, 𝛽𝑗 ) log(1 + 𝛽𝑗𝑥𝑖), 𝑖 = 1, 2, ..., 𝑅, 𝑗 = 1, 2.

By solving the non-linear equations (2.4) and (2.5), the MLEs of the unknown model parameters 𝛽1, 𝛽2 and 𝜃 can be obtained. But 
these equations can’t be solved explicitly. Hence, iteration techniques like the Newton’s method are applied to solve these equations 
(2.4) and (2.5) and calculate MLEs as 𝛽1, 𝛽2, and 𝜃.

2.1. Asymptotic confidence interval

The MLEs for 𝛽1, 𝛽2 and 𝜃 can’t be gotten in analytic form, respectively, their actual distributions can’t be obtained. We consider 
the asymptotic distribution of the MLE to express CIs for 𝛽1 , 𝛽2 and 𝜃.

Here, the ACIs of 𝛽1 > 0, 𝛽2 > 0 and 𝜃 > 0 are derived by employing the asymptotic normality property of MLEs.

The asymptotic distribution of MLE (𝛽1, 𝛽2, 𝜃̂) is approximately bivariate normal such that (𝛽1, 𝛽2, 𝜃̂) - (𝛽1, 𝛽2, 𝜃) ∼ 𝑁(0, 𝐼−1(𝛽1, 𝛽2,
𝜃̂))

Then, the inverting of the observed information matrix is

𝐼−10 (𝛽1, 𝛽2, 𝜃̂) =

⎛⎜⎜⎜⎜⎝
− 𝜕2log 𝑙

𝜕𝛽1
2 − 𝜕2log 𝑙

𝜕𝛽1𝜕𝛽2
− 𝜕2log 𝑙

𝜕𝛽1𝜕𝜃

− 𝜕2log 𝑙
𝜕𝛽2𝜕𝛽1

− 𝜕2log 𝑙
𝜕𝛽2

2 − 𝜕2log 𝑙
𝜕𝛽2𝜕𝜃

− 𝜕2log 𝑙
𝜕𝜃𝜕𝛽1

− 𝜕2log 𝑙
𝜕𝜃𝜕𝛽2

− 𝜕2log 𝑙
𝜕𝛽2

⎞⎟⎟⎟⎟⎠(𝛽1 ,𝛽2 ,𝜃̂)
=
⎛⎜⎜⎝

𝑣𝑎𝑟(𝛽1) 𝑐𝑜𝑣(𝛽1, 𝛽2) 𝑐𝑜𝑣(𝛽1, 𝜃̂)
𝑐𝑜𝑣(𝛽2, 𝛽1) 𝑣𝑎𝑟(𝛽2) 𝑐𝑜𝑣(𝛽2, 𝜃̂)
𝑐𝑜𝑣(𝜃̂, 𝛽1) 𝑐𝑜𝑣(𝜃̂, 𝛽2) 𝑣𝑎𝑟(𝜃̂)

⎞⎟⎟⎠
Consequently, the pivotal quantities 𝛽1−𝛽1√

𝑉 𝑎𝑟(𝛽1)
,

𝛽2−𝛽2√
𝑉 𝑎𝑟(𝛽2)

, and 𝜃̂−𝜃√
𝑉 𝑎𝑟(𝜃̂)

are approximately distributed as standard normal. Thus, 

the 100(1 −𝜓)%, 0 < 𝜓 < 1, asymptotic CI for 𝛽1, 𝛽2 and 𝜃 are given by

(𝛽1 ±𝑍𝜓∕2

√
𝑉 𝑎𝑟(𝛽1)), (𝛽2 ±𝑍𝜓∕2

√
𝑉 𝑎𝑟(𝛽2)), and (𝜃̂ ±𝑍𝜓∕2

√
𝑉 𝑎𝑟(𝜃̂))

where 𝑍𝜓∕2 denotes the upper (𝜓∕2)𝑡ℎ quantile of the SND.

To estimate unknown parameters, we shall provide an alternative approach, such as the Bayesian method. It has been claimed 
that a useful approach for estimating unknown parameters is Bayesian analysis. Bayesian inference offers several advantages when 
compared to other forms of reasoning.

3. Bayesian estimation

Bayesian estimators for 𝛽1, 𝛽2, and 𝜃 using SELF and LINEX based on UHCS competing risks have been discussed in this section. 
Let 𝜐̃ be an estimator of the parameter and 𝜐 the parameter to be estimated, the SELF is given by

𝐿(𝜐, 𝜐̃) = (𝜐̃− 𝜐)2.

Hence, the Bayes estimator in case of SELF is the posterior mean 𝜐̃ of 𝜐.
LINEX loss function takes the following forms

𝐿(𝜇, 𝜐̃) = 𝑒𝑝(𝜐̃−𝜐) − 𝑝(𝜐̃− 𝜐) − 1, 𝑝 ≠ 0.

To compute Bayesian estimates of 𝜐 the following expectation is proposed

𝜐̂𝑆𝐸 =𝐸𝜐(𝜐 ∣ 𝑥),
1

4

𝜐̂𝐿𝐼 = −
𝑝
𝑙𝑜𝑔𝐸𝜐(𝑒𝑝𝜐 ∣ 𝑥), 𝑝 ≠ 0.
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3.1. Prior information and Bayes estimators

The prior knowledge is incorporated in Bayesian analysis and there is no obvious method to select an appropriate prior. Where 
all the elements of the corresponding expected Fisher information matrix are not of closed forms, so, Jeffrey’s prior can’t be defined. 
Furthermore, it is hard to obtain joint conjugate prior distribution for the current estimation problem. The gamma distribution 
is multilateral for detecting several shapes of the df. It has a logconcave df in the interval (0, ∞). As special case of the gamma 
prior we can observe the Jeffery’s prior. Here, we assume conjugate prior for the class of distribution having gamma distribution. 
The independent gamma density for the parameters 𝛽1, 𝛽2 and 𝜃 given by 𝜃 ∼ 𝐺𝑎𝑚𝑚𝑎 (𝑎3, 𝑏3), 𝛽1 ∼ 𝐺𝑎𝑚𝑚𝑎 (𝑎1, 𝑏1) and 𝛽2 ∼
𝐺𝑎𝑚𝑚𝑎 (𝑎2, 𝑏2).

The choice of gamma priors hyperparameters 𝑎𝑖 > 0, 𝑏𝑖 > 0, 𝑖 = 1, 2, 3 is inherently subjective and reflects the prior knowledge. 
Thus, the joint prior density is expressed by

ℎ(𝜃, 𝛽1, 𝛽2) ∝

( 2∏
𝑖=1

𝛽
𝑎𝑖−1
𝑖

𝑒−𝑏𝑖𝛽𝑖

)
𝜃𝑎3−1 𝑒−𝑏3𝜃, 𝑎𝑖 > 0, 𝑏𝑖 > 0, 𝑖 = 1,2,3 𝛽1, 𝛽2, 𝜃 > 0. (3.1)

Consequently, the posterior distribution of 𝜃, 𝛽1 and 𝛽2 can be written as

𝜋(𝜃, 𝛽1, 𝛽2|x) = ℎ(𝜃, 𝛽1, 𝛽2)𝐿(𝜃, 𝛽1, 𝛽2)
∫ ∞
0 ∫ ∞

0 ∫ ∞
0 ℎ(𝜃, 𝛽1, 𝛽2)𝐿(𝜃, 𝛽1, 𝛽2) 𝑑𝜃 𝑑𝛽1 𝑑𝛽2

. (3.2)

The Bayes estimate with respect to SELF and LLF for the function 𝑔(𝛽1, 𝛽2, 𝜃) are given by

𝑔̃𝑆𝐸 (𝛽1, 𝛽2, 𝜃) =𝐸(𝑔(𝛽1, 𝛽2, 𝜃)|x) = ∫ ∞
0 ∫ ∞

0 ∫ ∞
0 𝑔(𝛽1, 𝛽2, 𝜃) ℎ(𝜃, 𝛽1, 𝛽2)𝐿(𝜃, 𝛽1, 𝛽2) 𝑑𝜃 𝑑𝛽1 𝑑𝛽2

∫ ∞
0 ∫ ∞

0 ∫ ∞
0 ℎ(𝜃, 𝛽1, 𝛽2)𝐿(𝜃, 𝛽1, 𝛽2) 𝑑𝜃 𝑑𝛽1 𝑑𝛽2

, (3.3)

and

𝑔̃𝐿𝐼 (𝛽1, 𝛽2, 𝜃) = −(1
𝑝
)𝑙𝑜𝑔[

∫ ∞
0 ∫ ∞

0 ∫ ∞
0 𝑒𝑥𝑝(−𝑝𝑔(𝛽1, 𝛽2, 𝜃)) ℎ(𝜃, 𝛽1, 𝛽2)𝐿(𝜃, 𝛽1, 𝛽2) 𝑑𝜃 𝑑𝛽1 𝑑𝛽2
∫ ∞
0 ∫ ∞

0 ∫ ∞
0 ℎ(𝜃, 𝛽1, 𝛽2)𝐿(𝜃, 𝛽1, 𝛽2) 𝑑𝜃 𝑑𝛽1 𝑑𝛽2

]. (3.4)

3.2. Posterior analysis and importance sampling method

We highlighted that solving equations (3.3) and (3.4) analytically is impossible due to the difficulty in obtaining closed forms for 
the marginal posterior distributions for 𝛽1, 𝛽2, and 𝜃. Thus, the Bayes estimates of 𝑔(𝛽1, 𝛽2, 𝜃) require approximation technique, such 
as Lindely approximation, numerical integration and MCMC. In this case, the importance sampling method is the most appropriate 
method to compute the approximate results.

Using (2.2) and (3.1) in (3.2), the posterior distribution of 𝛽1, 𝛽2, and 𝜃 takes the following forms:

𝜋(𝛽1, 𝛽2, 𝜃|x) ∝ 𝛽
𝑅1+𝑎1−1
1 𝛽

𝑅2+𝑎2−1
2 𝜃𝑅+𝑎3−1𝑒−𝛽1𝑏1−𝛽2𝑏2−𝜃𝑏3𝑒𝑥𝑝[(𝑛−𝑅)[(1 − 𝑦(𝑇 ∗, 𝜃, 𝛽1))

+(1 − 𝑦(𝑇 ∗, 𝜃, 𝛽2))]𝑒𝑥𝑝[(𝜃 − 1)[
𝑅1∑
𝑖=1

𝑙𝑜𝑔(1 + 𝛽1𝑥𝑖) +
𝑅2∑
𝑖=1

𝑙𝑜𝑔(1 + 𝛽2𝑥𝑖)]𝑒𝑥𝑝[−
2∑

𝑗=1

𝑅∑
𝑖=1

𝑦(𝑥, 𝜃, 𝛽𝑗 )] (3.5)

Then

𝜋(𝛽1, 𝛽2, 𝜃 ∣ 𝑥) = 𝜋1(𝜃 ∣ 𝛽1, 𝛽2, 𝑥)𝜋2(𝛽1)𝜋3(𝛽2)𝑍(𝜃, 𝛽1, 𝛽2). (3.6)

Thus, using (3.5) and (3.6), the marginal posterior probability density function of 𝛽1, 𝛽2, and 𝜃, can be written as

𝜋1(𝜃 ∣ 𝛽1, 𝛽2, 𝑥) ∝𝐺𝑎𝑚𝑚𝑎(𝑅+ 𝑎3, 𝑏1 − (Σ𝑅1
𝑖=1𝑙𝑜𝑔(1 + 𝛽1𝑥𝑖) + Σ𝑅2

𝑖=1𝑙𝑜𝑔(1 + 𝛽2𝑥𝑖))) (3.7)

where 𝜋2(𝛽1) and 𝜋3(𝛽2) are the proper density functions given by

𝜋2(𝛽1 ∣ 𝑥) ∝ 𝛽
𝑅1+𝑎1−1
1 𝑒−𝛽1𝑏1−Σ

𝑅1
𝑖=1 𝑙𝑜𝑔(1 + 𝛽1𝑥𝑖) (3.8)

and

𝜋3(𝛽2 ∣ 𝑥) ∝ 𝛽
𝑅2+𝑎2−1
2 𝑒−𝛽2𝑏2−Σ

𝑅2
𝑖=1 𝑙𝑜𝑔(1 + 𝛽2𝑥𝑖). (3.9)

Also

𝑍(𝜃, 𝛽1, 𝛽2) ∝ 𝑒−(𝑛−𝑅)[(1+𝑦(𝑇
∗ ,𝜃,𝛽1))+(1+𝑦(𝑇 ∗ ,𝜃,𝛽2))]𝑒

−
∑2
𝑗=1

∑𝑅
𝑖=1 𝑦(𝑥,𝜃,𝛽𝑗 ), (3.10)

and the Bayes estimate with respect to SELF in equation (3.3), with (3.8), (3.9) and (3.9) are given by

𝑔̃𝑆𝐸 (𝛽1, 𝛽2, 𝜃) ∝

∞ ∞ ∞

𝑔(𝛽1, 𝛽2, 𝜃)𝜋1(𝜃 ∣ 𝛽1, 𝛽2, 𝑥)𝜋2(𝛽1)𝜋3(𝛽2)𝑍(𝜃, 𝛽1, 𝛽2) 𝑑𝜃𝑑𝛽1𝑑𝛽2. (3.11)
5

∫
0

∫
0

∫
0
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In this case we will use the importance sampling technique to draw MCMC (see [28]) as follows. The plots of the two functions

𝜋2(𝛽1 ∣ 𝑥) and 𝜋3(𝛽2 ∣ 𝑥) are as similar as normal distribution. So, this generates a sample of this distribution using MH method. Also 
we generate a sample from the Gamma distribution 𝜋1(𝜃 ∣ 𝛽1, 𝛽2).

We used this algorithm for computing Bayes estimates and the HPD credible intervals of 𝛽1, 𝛽2, and 𝜃, the description of the 
algorithm is as follows.

Step 1: Assume that 𝜅 = 1 and 𝑀 = 𝑏𝑢𝑟𝑛 − 𝑖𝑛, begin with initial iteration with MLE and choose an initial guess of (𝛽1, 𝛽2, 𝜃) and call 
it (𝛽(0)1 , 𝛽(0)2 , 𝜃(0)).
Step 2: Generate 𝜃𝜅 from 𝜋1(𝜃 ∣ 𝛽𝜅−11 , 𝛽𝜅−12 ) using (3.7).

Step 3: By using MH algorithm, generate 𝛽𝜅1 and 𝛽𝜅2 from 𝜋2(𝛽1 ∣ 𝑥) and 𝜋3(𝛽2 ∣ 𝑥) given in (3.8) and (3.9), with normal distribution 
where the mean 𝛽𝜅1 and 𝛽𝜅2 and variance are obtained from 𝐼−10 (𝛽1, 𝛽2, 𝜃̂).
Step 4: With 𝜅 = 2 repeat the previous three steps to get the data 𝜑𝑖 = (𝜃𝑖, 𝛽𝑖1, 𝛽

𝑖
2), 𝑖 = 1, 2, ..., 𝑁 .

Step 5: The Bayesian estimators of any function 𝜋𝐵(𝛽1, 𝛽2, 𝜃) under SELF can be obtained as

𝜋𝐵(𝛽1, 𝛽2, 𝜃) =
∑𝑁

𝑖=𝑀+1 𝜋𝐵(𝜑
𝑖)𝑍(𝜑𝑖)∑𝑁

𝑖=𝑀+1𝑍(𝜑𝑖)
,

Step 6: Also, the posterior variance of 𝜋𝐵(𝛽1, 𝛽2, 𝜃) is obtained by

𝑉 (𝜋𝐵(𝛽1, 𝛽2, 𝜃)) =
∑𝑁

𝑖=𝑀+1(𝜋𝐵(𝜑
𝑖) − 𝜋𝐵)2𝑍(𝜑𝑖)∑𝑁

𝑖=𝑀+1𝑍(𝜑𝑖)
.

Taking into consideration 100(1 − 𝜇)%, 0 < 𝜇 < 1, HPD intervals for 𝜋𝐵(𝛽1, 𝛽2, 𝜃) can be created using an idea of [29] as follows

Step 1: Rearrange 𝜑𝑖 = (𝜃𝑖, 𝛽𝑖1, 𝛽
𝑖
2), 𝑖 = 1, 2, ..., 𝑁 −𝑀 in an increasing order.

Step 2: Compute the 100(1 − 𝜇)%, 0 < 𝜇 < 1, HPD credible intervals of 𝜑(𝛽1, 𝛽2, 𝜃) using

(𝜑
𝓁
𝑁 ,𝜑(𝓁+[(1−𝜇)𝑁]∕𝑁)), 𝑓𝑜𝑟, 𝓁 = 1,2, ...,𝑁 − [(1 − 𝜇)𝑁],

where [.] represents the greatest integer value.

Step 3: The 100(1 − 𝜇)%, 0 < 𝜇 < 1 HPD interval is the smallest interval width among all credible intervals satisfying

𝜑(𝓁+[(1−𝜇)𝑁]∕𝑁) −𝜑
𝓁
𝑁 =𝑚𝑖𝑛(𝜑(𝓁+[(1−𝜇)𝑁]∕𝑁) −𝜑

𝓁
𝑁 ), 𝑓𝑜𝑟𝓁 = 1,2, ...,𝑁 − [(1 − 𝜇)𝑁].

4. Testing problem

As we can see, the above sections discussed inference based on UHCS for NHD competing risks data with shape parameter 
𝜃1 = 𝜃2 = 𝜃 and two scale parameters 𝛽1 and 𝛽2. It is impractical to test, whenever 𝛼1 and 𝛼2 are equal or not. Likewise, we also 
checked whether the scale parameters 𝛽1 and 𝛽2 are equal or not in practice. For the sake of investigating the tests, the hypotheses 
have been expressed by

(1) 𝐻0 ∶ 𝜃1 = 𝜃2 = 𝜃 vs. 𝐻1 ∶ 𝜃1 ≠ 𝜃2,

(2) 𝐻0 ∶ 𝛽1 = 𝛽2 = 𝛽 vs. 𝐻1 ∶ 𝛽1 ≠ 𝛽2.

Then, we can compute the likelihood ratio statistic (LRS) for test (1) as

𝑇𝜃 =
𝑚𝑎𝑥 𝐿(𝜃, 𝛽1, 𝛽2)

𝑚𝑎𝑥 𝐿(𝜃1, 𝜃2, 𝛽1, 𝛽2)
,

where 𝐿(⋅) represents the LF. Here, the LRS for large 𝑛 is calculated by

𝐿𝑅𝑆𝜃 = −2 log𝑇𝜃 = −2
(
𝑙(𝜃, 𝛽1, 𝛽2) − 𝑙(𝜃1, 𝜃2, 𝛽1, 𝛽2)

)
∼ 𝜒2

(1).

Likewise, for test (2),

𝑇𝛽 =
𝑚𝑎𝑥 𝐿(𝜃1, 𝜃2, 𝛽)

𝑚𝑎𝑥 𝐿(𝜃1, 𝜃2, 𝛽1, 𝛽2)
,

and

𝐿𝑅𝑆𝛽 = −2 log𝑇𝛽 = −2
(
𝑙(𝜃1, 𝜃2, 𝛽) − 𝑙(𝜃1, 𝜃2, 𝛽1, 𝛽2)

)
∼ 𝜒2

(1).

In light of the asymptotic distribution of LRS, we calculate the LRS and we reject the null hypothesis 𝐻0 when 𝐿𝑅𝑆 > 𝑐, where c 
6

can be obtained in such a way that size of test = 𝑃 (𝜒2
(1) > 𝑐).
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Fig. 1. AEs of (a) 𝛽1 , (b) 𝛽2 , and (c) 𝜃 when 𝑛 = 40, 𝑇1 = 0.75 and 𝑇2 = 1.5 using a variety of values for (𝑚,𝑘).

Fig. 2. MSEs for (a) 𝛽1 , (b) 𝛽2 , and (c) 𝜃 when 𝑛 = 40, 𝑇1 = 0.75 and 𝑇2 = 1.5 using a variety of values for (𝑚,𝑘).

5. Simulation study

In this part, the Monte Carlo simulation study is used to examine the accuracy of parameter estimations based on UHCS. The mean 
squared error (MSE) criteria are used to evaluate the precision of each point estimate. Average lengths (AL) of confidence intervals 
and coverage probabilities (CP) are used to make a comparison between the interval estimators. Using the method described in [26], 
competing risks samples based on UPHC have been constructed.

Within the scope of the simulation experiment, true values that should be supplied to the model parameters are 𝛽1 = 0.6, 𝛽2 = 0.7, 
and 𝜃 = 1.5. Censoring schemes are evaluated for a variety of 𝑛, 𝑚, 𝑘, 𝑇1, and 𝑇2 values. Both the informative prior (IP) and the 
non-informative prior (NIP) are taken into consideration in this analysis so that Bayes estimates may be evaluated. For IP, the 
corresponding hyperparameters are considered as 𝑎1 = 3; 𝑎2 = 3.5; 𝑎3 = 3; 𝑏1 = 5; 𝑏2 = 5; 𝑏3 = 2, and under the NIP, the corresponding 
hyperparameters are considered as 𝑎1 = 𝑎2 = 𝑎3 = 𝑏1 = 𝑏2 = 𝑏3 = 0. Point and interval estimates of the simulated results are plotted 
in Figs. 1-15 based on 10,000 replications. From these figures, the following conclusions may be derived.

• For fixed time thresholds 𝑇1 and 𝑇2, the MSEs of the point estimates decrease when m and n have been increased.

• If n, m, and k are fixed, the MSEs of the point estimates decrease when 𝑇1 and 𝑇2 increase.

• The AEs of point estimates for the unknown parameters are very consistent with the actual values.

• When comparing MLEs and NIP Bayes estimates, the Bayes estimates under IP have lower MSEs.

• When the values of n, m, and k are increased, the AL of the confidence intervals becomes smaller.

• The values of AL are reduced whenever there is an increase in the values of 𝑇1 and 𝑇2 for fixed censoring scheme.

• HPD credible interval under IP yields superior results in terms of AL.

• CPs for HPD credible intervals under IP always stay closer to nominal value 0.95, for any censoring scheme.

From the above conclusions we can summarize that the Bayes estimates under IP outperform the other two point estimates in terms 
of AE and MSE. Similarly, interval estimates have been shown to have the same pattern of behaviour.

6. Applications to real life data set

A real data set consisting of failure times of electrical appliances, which is presented by [30], has been considered here. Out of the 
total of 18 unique failure modes in the dataset, 11 occurred several times. For this reason, mode 11 is regarded as cause 1, whereas 
7

all other modes are regarded as cause 2. The data set is presented as follows.
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Fig. 3. ALs of the intervals estimates for (a) 𝛽1 , (b) 𝛽2 , and (c) 𝜃 when 𝑛 = 40, 𝑇1 = 0.75 and 𝑇2 = 1.5 using a variety of values for (𝑚,𝑘).

Fig. 4. CPs of the intervals estimates for (a) 𝛽1 , (b) 𝛽2 , and (c) 𝜃 when 𝑛 = 40, 𝑇1 = 0.75 and 𝑇2 = 1.5 using a variety of values for (𝑚,𝑘).

Fig. 5. AEs of (a) 𝛽1 , (b) 𝛽2 , and (c) 𝜃 when 𝑛 = 70, 𝑇1 = 0.75 and 𝑇2 = 1.5 using a variety of values for (𝑚,𝑘).
8

Fig. 6. MSEs for s (a) 𝛽1 , (b) 𝛽2 , and (c) 𝜃 when 𝑛 = 70, 𝑇1 = 0.75 and 𝑇2 = 1.5 using a variety of values for (𝑚,𝑘).
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Fig. 7. ALs of the intervals estimates for (a) 𝛽1 , (b) 𝛽2 , and (c) 𝜃 when 𝑛 = 70, 𝑇1 = 0.75 and 𝑇2 = 1.5 using a variety of values for (𝑚,𝑘).

Fig. 8. CPs of the intervals estimates for (a) 𝛽1 , (b) 𝛽2 , and (c) 𝜃 when 𝑛 = 70, 𝑇1 = 0.75 and 𝑇2 = 1.5 using a variety of values for (𝑚,𝑘).

Fig. 9. AEs of (a) 𝛽1 , (b) 𝛽2 , and (c) 𝜃 when 𝑛 = 40, 𝑇1 = 0.85 and 𝑇2 = 1.7 using a variety of values for (𝑚,𝑘).
9

Fig. 10. MSEs for (a) 𝛽1 , (b) 𝛽2 , and (c) 𝜃 when 𝑛 = 40, 𝑇1 = 0.85 and 𝑇2 = 1.7 using a variety of values for (𝑚,𝑘).
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Fig. 11. ALs of the intervals estimates for (a) 𝛽1 , (b) 𝛽2 , and (c) 𝜃 when 𝑛 = 40, 𝑇1 = 0.85 and 𝑇2 = 1.7 using a variety of values for (𝑚,𝑘).

Fig. 12. CPs of the intervals estimates for (a) 𝛽1 , (b) 𝛽2 , and (c) 𝜃 when 𝑛 = 40, 𝑇1 = 0.85 and 𝑇2 = 1.7 using a variety of values for (𝑚,𝑘).

Fig. 13. AEs of (a) 𝛽1 , (b) 𝛽2 , and (c) 𝜃 when 𝑛 = 70, 𝑇1 = 0.85 and 𝑇2 = 1.7 using a variety of values for (𝑚,𝑘).
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Fig. 14. MSEs for (a) 𝛽1 , (b) 𝛽2 , and (c) 𝜃 when 𝑛 = 70, 𝑇1 = 0.85 and 𝑇2 = 1.7 using a variety of values for (𝑚,𝑘).
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Fig. 15. ALs of the intervals estimates for (a) 𝛽1 , (b) 𝛽2 , and (c) 𝜃 when 𝑛 = 70, 𝑇1 = 0.85 and 𝑇2 = 1.7 using a variety of values for (𝑚,𝑘).

Fig. 16. Plots of (a) ECDF, (b) P-P, and (c) Q-Q under cause 1 for given data.

Fig. 17. Plots of (a) ECDF, (b) P-P, and (c) Q-Q under cause 2 for given data.

{(12, 2), (16, 2), (16, 2), (46, 2), (46, 2), (52, 2), (98, 1), (98, 2), (270, 2), (413, 1), (495, 1), (495, 2), (557, 2), (616, 2), (692, 1), 
(1065, 1), (1107, 2), (1193, 1), (1467, 1), (1467, 2), (1937, 1)}.

A goodness-of-fit test is employed in this situation to examine whether or not the NHD is a good model match for the data that has 
been provided. Calculations are made to determine the K-S distances (p-values) that correlate with cause 1 and 2 as 0.1613 (0.9642) 
and 0.2114 (0.5855), respectively. If we check the goodness-of-fit test for this data set corresponding to inverted exponentiated 
exponential distribution, then the K-S distances (p-values) can be obtained as 0.2436 (0.6458) and 0.2249 (0.4786). As a result, the 
NHD is an appropriate model that may be applied to this particular data set. The 𝐿𝑅𝑆 for 𝜃 and 𝛽, together with their associated 
𝑝 values (in brackets), have been derived as 1.4753 (0.1660) and 7.0253 (0.0453), respectively. Based on these findings, we may say 
that 𝐻0 is accepted for test (1), yet fails to be accepted for the other one. As a result, it is reasonable to conclude that 𝜃1 = 𝜃2 = 𝜃

and 𝛽1 ≠ 𝛽2 for this data set.

In order to provide more explanations, the empirical CDF (ECDF), probability-probability (P-P) and Quantile-Quantile (Q-Q) plots 
are shown in Figs. 16 and 17 based on cause 1 and 2, respectively. The conclusion that can be drawn from these plots is that the 
NHD is a good match for given data set.

Below is provided information on three distinct competing risks data set based on UHCS taken from the given data set at a point 
11

when n = 21 and m = 18.
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Table 1

AEs (s.e) and confidence intervals of parameters for the real data set based on three distinct schemes.

Scheme Θ MLE Bayes ACI BCI

I 𝛽1 0.0011 (0.0001) 0.0012 (0.0001) (-0.0092,0.0114) (-0.0047,0.0096)

𝛽2 0.0023(0.0005) 0.0019 (0.0004) (-0.0122,0.0168) (-0.0083,0.0149)

𝜃 0.1331 (0.0333) 0.1254(0.0296) (0.0272,0.2390) (0.0433,0.1808)

II 𝛽1 0.0013 (0.0002) 0.0014 (0.0002) (-0.0085,0.0111) (-0.0063,0.0097)

𝛽2 0.0049(0.0006) 0.0038(0.0005) (-0.0088,0.0186) (-0.0053,0.0134)

𝜃 0.1362(0.0331) 0.1285 (0.0304) (0.0254,0.2470) (0.0561,0.1953)

III 𝛽1 0.0012 (0.0001) 0.0022 (0.0002) (-0.0076,0.0100) (-0.0057,0.0084)

𝛽2 0.0016 (0.0003) 0.0013 (0.0002) (-0.0077,0.0109) (-0.0060,0.0095)

𝜃 0.1013 (0.0261) 0.0956 (0.0219) (0.0356,0.1670) (0.0407,0.1493)

Scheme I: 𝑘 = 13, 𝑇1 = 500, and 𝑇2 = 1100.

(12, 2), (16, 2), (16, 2), (46, 2), (46, 2), (52, 2), (98, 1), (98, 2), (270, 2), (413,1), (495, 1), (495, 2), (557, 2), (616, 2), (692, 1), 
(1065, 1).

Scheme II: 𝑘 = 14, 𝑇1 = 700, and 𝑇2 = 1200.

(12, 2), (16, 2), (16, 2), (46, 2), (46, 2), (52, 2), (98, 1), (98, 2), (270, 2), (413,1), (495, 1), (495, 2), (557, 2), (616, 2), (692, 1), 
(1065, 1), (1107, 2), (1193, 1).

Scheme III: 𝑘 = 15, 𝑇1 = 450, and 𝑇2 = 600.

(12, 2), (16, 2), (16, 2), (46, 2), (46, 2), (52, 2), (98, 1), (98, 2), (270, 2), (413,1), (495, 1), (495, 2), (557, 2), (616, 2), (692, 1).

Table 1 displays point and interval estimates derived from the aforementioned three competing risks data sets using UHCS. From 
Table 1, it has been noticed that the point estimates are quite similar to one another. When comparing the standard error of MLE 
and Bayes estimates, the latter provides more accurate results. In comparison to ACIs, Bayesian credible intervals have superior 
performance based on length of intervals.

7. Conclusion

This paper deals with the statistical inference using UHCS for the NHD partially observed competing risks model. Point and 
interval estimates have been obtained along with both classical and Bayesian frameworks. A Monte Carlo simulation study is carried

out to see how the estimations improve over time. When comparing point estimates, Bayes estimates under IP perform better 
than others. In terms of AL and CP, HPD credible intervals perform better than ACIs. Hypothesis testing is done after discussing 
two different likelihood functions in order to choose identical shape parameter. To further demonstrate the efficacy of the offered 
methodologies in the context of the competing risks model, a real-world data set has been analysed. Although the study focuses on 
two failure instances, the discussion may easily be generalized to include more.
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