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Abstract: The insulin-like growth factor pathway, regulated by a complex interplay of 

growth factors, cognate receptors, and binding proteins, is critically important for many of 

the hallmarks of cancer such as oncogenesis, cell division, growth, and antineoplastic 

resistance. Naturally, a number of clinical trials have sought to directly abrogate insulin-

like growth factor receptor 1 (IGF-1R) function and/or indirectly mitigate its downstream 

mediators such as mTOR, PI3K, MAPK, and others under the assumption that such 

therapeutic interventions would provide clinical benefit, demonstrable by impaired tumor 

growth as well as prolonged progression-free and overall survival for patients. Though a 

small subset of patients enrolled within phase I or II clinical trials revealed dramatic 

clinical response to IGF-1R targeted therapies (most using monoclonal antibodies to IGF-1R), 

in toto, the anticancer effect has been underwhelming and unsustained, as even those with 

marked clinical responses seem to rapidly acquire resistance to IGF-1R targeted agents 

when used alone through yet to be identified mechanisms. As the IGF-1R receptor is just 

one of many that converge upon common intracellular signaling cascades, it is likely that 
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effective IGF-1R targeting must occur in parallel with blockade of redundant signaling 

paths. Herein, we present the rationale for dual targeting of IGF-1R and other signaling 

molecules as an effective strategy to combat acquired drug resistance by carcinomas  

and sarcomas. 

Keywords: IGF-1R; insulin-like growth factor; combination therapy; drug resistance; 

Ewing sarcoma 

 

1. Introduction 

Since 1957, IGF-1 and IGF-2 (historically referred to as somatomedins A and C, respectively) were 

identified as second messengers of growth hormone (GH) capable of promoting insulin-like anabolic 

effects upon normal somatic tissues such as skeletal muscle and bone [1]. Since then, they and their 

cognate receptors have been demonstrated to affect a diverse range of cancers by facilitating malignant 

transformation, altering cell differentiation, and promoting cancer growth, metastasis, and chemotherapy 

resistance. However, only within the last decade have physicians had at their disposal both a host of 

clinically relevant anti-IGF-1R targeted therapies (small molecules and antibody-based inhibitors 

against IGF-1R or IGF-1) and a number of diverse high throughput technology platforms capable of 

readily teasing apart the multifaceted pharmacodynamic effects exerted by such IGF-1R antagonism.  

Whilst a number of excellent reviews have thoroughly discussed the impact of IGF-1R stimulation 

upon normal and malignant cells [2-7], or highlighted the myriad therapeutic options under preclinical 

and clinical investigation, few have concisely narrowed the focus to the complex interplay that exists 

between IGF-1R and a host of redundant signaling pathways (e.g., integrins, her2/neu, EGFR) 

potentially responsible for both de novo and acquired resistance to IGF-1R and its downstream targets. 

Following a necessarily brief summary of the IGF-1R family and its cancer promoting effects, the crux 

of this review has been dedicated to mechanisms of IGF-1R resistance and dual-targeted strategies 

aimed at circumventing them. We conclude by drawing upon the success of other targeted therapies 

(such as trastuzumab or imatinib) and suggest a rational path forward in IGF-1R centric trial design 

that integrates pharmacodynamic biomarkers to improve patient selection for likely responders and 

enhance our monitoring of the molecular changes induced by IGF-1R targeting.  

2. IGF-1R Receptor Family 

2.1. IR and IGF-1R Receptors 

Three receptors (Insulin receptor, IGF-1R and IGF-2R), their respective ligands (insulin, IGF-1, and 

IGF-2), and six IGF binding proteins (IGFBP1-6) comprise a phylogenetically well-conserved 

signaling family that strongly influences anabolic and metabolic control over both physiologic and 

aberrant cellular processes. First identified, and more closely linked to metabolism, the insulin receptor 

(IR) is a hetero-tetrameric receptor tyrosine kinase (RTK) composed of two identical heterodimers 

forged from α- and β-chains linked by covalent disulfide bonding. Two isoforms exist; isoform A, 

which lacks the twelve amino-acids coded by exon 11 within the carboxy-terminus of the α-subunit 
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(residues 717-729), or Isoform B that contains the replete amino-acid sequence [8]. A close structural 

analog of the IR, IGF-1R has nearly 61% overall homology to the insulin receptor, is 84% homologous 

at the kinase domains, and nearly identical within the ATP-binding pocket [9-11]. The IGF-2R lacks a 

functional intracellular β-chain but may inversely affect IGF-1R signaling by sequestering IGF-2, a 

less potent IGF-1R binding partner. 

For both the IR and IGF-1R, cleavage of the pro-receptor spawns a 130-kDa α-chain and a 90-kDa 

β-chain. They are joined within the cytoplasm, glycosylated, and folded under the direction of calnexin 

and calreticulin (both chaperones) then, as ‘half-receptors’, migrate to the plasma membrane where 

they float freely, able to interact with themselves or, rarely, with other RTK. Adding a layer of 

complexity to the IGF-1R pathway, the α- and β-isoforms of IR may associate with the IGF-1R half-

receptor to form functionally active hybrid receptors (hybrid-R), mainly when IR and IGF-1R are 

heavily expressed or imbalanced in their expression, as would be expected to occur following 

sequential internalization and down-regulation induced by a number of IGF-1R-targeted therapeutic 

antibodies now undergoing clinical investigation. Under these circumstances, such hybrid receptors 

can become the predominant vehicle by which IGF-1, IGF-2, and, to lesser extent insulin, exert their 

oncogenic effects. As will be discussed later, though most drug candidates targeting the IGF-1R 

pathway were selected for their ability to preferentially inhibit IGF-1R rather than IR (out of concern 

regarding the perceived and sometimes real risk of hyperglycemia), less stringent binding to also 

include the hybrid receptors is increasingly considered of potential value.  

X-ray crystallography has solved the three-dimensional structure of both IR [12] and IGF-1R [13,14] 

in both their unphosphorylated (inactive) and phosphorylated states. The ligand-binding α-domains of 

IR and IGF-1R are purely extracellular, whereas the β-domain includes extracellular, transmembrane, 

and intracellular segments – the latter is comprised of a kinase domain and two regulatory regions. The 

more proximal juxta-membrane regulatory region serves as a docking site for adaptor proteins such as 

IRS-1 and SHC, whereas a distal one includes an activation loop capable of acting as an autoinhibitory 

pseudosubstrate that blocks the tyrosine-binding site in the inactive, closed confirmation until trans-

phosphorylation occurs. The exact mechanism of ligand-induced trans-phosphorylation of the adjoined 

α-β IGF-1R heterodimer is unclear, but is thought to occur through receptor oligomerization or altered 

conformational change of pre-coupled heterodimers [15,16].  

2.2. Ligands and IGF-Binding Proteins 

As opposed to physiological levels of insulin (0.5 nmol/L), secreted by the pancreatic β-cells, 

circulating IGF-1 (20 nmol/L) and IGF-2 (90 nmol/L) can be produced by the liver (under the 

influence of growth hormone), by malignant tissues themselves, or by their associated stroma; thus, 

they may stimulate cancers through endocrine, autocrine, or paracrine effects, respectively [17-20]. 

IGF-2 is frequently over-expressed by normal and cancerous tissues due to a loss of imprinting. 

Modulating ligand bioactivity, the six IGFBPs generally act to intercede with ligand-receptor binding. 

Whereas IGFBP3 provides the greatest IGF-1 binding and serves to prolong its serum half-life, 

IGFBP2 and IGFBP5 can rarely have the opposite effect, possibly by enhancing ligand distribution and 

release into neoplastic tissues. Though early attempts to suppress circulating IGF-1 (using hormonal 

agents such as octreotide or IGFBP-mimetics) failed, nascent approaches have been more promising.  
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2.3. Downstream Signaling 

Unlike other tyrosine kinase receptors, like her2/neu for example, gene amplification and/or 

mutations in the IGF-1R gene are distinctly uncommon, occurring in less than ten percent of breast 

cancers [21] and rarely in pediatric wild-type gastrointestinal stromal tumors [22], pancreatic 

adenocarcinomas [23], and Wilms’ tumors [24]. Constitutive activation of the IGF-1R receptor also 

appears infrequently [25]. Instead, enhanced IGF-1R signaling generally occurs through greater ligand 

binding and/or increased IGF-1R expression followed by secondary propagation through two principal 

pathways, the mitogen-activation protein kinase pathway (MAPK) and the phosphatidylinositol-3-kinase 

(PI3-K)/Akt/mTOR pathway (extensively reviewed elsewhere) [26-29].  

In greater depth, as shown in Figure 1, this process begins when IGF-1 or IGF-2 (albeit with reduced 

affinity) binds to IGF-1R or the IGF-1R/IR hybrid receptors, resulting in trans-phosphorylation of the 

IGF-1R tyrosine kinase domain and other critical sites. Secondary phosphorylation of IGF-1R at amino 

acid 950 results in enhanced interaction with the phosphotyrosine binding (PTB) site of IRS-1 

principally, but also IRS-2, which themselves becomes tyrosine-phosphorylated; IRS-1/2 may 

occasionally become constitutively phosphorylated independent of IGF-1R [30]. Adaptor proteins 

(such as Shc, Grb2, CrkII, CrkL, Sos) may bind to one of eighteen unique Src homology 2 (SH2) or 

PTB binding sites on IRS-1 and, thereby, stimulate the sequential activation of Ras, Raf, MEK1/2 and 

ERK1/2 along the MAPK cascade. Alternatively, IGF-1R-mediated activation of IRS-1/2 can recruit 

PI3K to the plasma membrane, where it catalyzes the conversion from PIP2 to PIP3. PIP3 in turn 

activates 3-phosphoinositide-dependant protein kinase 1 (PDK1) and downstream Akt. Finally, Akt, 

through inhibition of tuberous sclerosis complex 2 (TSC2), which regulates Rheb, mTOR becomes 

activated. A recent report indicates PDK1 can be tyrosine phosphorylated by direct IGF-1R binding [31]. 

As is readily apparent, one implication of the lengthy and often tortuous nonlinear path from proximal 

IGF-1R signaling to final activation of MAPK and/or mTOR is that neoplastic cells have ample means 

to maintain downstream IGF-1R signaling despite well-intentioned IGF-1R targeting. 

3. IGF-1R and Cancer: Pathway Signaling & Single-agent Targeted Therapy 

Given the capacity of IGF-1R to initiate both normal and pathological signaling cascades, IGF-1R 

and its downstream mediators have, naturally, been widely implicated in contributing to various 

malignancies and been investigated as potential therapeutic targets now for more than two decades. 

High IGF-1 levels have been found in several sarcoma subtypes [32,33] and IGF-1R overexpression in 

breast, lung, prostate, or colon cancer has been shown to accelerate cancer progression [34-37] and 

enable anchorage-independent growth [17]. Conversely, congenital syndromes resulting in IGF-1 or 

growth hormone deficiency likely confer protective effects [38,39].  
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Figure 1. Key proteins and phosphorylation states necessary for IGF-1R signaling, shown 

schematically (A) and with full description of each protein’s potential effect (B). Although 

multiple downstream pathways exist, several including MAPK and Akt/mTOR are critical 

for cell proliferation, differentiation, protein synthesis, cell survival, and metabolism.  
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The inner workings of the IGF-1R molecular machinery share considerable similarities between 

carcinomas and sarcomas, both from a myopic view at the level of biologically conserved protein-

protein interactions that can be understood with reasonable specificity, and from the higher vantage 

point of a ‘signaling network’ that can be anticipated to progress, if not deterministically, at least under 

stochastic rules gleaned from years of scientific scrutiny. Yet, considerable biologically complexity 

exists not only from one cancer type to the next but also, as is often the case, among asynchronously 

responding tumors within the same patient.  

In addition to the intrinsic differences present within the IGF-1 pathway itself (via altered 

expression of IGF-1R, its ligand, the IGFBPs, or downstream effectors, for example), such changes 

only partially explain the varied sensitivity to IGF-1 oriented therapies. Extrinsic differences 

independent of the IGF-1R pathway, such as her2/neu or EGFR activation for breast or lung cancer, 

respectively, likely play a larger role since those pathways often serve as the primary regulator of their 

malignant phenotype. Under that scenario, the IGF-1 pathway would theoretically be redundant, and 

largely quiescent, until the primary pathway becomes impaired, either spontaneously or secondary to 

therapeutic intervention. Ultimately, then, the importance of IGF-1 signaling can vary tremendously 

across cancer types and even temporally within a patient’s tumor if selective pressure is applied 

through therapeutic targeting.  

3.1. Carcinomas 

Among carcinomas, IGF-1R targeting has been most widely evaluated in breast, lung, colon, and 

pancreatic cancer and numerous reviews have outlined its impact, or absence thereof, in detail 

elsewhere. Therefore, only limited information is summarized below to illustrate how dual targeted 

therapy could likely prove beneficial, given the multifaceted interaction between the IGF-1R pathway 

and others that converge upon MAPK or mTOR.  

3.1.1. Breast Cancer 

High IGF-1R expression has been observed in breast cancer cell lines and human tissue specimens, 

leading to increased activity of this pathway [40]. Just as hybrid IGF-1R/IR receptors may occur, IGF-1R 

may pair with ErbB2 or EGFR to form functional hybrid receptors capable of enhancing downstream 

mediators of survival and proliferation (cyclins, E2F4, survivin, HIF1a, Bcl2, Bax, c-Myc, etc.) [27,41,42]. 

IGF-1R over-expression has been associated with resistance to trastuzumab and pertuzumab therapies 

in vitro [43-45] and its inhibition, via IGF-1R targeted small interfering RNA (siRNA) or tyrosine 

kinase inhibitors (like NVP-AEW541) appears to counteract those resistance mechanisms [46,47]. 

Thus, there is a strong rational for dual targeting of IGF-1R and ErbB2 or EGFR in breast or other 

carcinomas such as lung cancer [48].  

3.1.2. Prostate Cancer 

Like breast cancer, prostate cancers are often controlled by several regulatory effects of growth 

factors such as IGF-1, EGF, FGF-β, and KGF [49]. Antibody-mediated inhibition of IGF-1R can result 

in significant inhibition of tumor growth in both androgen independent and dependent xenograft 
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models [50,51] and IGF-1R/EGFR crosstalk has been associated with resistance to gefitinib in the 

well-characterized DU145 prostate cancer cell line. Numerous studies have shown that dual inhibition 

of IGF-1R and EGFR can be synergistic in moderating growth and migration of prostate cancer [43], 

lung cancer [52-54], and colorectal cancer [55,56]. 

3.1.3. Colon Cancer 

Expression of IGF-1R by immunohistochemistry has been found in more than half of colon cancer 

specimens [57] or cell lines [58], and its affect upon colon cancer oncogenesis and progression has 

been observed in a number of preclinical models [59]. However, the clinical effects of IGF-1R 

signaling remain less certain. Whereas a prospective study by Ma et al. associated high levels of IGF-1, 

and low IGFBP3, with an increased risk of colon cancer, this same group later reported no associated 

link between IGF-1 and patients at high risk of acquiring colon cancer [60,61]. Furthermore, among 

patients treated for nonmetastatic colorectal cancer, neither IGF-1 nor IGFBP3 expression affected 

mortality rates. Finally, in a randomized phase II trial of IMC-A12 used alone or in combination with 

cetuximab in patients with advanced colorectal cancer, none of the twenty-three patients treated with 

the single-agent IGF-1R antibody responded [62]. Therefore, IGF-1R directed therapy likely offers 

little if any benefit for this cancer type. 

3.1.4. Pancreatic Cancer 

The IGF-1R signaling cascade has been implicated in the development and progression of 

pancreatic cancer [63-66], and naturally, both preclinical [25,67-70] and clinical studies directed at this 

pathway have been initiated. For example, one clinical trial that targets EGFR and IGF-1R in 

combination with gemcitabine (NCT00617708) has recently closed, while a similar trial at our 

institution (using a different IGF-1R directed antibody) is still ongoing (NCT00769483). Another, 

assessing a single-agent IGF-1R antibody in local unresectable or metastatic pancreatic 

neuroendocrine tumors remains open as well (NCT01024387). Though it is too early to judge of the 

efficacy of IGF-1R therapies, alone or in combination with other targeted agents in pancreatic cancer, 

preliminary results suggest they’re relatively well tolerated even in patients with advanced cancer stage. 

3.1.5. Lung Cancer 

Deregulation of IGF signaling has been described in both non-small cell lung cancer (NSCLC) and 

SCLC [71,72]. Furthermore, elevated plasma levels of IGF-1 have been associated with an increased 

risk of lung cancer and high plasma levels of IGFBP3 have been associated with a reduced risk, 

although results from a meta-analysis did not recapitulate this association [73-75]. Among several 

IGF-1R single-agent antibodies in various stages of clinical development, figitumumab has been tested 

most extensively [76,77], however, recent phase III trials of figitumumab were terminated due to an 

apparent imbalance of serious adverse events and excess mortality in the experimental arm. As might 

be expected, there are several ongoing clinical trials combining IGF-1R targeted antibodies with 

traditional cytotoxics or EGFR inhibitors such as erlotinib in NSCLC patients. A phase II randomized 
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trial, called IMPACT, is recruiting patients affected by advanced non-squamous NSCLC to receive 

cisplatin plus pemetrexed with or without weekly MK-0646 as first-line therapy [78].  

As we have learned from EGFR inhibitors, the challenge for IGF-1R inhibitors will consequently 

correspond to how we optimally select patients who could benefit most from these agents. 

Interestingly, IGF-1R overexpression has been shown in squamous cell carcinoma and recent studies 

suggested that it could serve as a predictive biomarker of response to anti-IGF-1R antibody, such as 

R1507[54] or figitumumab [79]. Based on a quantitative immunohistochemical analysis of patients 

sample from the phase II trial of figitumumab [77], the epithelial-mesenchymal transition (EMT) status 

of cancer might be a candidate biomarker of response rate to the combination of chemotherapy and 

figitumumab [79], which needs further elucidation. Although these studies were not designed to 

investigate the activity according to NSCLC histologies or EMT status, these results suggest rational 

strategy to enrich for lung cancer patients that might benefit from treatment with anti-IGF-1R 

antibodies. Furthermore, EGFR and K-ras mutations have been implicated as biomarkers for selecting 

patients in IGF-1R TKI-based therapy for NSCLC patients (Kim WY et al., AACR 2010 Annual 

Meeting, Abstract # 4127). In this study, introduction of mutant K-Ras induced IGF-1R TKI resistance, 

while a knockout of mutant K-Ras restored the sensitivity in in vitro and in vivo models. These 

findings emphasize the need to produce more robust preclinical, early clinical and translational data to 

be successful in larger randomized trials. 

3.2. Sarcomas 

Since more than fifty sarcomas subtypes exist, each clinically and molecularly distinct from one 

another and often driven by unique pathognomonic genomic translocations, the effects of IGF-1R 

signaling are naturally varied and subtype specific. Hirschfeld and Helman first described a role for 

IGF-1R in tumor promotion of pediatric solid tumors including osteosarcoma and Ewing’s sarcoma 

(EWS), and since then, preclinical studies have confirmed that IGF-1R autocrine signaling is important 

for not only their pathogenesis but for a number of soft-tissue sarcomas as well [32].  

With respect to EWS, the major focus of our laboratory, the ubiquitously expressed IGF-1R 

receptor works in concert with the most common EWS oncogenic fusion protein (EWS-FLI-1) to 

promote tumorigenesis. IGF-1R activation is required for EWS-FLI-1 induced malignant transformation 

of murine fibroblasts [80] and, when transfected in mouse progenitor cells, the EWS-FLI-1 fusion 

protein (but not native FLI-1 or ERG) is reported to induce a nearly nine-fold increase in IGF-1 

expression – directly linking the most common EWS translocation to IGF-1 autocrine signaling [81]. 

Furthermore, upon binding of the EWS/FLI-1 fusion protein to the insulin like growth factor binding 

protein (IGFBP-3) promoter, IGFBP-3 transcriptional activity is reduced, free IGFBP-3 decreases, and 

more IGF-I ligand is available for ligand-induced activation of the ubiquitous IGF-1R [10,82,83]. Thus, 

autocrine loops may occur both through up-regulation of total IGF-1 and increased availability for 

IGF-1R binding. A final auto-stimulatory circuit occurs via up-regulation of IGF-1R itself, as is the 

case of desmoplastic small round cell tumors (DSCRT), an even rarer sarcoma subtype the bares 

substantial molecular and clinical similarities to EWS. For DSRCT, the EWS-WT1 fusion protein has 

been reported to increase IGF-1R promoter activity by 3.4-fold.  
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Although a mouse monoclonal antibody (αIR-3) was first shown to be effective against in vivo 

rhabdomyosarcoma in 1986, translation to the clinic was slow, secondary to human-anti mouse Ab 

formation. Small molecule targeting of IGF-1R had different challenges, related to the close homology 

between IGF-1R and IR in the TK domains. Using a class of fully humanized anti-IGF-1R Ab, made 

possible through recombinant technologies, unexpectedly high clinical response rates for sarcoma 

subtypes (specifically EWS and osteosarcoma) have renewed academic interests in IGF-1R targeted 

therapies and, consequently, nearly a dozen phase I/II trials are currently underway evaluating IGF-1R 

targeted monoclonal antibodies (mAb) or small molecules for the treatment of EWS [84,85]. 

Preclinical evidence suggests that IGF-1R signaling is likely to be vital for soft-tissue sarcomas as well. 

As stated previously, although IGF1R mutations are distinctly uncommon in tumors, genetic 

polymorphisms exist in genes that encode IGF-1 and IGFBP-3 [27]. Elevated IGF-1R expression has 

been linked to IGF1R amplification, which infrequently occurs in wild-type (WT) gastrointestinal 

stromal tumors (GIST) that lack prototypical gain-of-function c-kit receptor mutations [22], but over-

expression is the norm in pediatric WT GISTs even in the absence of such amplification events [86]. 

It’s still too early to predict from ongoing clinical trials which sarcoma subtypes will ultimately benefit 

the most from IGF-1R targeting, as unexpected clinical responses have occurred in several diverse 

subtypes (e.g., solitary fibrous tumors, liposarcoma, and others). 

In preclinical animal models using antibodies to IGF-1R, no antibody dependent cellular toxicity 

(ADCC) or cross-reactivity to the insulin receptor has been observed. Though still presented only in 

abstract form at ASCO, the preliminary results of the SARC-11 trial (a multicenter, open-label, multi-

arm, phase II study of R1507 for the treatment of patients with recurrent or metastatic, drug-refractory 

EWS and selected other sarcomas) were disappointing; this trial, and two smaller ones, exhibited 

treatment responses less than 9%. Interestingly, nearly one-third of patients exhibited early treatment 

response after 9–14 days (as assessed by PET/CT in several trials) but the vast majority of such 

responders rapidly progressed thereafter, presumably due to acquired resistance. Although in most 

cases the early imaging findings were not used as metrics of clinical response, they nevertheless point 

to a much higher, albeit brief, signal of activity that could prove clinically meaningful if acquired 

resistance mechanisms can be identified and thwarted.  

For a description of binding specificities for IGF-1R, IR, and/or hybrid receptors [87] and 

comprehensive review of the dozen or more IGF-1R-targeted single-agent antibodies or small 

molecules now in preclinical development or early phase clinical trials, one may refer to a number of 

excellent reviews highlighting their possible therapeutic value for cancer in general [2,3,7,20,88-90], 

and sarcoma [6,33,91] or carcinoma [5,59,92] in particular.    

4. Resistance Mechanisms to IGF-1R-targeted Therapy 

Notwithstanding a clear benefit observed in a small subset of patients treated with single-agent  

IGF-1R antagonists, enthusiasm for single-agent IGF-1R targeting has waned and most active or 

developing clinical trials have evolved to use IGF-1R-targeted therapies together with others that 

surmount anticipated mechanisms of resistance. Of course the resistance mechanisms themselves have 

only partially been enumerated and, as discussed previously, they likely vary from one cancer type to 

another, subject to the predominant oncogenic driver (Table 1). 
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Table 1. Mechanisms of resistance to IGF-1R-targeted therapy. 

Pathway/ 

Biomarker 
Cancer Type Effect 

Ongoing 

Combination 
Results 

 Breast Lung Colorectal  Pancreas Prostate Sarcoma   In vitro Xenograft Clinical 

IR [130-

132] 

 [130]  [130]  Crosstalk between IGF-

1R and IR can provide 

signaling to IGF-1R 

cascade. 

Yes [132,133] [132,133]  

IGFBPs [134] [135] [135]    Interferes in interaction 

between IGF ligands and 

receptor.  

No [134,135]   

HER-2 [44,136]   [70,137,138] [43,50,138] [130] Crosstalk signaling and 

alternative pathway 

Yes [44-47, 

139] 

[137,140] [44,139] 

HSP90    [130,141, 

142] 

 [95,142] Stabilizing IGF-1R and 

downstream effector 

proteins 

Yes [142] [142]  

EGFR 39, 42,46 [114] [49,50,114, 

120] 

[107-109, 

114] 

[37,44,114]  Crosstalk signaling and 

alternative pathway 

Yes [45,48,52, 

55,143] 

[48,50,52, 

55,143] 

[144] 

mTOR 23,114,1

21,123 

   [34,114, 

124] 

 Safe and well tolerated 

with no unexpected 

toxicities 

Yes [27,143, 

145] 

[27,143, 

145] 

[116] 

FAK 106   [106]   Interaction of FAK and 

IGF-1R through theirs  

N-terminal domains 

No [146-149]   
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Putative mechanisms of resistance may be conceptually grouped by two broad categories:  

1. Primary independence from IGF-1R activation, presumably through myriad pathways that 

bypass IGF-1R (i.e., upstream plasma membrane bound receptors including alternative RTKs 

and hybrid receptor combinations that also activate Grb2, Sos, or IRS-1) or downstream 

molecules capable of intrinsic self-activation of MAPK and Akt/mTOR.  

2. Direct counterregulatory effects within the IGF-1R system, including up-regulated expression 

or phosphorylation of IGF-1R, increased expression or availability of ligands, and altered 

modulation by IGFBPs. 

With respect to the first category or resistance, cross talk via alternative RTK or non-receptor 

transmembrane signalers (such as integrins) could potentially bypass the need for IGF-1R signaling. In 

addition to EGFR, PDGF-β [93], NGF-R [10], and HER2 expression [94], some sarcomas have been 

shown to express c-kit [93,94]. Imatinib-induced shutdown of c-kit receptor phosphorylation leads to a 

20–30% reduction in EWS cell proliferation and suppressed tumor growth in xenograft models, albeit 

at doses 20-fold higher than that used for treatment of gastrointestinal stromal tumors (18–22 µM) [93,95]. 

Used alone, less than 5% of EWS patients achieve a partial response to single-agent imatinib  

(440 mg/m
2
/day) [96]. Dasatinib, a multi-targeted tyrosine kinase inhibitor (TKI) of c-kit and PDGF-β 

has also shown activity, again at high concentrations [97]. Given the partial overlap IGF-1R 

antagonists and of the c-kit or PDGF-β TKIs (which predominately suppress MAPK), one may 

hypothesize that c-kit or PDGF-β up-regulation is a potential mechanism of IGF-1R resistance. The 

synergy observed in vitro between small molecule antagonists of the IGF-1R (such as NVP-ADW742 

or NVP-AEW541) and imatinib, through apoptotic mechanisms, supports this hypothesis although, to 

our knowledge, secondary up-regulation of those receptors in IGF-1R-resistant cells has yet to be 

shown [98]. 

Other receptors, including the epidermal growth factor receptor (EGFR), the vascular endothelial 

growth factor receptor-2 (VEGFR-2), and rearranged in transformation (RET) kinase receptor have 

been evaluated and another, macrophage-stimulating 1 receptor tyrosine kinase (MST1R) has just 

recently been identified as potential means to induce IGF-1R-independent stimulation [99,100]. 

Though gefitinib (an EGFR kinase inhibitor) and vandetanib (an inhibitor of VEGFR-2, VEGFR-3, 

and RET kinase) inhibited EWS growth at high concentrations (greater than 5 µM), nonspecific effects 

were suspected since the phosphorylation state of MAPK and Akt were unchanged. Scotlandi et al. has 

reported HER2 expression in 16% of EWS specimens, however gene amplification was absent and 

little antiproliferative response to trastuzumab (Herceptin) was observed [94]. In summary, of the 

experience of non-IGF-1R tyrosine kinase inhibitors for EWS treatment, none has significant single-

agent activity in the setting of functional IGF-1R. This does not, of course, rule out their role in  

IGF-1R-resistant tumors; the additive and/or synergistic effects reported in combination with either of 

the Novartis’s pyrrolo[2,3-d]pyrimidine derivatives or Bristol Myers Squibb’s pyrrolecarboxaldehydes 

(BMS-554417 or BMS-536924), in fact, suggests compensatory signaling could occur under IGF-1R-

null conditions, as has been recently reported by Helman [101]. Adding a layer of complexity, since 

insulin and IGF-1 half-receptors have been reported to form heterodimers with members of the EGFR 

family in lung cancer, this adds another layer of complexity in assessing TKI-mediated resistance [72]. 

Regarding the second category of IGF-1R resistance, complex counterregulatory loops in the  

IGF-1R autocrine circuit, including the receptors, ligands, and binding-proteins, may be involved. One 
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such example is the autoregulatory loop between Mdm2 and p53. Froment et al. have reported that 

Mdm2, a protein antagonist of p53, can physically bind IGF-1R and target it for ubiquitination-induced 

degradation independent of p53 [102,103]. Interestingly, whereas wild type-p53 down-regulates 

transcription of IGF-1R at the promoter level, mutant p53 induced the opposite effect in osteosarcoma 

and rhabdomyosarcoma cells. Since p53 mutations are observed in less than 5% of EWS primary 

tumors [104], it remains to be determined whether mutant-p53-induced up-regulation of IGF-1R exists 

as a resistance mechanism for IGF-1R targeted therapy.  

The level or activation status of members of the IGF-1R family may affect resistance. Since neither 

mutation nor amplification is common, this is not the most likely contributor to antibody resistance. 

Though not yet confirmed to be prognostic in EWS, high levels of IGF-1R appear to confer sensitivity 

in rhabdomyosarcoma, and may serve as a valid prognostic biomarker for that cancer [105]. Low 

levels of IGF-1R may, conversely, confer resistance in at least two ways: (1) IGF-1R-low-expressing 

cells would theoretically be less reliant or ‘addicted’ upon IGF-1R for growth and; (2) targeted 

therapies generally requires a paired target for effectiveness [106]. Paradoxically, high IGF-1R levels, 

when stabilized by Heat Shock Protein-90 (HSP90; a chaperone protein that helps maintain stability, 

renature unfolded proteins, or targeted their degradation), may also confer at least short-term resistance 

as hypothesized by Martins et al. [95]. In evaluating why HSP-90 was transiently elevated in 

ADW742-resistant A673 EWS cells, it was suggested that client-protein stabilization of activated  

IGF-1R or and Akt by HSP90, maintained downstream signaling of the Akt/mTOR pathway.  

In the most recent and comprehensive report of IGF-1R resistance mechanisms to use genetic and 

proteomic profiling, Helman compared BMS-536924-resistant sarcoma and neuroblastoma cells to 

sensitive ones, thereby identifying gene and protein subsets that significantly correlated with de novo 

drug sensitivity. Although members of the IGF-1R family did not reach statistical significance for a 

priori inclusion within those subgroups, high IGF-1R, IGF-1, or IGF-2 levels portended sensitivity 

whereas elevated IGFBPs 3 and 6 were higher in resistant cell lines. Unexpectedly, the combination of 

IGF-1 and IGF-2 into a single model was better than either used alone in predicting response, 

suggesting an active role for both ligands in IGF-1R signaling. While an IGF-2-mediated effect may 

not be intuitive, since IGF-2 has twenty-fold less affinity for IGF-1R, it has recently been reported that 

malignancies can shift their reliance from the paradigmatic IGF-1-stimulated IGF-1R pathway instead 

to an IGF-2-stimulated  one that acts upon the IGF-1R/IR-α hybrid receptor already mentioned [107].  

As suggested earlier, given the capacity for tumor-associated stoma to secrete IGF-1 or IGF-2, 

paracrine loops may also affect the efficacy of IGF-1R targeted therapy. Gorlick, Houghton, and others 

have reported relative insensitivity to IGF-1R- or mTOR-targeted therapies in vitro compared to 

xenografts models of similar tumor types, supporting our hypothesis that extracellular mechanisms of 

resistance are important [108]. Since tumor regrowth (after initial response) is a near universal 

occurrence in xenograft models (reportedly with continued IGF-1R downregulation and maintained  

p-Akt) [108] and patients treated with single-agent IGF-1R targeted therapies to date, a fresh approach 

must seek to obviate not only IGF-1R signaling but also the cancer type-specific resistance 

mechanism(s) as well.  

Although many of the IGF-1R resistance mechanisms described above pertain to sarcomas, major 

mechanisms of resistance can be found across the spectrum of diverse cancer types. At other times, the 
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mechanism(s) of resistance are unique and specific to the individual features that distinguish one 

cancer from another, as identified for the most common cancer types within Table 1.  

5. Combating IGF-1R Resistance: Dual Targeting and Beyond 

Even before the precise mechanisms of single-agent IGF-1R success, and in some cases failure, are 

thoroughly scrutinized, a limited number of preclinical studies and mostly early phase clinical trials 

have begun to assess the safety and efficacy of dual targeting of IGF-1R and putative secondary targets 

suspected of enabling acquired IGF-1R resistance (Table 2). Paralleling the defined mechanisms of 

resistance highlighted above, multi-targeted therapy can target key components intrinsic to the IGF-1R 

receptor family (the receptors, ligands, or IGFBPs in various combinations) or extrinsic ones. 

Table 2. Dual Targeting of IGF-1R and other pathways. 

Impaired 

Pathways/ 

Biomarker 

Compound 
Potentia

l Target 

Potential 

Drug 

Type 

Cancer Type References 

EGFR 

panitumumab 

 

cetuximab 

 

erlotinib 

 

gefitinib 

IGF-1R 

IGF-1R 

IGF-1R 

IGF-1R 

IGF-1R 

IGF-1R 

IGF-1R 

IGF-1R 

IGF-1R 

MAb/TKI 

MAb/TKI 

MAb/TKI 

MAb 

MAb 

MAb 

MAb 

TKI 

TKI 

Colorectal Cancer 

Pancreatic Cancer 

Colorectal Cancer 

Pancreatic Cancer 

Lung cancer 

Pancreatic Cancer 

Breast Cancer 

Prostate cancer 

Colorectal Cancer 

[55,56,143] 

[70,137,138] 

[55,56,143] 

[70,137,138,143] 

[143] 

[70,137,138] 

[43,45,48,52,90,131,143,150-153] 

[43,50,143] 

[154] 

HER-2 
trastuzumab 

pertuzumab 

IGF-1R 

IGF-1R 

TKI 

MAb/TKI 

Breast Cancer 

Breast Cancer 

[44-47,90,131,139,143,150,151] 

[44,45,90,131,139,143,150,151] 

mTOR 

rapamycin 

temsirolimus 

temsirolimus 

IGF-1R 

IGF-1R 

IGF-1R 

MAb 

MAb 

MAb 

Breast Cancer 

Breast Cancer 

Prostate cancer 

[27,143,145,155,156] 

[27,143,145,155,156] 

[40,143,157] 

FAK FAK-siRNA IGF-1R MAb/TKI Pancreatic Cancer [147-149] 

An example of intrinsic targeting includes MEDI-573, a dual IGF-1/2 targeted neutralizing antibody 

that can theoretically prevent activation of both IGF-1R and IGF-1R/IR-A hybrid receptors. Similar in 

effect, small molecule inhibitors of IR and IGF-1R, such as OSI-906, have generated significant 

enthusiasm, given anecdotal reports of clinical response [109-111]. Though not in clinical trials, yet 

another approach combines two antibodies that together target divergent epitopes within the ligand 

binding sites of IGF-1R [112]. Each of those therapeutic strategies offer to inhibit IGF-1R function 

while countering the compensatory IR-mediated crosstalk inherent in IR-A and its pairing with  

IGF-1R [88]. Whereas both IGF-1 and IGF-2 ligands bind and activate IGF-1R and IGF-1R/IR-A 

hybrid receptors, the additional suppression of IGF-2 may limit unopposed IR-A signaling [113]. 

Given the increased expression IR-A within neoplastic tissues and preferential affect upon  

IGF-induced mitogenic signaling, as opposed to IR-B that exerts greater influence upon glucose 

hemostasis within normal liver, muscle and fat, one could conceivably target just IGF-1R and the 
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oncogenic IR-A splice variant while minimizing hyperglycemia and untoward side effects associated 

with down-regulated IR-B. In practice, however, this hypothesis remains to be proven and, to our 

knowledge, there are no selective IR-A inhibitors. Because elevated levels of plasma IGF-1 and insulin 

occur as respective feedback mechanisms induced through selective IGF-1R targeting and off-target 

effects upon IR-B, it may be necessary to target both IGF ligands, insulin, IGF-1R, both hybrid 

receptor types, and IR-A in unison to have the greatest clinical impact while avoiding the unintended 

pharmacodynamic consequences. Finally, to the extent insulin can promote IR-A mediated oncogenic 

effects, one could hypothesize its use for the treatment of iatrogenic hyperglycemia should be avoided 

in patients harboring IGF-1R driven malignancies when other pharmacological options exist.  

Of course a number of preclinical and clinical studies utilize a dual-targeting approach aimed at 

IGF-1R and extrinsic cascade-initiating RTKs or downstream mediators. Co-targeting c-kit and IGF-1R 

appears to be synergistic in EWS and small cell lung cancer (SCLC) cells [114]. A novel small molecule 

inhibitor of the IGF-1R/IR/ALK triad, GSK1838705A, has shown antitumor activity in human tumor 

models and should help elucidate the relationship of IGF-1R pathway activation in ALK-positive 

tumors noted within subtypes of NSCLC, lymphoma, and sarcoma [115]. And several phase I/II trials 

investigating mTOR/IGF-1R co-targeting have just been completed; everolimus/figitumumab [116] and 

cixutumumab/temsirolimus (Naing, personal communication), and ganitumab/rapamycin is on the 

horizon [117].  

Certainly with respect to cancers of the lung, prostate and colon, which rely in part upon EGFR 

signaling for tumor growth and survival, dual targeting of IGF-1R and EGFR has garnered much 

interest, given the fact that reciprocal inhibition of one RTK in epithelial cancers often enhances 

expression of the other. Bispecific antibodies capable of binding both IGF-1R and EGFR are 

undergoing investigation [118] and numerous studies have combined IGF-1R targeted therapies with 

others against EGFR [118-121]. Such RTK crosstalk has also been observed for the human EGF 

receptor 2 (HER2), the target of trastuzumab in breast cancer, and preclinical studies indicate synergy 

with dual IGF-1R/HER2 targeting [122,123]. Finally, significant crosstalk between IGF-1R and the 

androgen receptor in prostate cancers [50,124] or estrogen receptor in breast cancers [125-129] has 

been observed, though this combination remains to be validated clinically. Of course, many preclinical 

studies, and some clinical ones, have assessed the role of IGF-1R antagonists in combination with 

traditional cytotoxic chemotherapy. However, this topic is beyond the scope of this review.  

6. Conclusions 

After a flourish of clinical trials designed to investigate the role of single-agent IGF-1R targeted 

therapy, much of the initial optimism has been tempered by the realization that only limited subsets of 

patients respond and, when they occur, such responses too often are unsustained beyond a few months. 

Not surprisingly, without significant response rates observed for common cancers (i.e., breast, colon, 

lung, or prostate cancer), many pharmaceutical companies have ceased, or at a minimum delayed, 

clinical development of their respective IGF-1R inhibitors.  

Though this deceleration in clinical trial implementation will assuredly limit patient access to  

IGF-1R targeted therapies in the short term, over the longer term it may actually serve a benefit by 

allowing the necessary preclinical science to be mature before committing a substantial number of 
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patients to empiric, lengthy, and potentially suboptimal treatment. Drawing upon the lesions learned 

from other biologically targeted therapies such as trastuzumab, a number of questions must be 

answered if we are to make significant strides forward. Among just a few are as follows: (a) what 

predictive biomarkers allow for effective patient enrichment for those most likely to benefit; (b) what 

pharmacodynamic effects are associated with tumor control, and finally; (c) how should combinatorial 

therapies be advanced to avoid acquired resistance and maximize response duration. As the scientific 

community races to find answers, one anticipates in the not too distant future that IGF-1R antagonists 

will prove an essential weapon in the oncologist’s arsenal to be wielded in unison with other 

biologically targeted agents.  
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