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and brain Aβ-amyloid burden
Stephanie R. Rainey-Smith1,2, Gavin N. Mazzucchelli 3, Victor L. Villemagne4,5, Belinda M. Brown1,2,6, Tenielle Porter3,7,
Michael Weinborn8, Romola S. Bucks8, Lidija Milicic2,7, Hamid R. Sohrabi 1,2,9, Kevin Taddei1,2, David Ames10,11,
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Abstract
The glymphatic system is postulated to be a mechanism of brain Aβ-amyloid clearance and to be most effective
during sleep. Ablation of the astrocytic end-feet expressed water-channel protein, Aquaporin-4, in mice, results in
impairment of this clearance mechanism and increased brain Aβ-amyloid deposition, suggesting that Aquaporin-4
plays a pivotal role in glymphatic function. Currently there is a paucity of literature regarding the impact of AQP4
genetic variation on sleep, brain Aβ-amyloid burden and their relationship to each other in humans. To address this a
cross-sectional observational study was undertaken in cognitively normal older adults from the Australian Imaging,
Biomarkers and Lifestyle (AIBL) study. Genetic variants in AQP4 were investigated with respect to self-reported
Pittsburgh Sleep Quality Index sleep parameters, positron emission tomography derived brain Aβ-amyloid burden and
whether these genetic variants moderated the sleep-Aβ-amyloid burden relationship. One AQP4 variant, rs72878776,
was associated with poorer overall sleep quality, while several SNPs moderated the effect of sleep latency (rs491148,
rs9951307, rs7135406, rs3875089, rs151246) and duration (rs72878776, rs491148 and rs2339214) on brain Aβ-amyloid
burden. This study suggests that AQP4 genetic variation moderates the relationship between sleep and brain Aβ-
amyloid burden, which adds weight to the proposed glymphatic system being a potential Aβ-amyloid clearance
mechanism and suggests that AQP4 genetic variation may impair this function. Further, AQP4 genetic variation should
be considered when interpreting sleep-Aβ relationships.

Introduction
Estimates suggest that dysfunctional sleep may be pre-

sent in up to 45% of Alzheimer’s disease (AD) patients1;
manifesting commonly as frequent awakenings, increased
sleep latency (time to fall asleep) and poor sleep

maintenance2. However, accumulating evidence also
suggests that there is a bi-directional relationship between
sleep and AD phenotypes3–5; i.e., in addition to the AD
phenotype leading to sleep dysfunction, dysfunctional
sleep contributes to the AD phenotype.
Aβ-amyloid (Aβ) accumulates gradually in the brain of

individuals as they progress towards a diagnosis of AD6.
This accumulation of Aβ is thought to begin about 20
years before the onset of AD symptomology7, and in the
sporadic form of the disease, is hypothesized to be driven
by poor clearance mechanisms6. The mechanisms of Aβ
clearance from the human brain are multiple, with some
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specific factors involved yet to be fully understood8. Sig-
nificantly, however, it has been observed in mice that
good quality sleep enhances brain Aβ clearance9, while
dysfunctional sleep exacerbates Aβ accumulation in
humans10 and animal models11. Further, we have recently
shown that in cognitively normal older adults, increased
sleep latency is associated with higher brain Aβ burden12.
It is hypothesized that the brain has a lymphatic-like
clearance system that operates parallel to the human
lymphatic system through the employment of a network
of paravascular clearing mechanisms13. This lymphatic-
like clearance system has been termed the glymphatic
system14,15, and is postulated to function almost entirely
during sleep9.
Evidence from animal models supports a cerebral

perivascular and paravascular clearing mechanism that
involves the bulk flow of interstitial fluid and the invol-
vement of the water-channel protein, Aquaporin-4
(AQP4)16, located primarily in the subpial and perivas-
cular end-feet of astrocytic processes. Further, evidence
from Aqp4 gene knockout mice supports the notion that
the functionality of AQP4 is related to the efficacy of Aβ
clearance17, likely via the glymphatic system18. Addition-
ally, a study of autopsied human brains observed that
AQP4 immunoreactivity is distributed in a manner similar
to neuritic Aβ plaques19; suggesting that AQP4 is likely to
be linked to Aβ plaque deposition in the brain20. Further,
a decrease in AQP4 expression or loss of perivascular
localization could contribute to reduced Aβ clearance21.
Rare in silico-predicted functional variants have been

identified in human AQP4, which have been shown to
impair water permeability in vitro22. However, no studies
to date have investigated the role of AQP4 genetic varia-
tion in AD, sleep and Aβ clearance. To deepen our
understanding of the role of AQP4 in AD, we investigated
genetic variation across the AQP4 gene with respect to the
relationship with, and between, sleep quality/quantity and
brain Aβ burden. We hypothesized that poorer quality
sleep would be associated with higher Aβ brain burden
and that genetic variants in AQP4 would moderate this
relationship. This hypothesis was derived from the pre-
mise that both poor sleep quality decreases Aβ clearance
(i.e., results in higher brain Aβ burden), and also that sub-
optimal glymphatic clearance during dysfunctional sleep
will result in a higher cerebral Aβ burden; ergo, AQP4
genetic variation would have a functional impact on brain
Aβ burden.

Materials and methods
Study participants
This cross-sectional investigation utilized data collected

from Cognitively Normal (CN) older adults of the Aus-
tralian Imaging, Biomarkers and Lifestyle (AIBL) Study; a
prospective longitudinal study of ageing launched in 2006.

All volunteers were aged 60 years and above at baseline.
Further details regarding the design, enrolment process,
neuropsychological assessments, and diagnostic criteria of
the AIBL Study have been previously described else-
where23. The AIBL Study is approved by the institutional
ethics committees of Austin Health, St Vincent’s Health,
Hollywood Private Hospital, and Edith Cowan University
(ECU), and informed written consent was given by all
volunteers.

Sleep measures
Subjective sleep quality and disturbances were assessed

via the Pittsburgh Sleep Quality Index (PSQI)24 in 462 CN
older adults at the 72-month time point of the study.
Several parameters are subsequently derived from this 19-
item self-report measure, including sleep quality, latency
(in min), duration (reported in hours), efficiency,
sleep disturbance, medication use and daytime
dysfunction. A further global score of sleep quality, PSQI
Total, is also derived, with a score> 5 indicating poor
sleep. For the present study, analyses focused on para-
meters related to night-time function and thus, the factors
studied herein were limited initially to overall sleep
quality (PSQI Total), then subsequently to the sub-scales
of sleep latency, sleep duration, sleep efficiency, and sleep
disturbances.

Brain imaging
Of these 462 participants, 222 also underwent Αβ

imaging. Αβ imaging was performed via positron emission
tomography (PET) using one of the following radiolabeled
Αβ tracers; 11C-Pittsburgh Compound B (PiB), 18F-
florbetapir or 18F-flutemetamol, as previously descri-
bed25–27. Images were analyzed using CapAIBL, a web-
based freely available magnetic resonance (MR)-less
methodology, to generate PET standardized uptake value
(SUV) ratios (SUVR) for all tracers28. Briefly, SUVs were
summed and normalized to either the cerebellar cortex
SUV (PiB), whole cerebellum SUV (florbetapir), or pons
SUV (flutemetamol), to yield the target-region to
reference-region SUVR. To allow for the analysis of these
different tracers as a single continuous variable, a linear
regression transformation was applied to generate PiB-
like SUVR units termed the ‘Before the Centiloid Kernel
Transformation’ (BeCKeT) scale29. PiB SUVR and flor-
betapir/flutemetamol BeCKeT were utilized in this cross-
sectional study.

Genetic data
Genetic data were derived from a genome-wide single-

nucleotide polymorphism (SNP) array conducted on the
Illumina OmniExpressHumanExome+ BeadChip with
subsequent imputation using impute2 ver2.3, with the
1000 genome reference panel (2015 release). SNP data
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from the AQP4 genomic region (GRCh37
Chr18:24,432,000–24,446,000) were extracted and sub-
jected to quality control in GoldenHelix SNP and Varia-
tion Suite (SVS version 8.7.1), which included removal of
SNPs with call rate < 95%, Minor allele frequency< 5%
and departure from Hardy–Weinberg Equilibrium (p<
0.05), leaving 32 SNPs (Supplementary Table 1). After
Linkage Disequilibrium (LD) pruning (r2 cutoff of 0.8,
window size 10, increment 5), 13 AQP4 SNPs were
selected to provide full coverage of the gene (Supple-
mentary Table 1, Supplementary Figure 1). Apolipopro-
tein E (APOE) genotype, specifically the presence of the ε4
allele, the major genetic risk factor for AD, was deter-
mined using TaqMan genotyping assays (Life Technolo-
gies, USA) for rs7412 (Assay ID: C____904973_10) and
rs429358 (Assay ID: C___3084793_20) on a QuantStudio
12 K Flex real-time PCR system (Applied Biosystems,
USA).

Statistical analysis
Statistical analyses were carried out in either Golden

Helix (Inc.) SVS (version 8.7.1) for linear regression
analyses, using additive (homozygote for the minor allele
(MM) vs. heterozygote for the minor allele (Mm) vs.
homozygote for the major allele (mm)), recessive
(homozygote for the minor allele (MM) vs. heterozygote/
homozygote for the major allele (Mm/mm)) and domi-
nant (heterozygote/homozygote for the minor allele (Mm
or MM) vs. homozygote for the major allele (mm)) genetic
models, or IBM SPSS Statistics, Version 24.0 (IBM Corp.,
Armonk, NY) for moderation analyses, using recessive
and dominant models only. Nominal significance
(uncorrected) was reported at p< 0.05. However, final
levels of significance were ascertained after correction for
the False Discovery Rate (FDR) with significance thresh-
old set at q< 0.0530. Linear regression analysis, with
respect to Aβ burden, included the covariates of age, sex,
and APOE genotype (presence/absence of the ε4 allele).
For the PSQI sleep parameters, body mass index (BMI),
depressive symptomology (Geriatric depression Scale;
GDS) and a medical history of cardiovascular disease
(CVD) were also included as covariates. The relationship
between AQP4 SNPs and PSQI sleep parameters was
undertaken using a two-stage approach. First, the asso-
ciation with overall sleep quality (PSQI total) was assessed
followed by analysis of association with the PSQI sub-
scales (sleep latency, duration, efficiency and
disturbances).
Moderation analysis in SPSS utilized a custom dialog:

PROCESS (release 2.16.3)31 with 5000 bias-corrected and
accelerated bootstrap samples, with 95% confidence
intervals. AQP4 SNPs were included as the moderator
variable (W), brain Αβ burden as the outcome variable (Y),
with each of the five selected PSQI sleep parameters

entered individually as the independent variable (X).
Moderation analyses covaried for age, BMI, medical his-
tory of CVD, GDS and APOE ε4 allele carriage as pre-
viously reported12. Post hoc simple slopes analysis was
used to visualize the moderation of the effect of X on Y by
the moderating variable, W32

Results
Demographic characteristics for the study cohort are

presented in Table 1. Neuroimaging data were only
available in 222 CN older adults at the same assessment
time point at which the PSQI was administered. However,
there were no significant differences in terms of the dis-
tributions or means of the demographic variables between
the PSQI only group (n= 462) and the PSQI plus imaging
subset (n= 222).

AQP4 genetic variation and PSQI sleep parameters or brain
Aβ burden
Linear regression analysis was performed to determine

whether AQP4 SNPs were associated firstly with overall
sleep quality (PSQI total) and subsequently with the PSQI
sub-scales (sleep latency, sleep duration, sleep efficiency,
and sleep disturbances), using both a base statistical
model (no covariates) and an adjusted statistical model,
covarying for age, BMI, medical history of CVD, GDS and

Table 1 Cohort demographics

PSQI Only PSQI and Aβ

n 462 222

Age, years 75.0 ± 6.0 75.2 ± 6.1

Sex, % Female 58.1 57.2

APOE, % ε4 carriers 22.7 23

Aβ (SUVR/BeCKeTa) 1.38 ± 0.38b 1.38 ± 0.38

Time between PSQI and PET scan (days) 173.7 ± 132.3

MMSE 28.9 ± 1.3 28.9 ± 1.4

BMI (kg/m2) 26.5 ± 4.3 26.4 ± 4.2

GDS 1.4 ± 1.7 1.3 ± 1.6

% Good sleepersc (n) 50.9 (235) 55.9 (124)

PSQI Total 6.2 ± 1.2 5.6 ± 3.2

Sleep latency (minutes) 19.9 ± 19.4 17.0 ± 16.6

Sleep duration (hours) 6.8 ± 1.2 7.0 ± 1.2

a11C-Pittsburgh compound B PET (PiB-PET) like standardized uptake value ratio
(SUVR) generated using the Before the Centiloid Kernel Transformation (BeCKeT)
scale
b n = 222
cGood sleeper, defined by PSQI Total score≤ 5
All values represented as mean ± s.d., unless otherwise indicated. Aβ Aβ-
amyloid; APOE apolipoprotein E ε4 allele carriage; BMI body mass index; GDS
Geriatric Depression Scale; MMSE Mini Mental State Examination; PET Positron
Emission Tomography; PSQI Pittsburgh Sleep Quality Index
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APOE ε4 allele carriage. Nominal significance (Table 2)
was observed with respect to PSQI Total (rs71353406,
rs72878776, and rs3875089) and subsequently, in the sub-
scale analyses, with sleep disturbances (rs68006382). Of
these associations, only that of rs72878776 with PSQI
Total (base model, β= 4.74 (s.e.: 1.37), p= 0.0006;
adjusted model, β= 4.15 (s.e.: 1.34), p= 0.002) remained
significant after FDR correction (base model, q= 0.008;
adjusted model, q= 0.028). No further associations were
observed for remaining genetic variants and PSQI sleep
parameters (Supplementary Table 2).
Linear regression analyses were also performed to

determine whether AQP4 SNPs were associated with
brain Aβ burden, again using both a base statistical model
(no covariates) and an adjusted statistical model, covary-
ing for age, sex and APOE ε4 allele carriage. No significant
associations were observed between AQP4 genetic var-
iants and brain Aβ burden either independently or when
the covariates of age, sex, and APOE ε4 were included in
the adjusted models (Supplementary Table 3).

AQP4 moderation of PSQI sleep parameter—brain Aβ
burden relationship
Linear regression analysis (Supplementary Table 4),

excluding AQP4 SNPs, revealed that sleep latency (min-
utes) was associated with Aβ burden (β= 0.004, t(215)=
2.66; 95% CI, 0.001–0.007; p= 0.008), consistent with a
previous report in a subset of this same sample12. No
other PSQI sleep parameter was observed to be associated
with brain Aβ burden in our analyses.

To determine whether AQP4 SNPs moderated the
relationship between the 5 PSQI sleep parameters and
brain Aβ burden, multivariate linear regression analyses
were performed within the moderation model. Nine of
these statistical models revealed significant moderation
effects for AQP4 SNPs on the PSQI sleep parameters of
sleep latency and sleep duration (Table 3). The relation-
ship between PSQI-determined sleep latency and brain
Aβ burden was observed to be significantly moderated by
a total of five AQP4 SNPs. The interaction of the AQP4
SNPs rs491148 and sleep latency was statistically sig-
nificant for both dominant (R2-change (ΔR2)= 0.017; p=
0.036) and recessive (ΔR2= 0.020; p= 0.022) genetic
models. While rs9951307 (ΔR2= 0.015; p= 0.048),
rs71353406 (ΔR2= 0.019; p= 0.030), rs3875089 (ΔR2=
0.019; p= 0.028) and rs151246 (ΔR2, 0.039; p= 0.002)
were significant in the dominant genetic model only. Post
hoc simple slopes analyses (Fig. 1) revealed that for
rs3875089, rs71353406, and rs491148, carriage of at least
one copy of the minor allele was associated with higher
brain Aβ burden as sleep latency increased, while for
rs9951307 and rs151246 this relationship was observed
for homozygosity of the major allele. All results from
moderation analyses are presented in Supplementary
Tables 5–9.
Three AQP4 SNPs interacted with PSQI-determined

sleep duration (in hours) to significantly impact brain Aβ
burden, namely rs72878776, rs2339214 and rs491148
(Table 3). For rs72878776 (ΔR2= 0.019; p= 0.034) and
rs491148 (ΔR2= 0.016; p= 0.045) the association was
observed in the dominant genetic model, while for
rs2339214 (ΔR2= 0.041; p= 0.002), the association was
observed in the recessive model. Post hoc simple slopes
analyses (Fig. 2) revealed that for rs72878776 and
rs491148, carriage of at least one copy of the minor allele
resulted in higher brain Aβ burden with a shorter dura-
tion of sleep. However, the opposite was observed for
rs2339214, where homozygosity of the minor allele
resulted in higher brain Aβ burden with a longer duration
of sleep.

Discussion
The primary aim of this study was to determine whether

genetic variation within AQP4 moderated the relationship
between PSQI-derived self-reported sleep quality and
brain Aβ burden as assessed by PET in cognitively normal
older adults of the AIBL Study. This study is the first to
report genetic variation in AQP4 to be both associated
with altered, self-reported, ‘overall’ sleep quality (PSQI
Total score), and to moderate the relationship between
the sleep parameters of latency (time taken to fall asleep),
duration (length of sleep), and brain Aβ burden.
The association of sleep latency with increased brain Aβ

burden confirms results previously reported in a subset (n

Table 2 Association of AQP4 SNPs with Pittsburgh Sleep
Quality Index sleep parameters

PSQI sleep

parameter

SNP Ref Additivea Dominanta Recessivea

Baseb Adjb Baseb Adjb Baseb Adjb

PSQI Total rs71353406 0.130 0.100 0.042 0.045 0.856 0.871

rs72878776 0.593 0.836 0.647 0.466 0.001c 0.002c

rs3875089 0.494 0.442 0.940 0.931 0.012 0.021

Sleep

disturbances

rs68006382 0.097 0.146 0.034 0.077 0.062 0.902

aGenetic models: Additive (homozygote for the minor allele (MM) vs.
heterozygote for the minor allele (Mm) vs. homozygote for the major allele
(mm)); Recessive (homozygote for the minor allele (MM) vs. heterozygote/
homozygote for the major allele (Mm/mm)); Dominant (heterozygote/homo-
zygote for the minor allele (Mm or MM) vs. homozygote for the major allele
(mm))
bStatistical models: Basebase statistical model including no covariates, AdjAd-
justed statistical model (covaries for: age, sex, body mass index (BMI), geriatric
depression scale (GDS) and a medical history of CVD). Values that reached
nominal significance (p < 0.05, uncorrected) are bolded
cvalues significant after False Discovery Rate correction (q < 0.05)
Summary of Aquaporin-4 (AQP4) SNPs demonstrating significant associations
with sleep parameters. PSQI Pittsburgh Sleep Quality Index Sleep Parameters:
PSQI Total, sleep disturbances. SNP Ref, reference single-nucleotide polymorph-
ism marker (rs); AQP4 Aquaporin-4

Rainey-Smith et al. Translational Psychiatry  (2018) 8:47 Page 4 of 11



Table 3 Moderation analysis for AQP4 SNPs on sleep latency and sleep duration

Dominanta Recessivea

β s.e. Sig. R2 Sig. ΔR2 β s.e. Sig. R2 Sig. ΔR2

LATENCY

Model summary: rs151246 0.201 <0.001 0.165 <0.001

Age 0.009 0.004 0.023 0.011 0.004 0.012

BMI 0.004 0.006 0.525 0.005 0.006 0.448

CVD risk −0.015 0.038 0.699 −0.014 0.039 0.731

GDS −0.007 0.015 0.654 −0.011 0.015 0.469

APOE ε4 0.303 0.056 <0.001 0.310 0.057 <0.001

rs151246 0.117 0.070 0.096 0.064 0.175 0.716

Latency 0.009 0.002 <0.001 0.004 0.002 0.006

INT −0.009 0.003 0.002 0.039 −0.008 0.007 0.294 0.004

Model summary: rs9951307 0.186 <0.001 0.166 <0.001

Age 0.010 0.004 0.019 0.010 0.004 0.013

BMI 0.003 0.006 0.607 0.004 0.006 0.752

CVD risk −0.013 0.039 0.741 −0.012 0.039 0.752

GDS −0.007 0.015 0.658 −0.010 0.015 0.485

APOE ε4 0.312 0.056 <0.001 0.309 0.057 <0.001

rs9951307 0.015 0.070 0.831 0.025 0.123 0.837

Latency 0.008 0.002 0.001 0.004 0.002 0.006

INT −0.006 0.003 0.048 0.015 −0.005 0.006 0.347 0.004

Model summary: rs71353406 0.180 <0.001 0.163 <0.001

Age 0.010 0.004 0.023 0.010 0.004 0.018

BMI 0.004 0.006 0.556 0.005 0.006 0.401

CVD risk −0.008 0.039 0.833 −0.012 0.040 0.769

GDS −0.006 0.015 0.692 −0.009 0.015 0.552

APOE ε4 0.298 0.058 <0.001 0.307 0.058 <0.001

rs71353406 −0.063 0.069 0.362 0.050 0.158 0.754

Latency 0.001 0.002 0.688 0.004 0.002 0.022

INT 0.006 0.003 0.030 0.019 0.003 0.006 0.675 0.001

Model summary: rs3875089 0.184 <0.001 0.165 <0.001

Age 0.010 0.004 0.019 0.011 0.004 0.010

BMI 0.005 0.006 0.400 0.004 0.006 0.458

CVD risk −0.016 0.039 0.683 −0.017 0.040 0.660

GDS −0.010 0.015 0.501 −0.012 0.015 0.426

APOE ε4 0.310 0.057 <0.001 0.313 0.058 <0.001

rs3875089 −0.050 0.074 0.497 −0.005 0.416 0.990

Latency 0.002 0.002 0.248 0.004 0.002 0.008

INT 0.007 0.003 0.028 0.019 0.010 0.027 0.706 0.001

Model summary: rs491148 0.185 <0.001 0.193 <0.001

Age 0.010 0.004 0.016 0.012 0.004 0.005

BMI 0.005 0.006 0.360 0.005 0.006 0.393
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Table 3 continued

Dominanta Recessivea

β s.e. Sig. R2 Sig. ΔR2 β s.e. Sig. R2 Sig. ΔR2

CVD risk −0.018 0.039 0.650 −0.017 0.039 0.657

GDS −0.011 0.015 0.450 −0.011 0.015 0.459

APOE ε4 0.316 0.057 <0.001 0.320 0.057 <0.001

rs491148 −0.035 0.075 0.639 −0.333 0.271 0.220

Latency 0.002 0.002 0.639 0.004 0.001 0.014

INT 0.007 0.003 0.036 0.017 0.035 0.015 0.022 0.020

DURATION

Model summary: rs72878776 0.149 <0.001 0.126 <0.001

Age 0.012 0.004 0.005 0.011 0.004 0.010

BMI 0.005 0.006 0.370 0.004 0.006 0.520

CVD risk −0.023 0.040 0.565 −0.009 0.040 0.816

GDS −0.007 0.015 0.662 −0.003 0.015 0.838

APOE ε4 0.289 0.058 <0.001 0.283 0.059 <0.001

rs12968026 0.807 0.352 0.023 0.065 0.715 0.928

Duration 0.026 0.023 0.251 0.005 0.021 0.817

INT −0.104 0.049 0.034 0.019 −0.010 0.105 0.923 <0.001

Model summary: rs2339214 0.132 <0.001 0.174 <0.001

Age 0.010 0.004 0.018 0.011 0.004 0.009

BMI 0.005 0.006 0.403 0.004 0.006 0.507

CVD risk −0.011 0.041 0.796 −0.009 0.040 0.819

GDS −0.005 0.016 0.774 −0.008 0.015 0.595

APOE ε4 0.302 0.059 <0.001 0.307 0.058 <0.001

rs2339214 0.056 0.324 0.864 −0.993 0.329 0.003

Duration 0.014 0.038 0.714 −0.031 0.024 0.197

INT −0.009 0.045 0.850 <0.001 0.149 0.047 0.002 0.041

Model Summary: rs491148 0.156 <0.001 0.146

Age 0.011 0.004 0.007 0.012 0.004 0.005

BMI 0.005 0.006 0.377 0.004 0.006 0.736

CVD risk −0.023 0.040 0.565 −0.016 0.040 0.684

GDS −0.012 0.015 0.419 −0.008 0.015 0.574

APOE ε4 0.317 0.058 <0.001 0.316 0.059 <0.001

rs491148 0.707 0.320 0.028 −0.135 0.662 0.839

Duration 0.030 0.024 0.202 0.005 0.021 0.819

INT −0.090 0.045 0.045 0.016 0.053 0.097 0.584 0.001

aGenetic models: Dominant (heterozygote/homozygote for the minor allele (Mm or MM) vs. homozygote for the major allele (mm)), Recessive (homozygote for the
minor allele (MM) vs. heterozygote/homozygote for the major allele (Mm/mm)); β coefficient of predictors; Sig p-value; R2 coefficient of multiple determination; ΔR2

multiple correlation coefficient (R) squared change; APOE Apolipoprotein E ε4 allele carriage (presence/absence); BMI body mass index; CVD risk cardiovascular disease
risk; GDS Geriatric Depression Scale; INT Interaction (Sleep Latency/Duration ×model summary SNP). Models where the interaction term (INT) resulted in a statistically
significant R2-change (p < 0.05) are indicated (bolded)
Model summary statistics for significant Aquaporin-4 (AQP4) reference single-nucleotide polymorphism (SNP) markers (rs)
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= 184) of AIBL participants included in the current study
(n= 222)12. In this prior study, no moderation of the sleep
latency-Aβ relationship by APOE genotype was observed.
However, we report in the current study that moderation
of this relationship occurs due to variants in a gene
encoding a key component of the postulated glymphatic
system: Specifically, AQP4, which encodes for AQP4, an
astrocytic end-feet expressed water-channel protein pos-
tulated to be involved in glymphatic-mediated clearance
of Aβ18.
Our data suggests that genetic variation in AQP4, spe-

cifically rs72878776, is associated with altered, self-
reported, ‘overall’ sleep quality (PSQI Total score), with
individuals homozygous for the AQP4 rs72878776-A
allele reporting worse overall sleep compared to those
with a different genotype. This SNP is in the 5-prime
untranslated region (5′UTR) of the AQP4 gene and may

be of functional relevance through potentially influencing
gene transcription, via modification (creation or deletion)
of transcription factor binding sites. This is supported by
evidence compiled in the RegulomeDB33. Specifically, the
potential binding of transcriptional regulators such as
REST, TRIM28, CTBP2, and ZNF263 are predicted to be
affected by this variant. Analysis of the LD structure of the
AQP4 gene for linkage of rs72878776, with other variants
with potential functional implications, revealed it to tag
rs35248760, a synonymous SNP in exon 1. While
rs35248760 does not appear itself to be a SNP that
impacts functionality of the protein it encodes, it cannot
be ruled out that rs72878776 may also be in linkage with
rare non-synonymous variants in exon 1.
Five AQP4 SNPs (rs9951307, rs7135406, rs3875089,

rs151246, and rs491148) in the dominant models, had
significant interactions with self-reported sleep latency

Fig. 1 Conditional effects of AQP4 SNPs on the relationship between sleep latency and brain Aβ burden. Moderating effects of the
Aquaporin-4 (AQP4) single-nucleotide polymorphisms (SNPs) (A) rs9951307 (dominant model), (B) rs3875089 (dominant model), (C) rs7135406
(dominant model), (D) rs151246 (dominant model) and rs491148, for both the (E) dominant and (F) recessive genetic models, on the relationship
between sleep latency (min) and brain Aβ burden. M Minor allele, m major allele. Dominant genetic model: homozygote for the major allele (mm)
compared to heterozygote/homozygote for the minor allele (mM or MM). Recessive genetic model: homozygote/heterozygote for the major allele
(mm or mM) compared to homozygote for the minor allele (MM). Brain Aβ burden is presented as 11C-Pittsburgh compound B (PiB) positron
emission tomography (PET)-like standardized uptake value ratio (SUVR) and as the Before the Centiloid Kernel Transformation (BeCKeT) scale for
florbetapir and flutemetamol studies
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and the resultant effect on brain Aβ burden. The impact
of rs491148 was observably stronger in homozygotes,
suggesting a potential gene-dosage effect for the minor
allele (rs491148-G). Specifically, carriage of at least one
copy of the rs491148-G allele was associated with a PiB-
like SUVR approaching 1.6 when time to fall asleep
reached 35 min, while homozygosity of the G-allele, albeit
in only 9 individuals, was associated with Aβ burdens
approaching 2.3 SUVR/BeCKeT at 35min latency—a
level of brain Aβ usually associated with a clinical diag-
nosis of mild AD7. Of note, three of these AQP4 variants;
rs9951307 (D′ 0.99, r2 0.07), rs3875089 (D′ 1.00, r2 0.64),
and rs491148 (D′ 0.94, r2 0.49), are in strong LD, but have
reduced correlation, with the aforementioned 5′UTR
rs72878776. These AQP4 SNP-sleep latency findings
support previous studies which have reported an asso-
ciation of sleep latency with brain Aβ10,12. The current
study adds evidence that this relationship is likely mod-
erated by genetic variation in the gene encoding the
Aquaporin-4 water-channel protein, which is proposed to
be involved in glymphatic-mediated Aβ clearance during
sleep34. Accordingly, those AQP4 SNPs that impact the
relationship between sleep latency and Aβmay predispose
those individuals to suboptimal sleep parameters due to
higher Aβ burden. Alternatively, as a bi-directional rela-
tionship between sleep and Aβ has also been postulated3,5,
it is conceivable that suboptimal sleep contributes to
higher brain Aβ burden, particularly in those potentially
genetically predisposed to poorer functioning of Aβ
clearance mechanisms. However, it is also conceivable
that the association between AQP4 variants and sleep
quality observed in this study may potentially be

attributed to mechanisms unrelated to Aβ dynamics. For
example, any impact of genetic variation on expression of
AQP4 may, through disrupted water molecule conduct,
affect intracellular ionic homeostasis, resulting in
impaired cellular function or even death. Since AQP4 is
enriched in the glial cells of periventricular regions in the
hypothalamus, where hypocretin (orexin)-containing
neurons are primarily located, it is conceivable that
impaired glial function in these regions may result in
secondary neuronal damage leading to impaired sleep
regulation through subtle hypocretin deficiency. This is
observed to a larger extent in cases of narcolepsy where
the presence of anti-AQP4 antibodies is observed35.
We also identified three AQP4 SNPs that interacted

with sleep duration to have a moderating effect on levels
of Aβ in the brain. Two of these, rs72878776 and
rs491148, were also associated with overall sleep quality,
and moderation of the relationship between sleep latency
and Aβ burden in this study, respectively. With respect to
sleep duration, carriage of the minor allele for both
rs72878776 and rs491148, was associated with higher Aβ
burden with a shorter duration of sleep. However, the
opposite was observed for the final variant, rs2339214,
Specifically, longer sleep duration (rather than shorter
duration) was associated with higher brain Aβ (PiB-like
SUVR ~ 1.6,> 8 h sleep duration) in individuals homo-
zygote for the minor allele, rs2339214-A. To our knowl-
edge there is no previous report in the literature of a
bimodal relationship between sleep duration and brain Aβ
burden. However, there is evidence in the literature that
such a bimodal relationship exists between sleep duration
and cognition. Specifically, both short and long sleep

Fig. 2 Conditional effects of AQP4 SNPs on the relationship between sleep duration and brain Aβ burden. Moderating effects of Aquaporin-4
(AQP4) single-nucleotide polymorphisms (SNPs) (A) rs72878776 (dominant model), (B) rs491148 (dominant model), and (C) rs2339214 (recessive
model) on the relationship between sleep duration (hours) and brain Aβ burden. M, Minor allele; m, major allele. Dominant genetic model:
homozygote for the major allele (mm)) compared to heterozygote/homozygote for the minor allele (mM or MM). Recessive genetic model:
homozygote/heterozygote for the major allele (mm or mM) compared to homozygote for the minor allele (MM). Brain Aβ burden is presented as
11C-Pittsburgh compound B (PiB) positron emission tomography (PET) like standardized uptake value ratio (SUVR) and as the Before the Centiloid
Kernel Transformation (BeCKeT) scale for florbetapir and flutemetamol studies
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duration are purported to contribute to poorer cognitive
function and increased risk of cognitive impairment and
AD compared to intermediate sleep duration36–38.
In a recent study by Burfeind and colleagues, two of the

AQP4 SNPs described in the current study, rs9951307 and
rs3875089, were reported to be associated with altered
trajectories of cognitive decline. We have previously
reported in the AIBL study that Aβ is associated with
cognitive decline39–43 and, as discussed above, suboptimal
sleep has also been associated with poorer cognitive
function36–38. As such, it is plausible that the association
of AQP4 genetic variation with cognitive decline descri-
bed by Burfeind et al., may be mediated through the
impact of AQP4 on brain Aβ. Interestingly, the association
with cognitive decline reported by the authors was limited
to those with an established clinical diagnosis of AD, in
whom a high Aβ burden would be expected, and was not
observed in the ‘Pre-AD’ group. Further, while post
mortem evaluation of AD pathology was undertaken,
global brain Aβ burden was not evaluated pre-mortem;
additional investigation is therefore required to fully elu-
cidate the AQP4-cognition relationship, particularly dur-
ing the preclinical stages of AD and with respect to global
brain Aβ burden.
The functional implication of the genetic variants

reported herein remain poorly understood and it is clear
that further study is required to understand the
mechanism that underpins these associations. While there
is in silico evidence to suggest that some variants may
impact the binding of transcription factors, there are
other putative mechanisms that may play a role in the
relationship between AQP4 genetic variation and Aβ
clearance. For example, several associated SNPs are phy-
sically, or in LD with other SNPs, located in the putative
promoter region of the AQP4-M23 isoform (M23), the
smaller of two isoforms of AQP444, the other being
AQP4-M1 (M1). It has been reported that an increased
ratio of M23:M1 isoforms occurs in AD and is associated
with altered perivascular localization of AQP421. With
this loss of perivascular localization, a concomitant wor-
sening of Aβ plaque burden was observed21 suggesting
that genetic variation that alters isoform relative expres-
sion may in turn impact Aβ clearance. Further to this,
microRNA mediated regulation of AQP4 expression,
particularly of the M1 isoform, has been reported45.
However, of the SNPs reported to moderate sleep-Aβ
relationships in this study, none were located within the
putative microRNA binding sites identified previously45,
or within the putative M1 promoter region itself. More
recently, De Bellis et al.46 have demonstrated that in
addition to M1 and M23 isoforms, AQP4 may be subject
to translational readthrough to generate functionally sig-
nificant C-terminal extended isoforms, termed AQP4ex.
However, of all the associated variants reported in this

study, only rs9951307 is located at the C-terminal end of
AQP4, and is ~15 kb downstream of the AQP4 UGA
canonical stop-codon. Further, this variant does not tag
any genetic variants in the vicinity of the stop-codon,
although linkage with one or multiple rare-variants in this
region cannot be ruled out. Additional study is required to
determine the impact of any of these variants on AQP4-
M1, AQP4-M23, or AQP4ex isoform expression.
While the findings of this study are novel and suggest

that genetic variation of AQP4 moderates the relationship
between sleep parameters and brain Aβ burden, there are
some limitations that need to be considered. First, this
study was observational and utilized a cross-sectional
retrospective design; consequently, no conclusions
regarding temporal or causal relationships can be drawn.
Second, a subjective sleep measure was utilized which
relies on the accuracy and fidelity of the respondents.
Utilization of an objective measure of sleep such as acti-
graphy or polysomnography would circumvent the lim-
itation of self-report. Moreover, use of polysomnography,
the ‘gold standard’ in differentiating sleep from wake, and
in identifying sleep stages, would provide detail regarding
the association of sleep architecture with brain Aβ. How-
ever, the PSQI has demonstrated internal consistent
reliability and construct validity47 and is justified in this
study due to its cost effectiveness and ease of adminis-
tration to a large cohort. Third, the brain imaging and
PSQI administration were completed on separate days;
however, Aβ deposition is a relatively slow process,
occurring over many years7, and sleep habits are usually
chronic, particularly in the age group studied. Never-
theless, it is acknowledged that administration of the PSQI
at multiple time points would provide a longer window of
assessment of sleep parameters and therefore may be more
informative. Finally, any inferences of potential glymphatic
clearance underpinning the association of AQP4 genetic
variation with Aβ clearance from the brain in humans and
the potential functional implications of genetic variation
on isoform-specific expression are speculative and require
further functional studies to elucidate.
Our study adds weight to the proposition that para-

vascular clearance, encompassing the postulated glym-
phatic system, is a potential biological mechanism that
underpins Aβ clearance from the brain14. Whether other
genetic factors beyond APOE and AQP4, examined here,
may likewise moderate the relationship between sleep
parameters and AD characteristics remains to be deter-
mined, however, the current study provides evidence to
support future investigation of such interactions. Pro-
spectively, the results of this study provide a greater
understanding of what factors may impact on the sleep-
AD phenotype relationship, and support the notion that
establishing interventions targeted at improving sleep
parameters maybe beneficial for positively modulating
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cerebral Aβ levels and thus, potentially delaying AD onset.
Indeed, findings from this study could be used to both
stratify retrospective analysis of existing datasets, or per-
haps more importantly, to derive tailored AD intervention
strategies based on the genetics of the individual: e.g. a
sleep-specific intervention targeted at reducing sleep
latency may be most beneficial to individuals who are
genetically predisposed to a heightened impact of latency
on pathological or clinical outcomes. Overall, the data
from this study provide evidence that genetic variation in
the cerebrally expressed water-channel protein, Aqua-
porin-4, moderates the relationship between sleep and
brain Aβ burden.
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