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Objective: People suffering from coronavirus disease 2019 (COVID-19) are prone to develop
pulmonary fibrosis (PF), but there is currently no definitive treatment for COVID-19/PF co-
occurrence. Kaempferol with promising antiviral and anti-fibrotic effects is expected to become
a potential treatment for COVID-19 and PF comorbidities. Therefore, this study explored the
targets and molecular mechanisms of kaempferol against COVID-19/PF co-occurrence by
bioinformatics and network pharmacology.

Methods: Various open-source databases and Venn Diagram tool were applied to confirm
the targets of kaempferol against COVID-19/PF co-occurrence. Protein-protein interaction
(PPI), MCODE, key transcription factors, tissue-specific enrichment, molecular docking, Gene
ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses
were used to clarify the influential molecular mechanisms of kaempferol against COVID-19 and
PF comorbidities.

Results: 290 targets and 203 transcription factors of kaempferol against COVID-19/PF co-
occurrence were captured. Epidermal growth factor receptor (EGFR), proto-oncogene
tyrosine-protein kinase SRC (SRC), mitogen-activated protein kinase 3 (MAPK3), mitogen-
activated protein kinase 1 (MAPK1), mitogen-activated protein kinase 8 (MAPK8), RAC-alpha
serine/threonine-protein kinase (AKT1), transcription factor p65 (RELA) and
phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform (PIK3CA)
were identified as the most critical targets, and kaempferol showed effective binding
activities with the above critical eight targets. Further, anti-COVID-19/PF co-occurrence
effects of kaempferol were associated with the regulation of inflammation, oxidative stress,
immunity, virus infection, cell growth process and metabolism. EGFR, interleukin 17 (IL-17),
tumor necrosis factor (TNF), hypoxia inducible factor 1 (HIF-1), phosphoinositide 3-kinase/AKT
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serine/threonine kinase (PI3K/AKT) and Toll-like receptor signaling pathwayswere identified as
the key anti-COVID-19/PF co-occurrence pathways.

Conclusion: Kaempferol is a candidate treatment for COVID-19/PF co-occurrence. The
underlying mechanisms may be related to the regulation of critical targets (EGFR, SRC,
MAPK3, MAPK1, MAPK8, AKT1, RELA, PIK3CA and so on) and EGFR, IL-17, TNF, HIF-1,
PI3K/AKT and Toll-like receptor signaling pathways. This study contributes to guiding
development of new drugs for COVID-19 and PF comorbidities.

Keywords: kaempferol, pulmonary fibrosis, COVID-19, co-occurrence, bioinformatic analysis, system
pharmacology

INTRODUCTION

The outbreak of coronavirus disease 2019 (COVID-19) in
December 2019, with rising incidence and prevalence
worldwide, has caused more than six million deaths
(World Health Organization, 2022). Severe acute
respiratory syndrome coronavirus-2 (SARS-CoV-2) is the
trigger for COVID-19 pandemic, and belongs to the same
coronavirus lineage that causes SARS (Zhu et al., 2020).
Common clinical symptoms of SARS-CoV-2 infection
include fever, cough, tiredness, shortness of breath and
even death with exacerbation (Wu and McGoogan, 2020).
Independent risk factors associated with COVID-19 include
hypertension, diabetes, chronic obstructive pulmonary
disease, and cardiovascular and cerebrovascular diseases
(Wang et al., 2020). Although vaccine use has reduced the
incidence of COVID-19, vaccinated people are still at risk of
contracting SARS-CoV-2 and the number of COVID-19 cases
remains high (Soleimanpour and Yaghoubi, 2021). Drugs
against SARS-CoV-2 have been developed that reduce the
risk of COVID-19 developing into severe COVID-19, but
drug-resistant variants of SARS-CoV-2 may still emerge
(Hammond et al., 2022). These shows that COVID-19
remains a serious threat to global health.

Pulmonary fibrosis (PF) is a pathological event caused by
acute and chronic interstitial lung injury. PF causes chronic
dyspnea, long-term disability and affects the quality of life of
the patients (Lechowicz et al., 2020). PF is characterized by
alveolar epithelium damage, inflammation infiltration,
myofibroblasts activation and excessive deposition of
extracellular matrix (ECM) (Giacomelli et al., 2021). Of
note, CT images of 62 COVID-19 patients in Wuhan show
vacuolar sign in more than half of them (Zhou et al., 2020).
Diffuse alveolar damage, fibroblast proliferation and fibrosis
are also found in autopsies of COVID-19 patients (Schaller
et al., 2020). Alveolar epithelial type II (ATII) cells show a
decreasing trend in SARS-CoV-2 infected patients (Delorey
et al., 2021). The spike (S) protein of SARS-CoV-2 binds to
angiotensin-converting enzyme 2 (ACE2) expressed in ATII
cells to enter host cells (Ziegler et al., 2020; Celik et al., 2021).
Damaged ATII cells can release transforming growth factor-β
(TGF-β) (Tatler and Jenkins, 2012), platelet derived growth
factor (Antoniades et al., 1990), connective tissue growth
factor (Pan et al., 2001) and interluekin-6 (IL-6) (Crestani

et al., 1994), thereby activating lung fibroblasts to increase
ECM deposition and promote the development of PF (Sisson
et al., 2010). The above researches reveal that COVID-19
patients are at high risk of developing PF (George et al., 2020).
Obviously, COVID-19/PF co-occurrence is a catastrophic
threat to global health, and it is unclear whether the
damage caused by COVID-19/PF co-occurrence can be
reversed (John et al., 2021). Therefore, it is an urgent need
to find an influential treatment for COVID-19/PF co-
occurrence.

Pirfenidone is one of the FDA-approved anti-fibrotic
agents to treat idiopathic pulmonary fibrosis (IPF).
Compared with methylprednisolone alone, pirfenidone and
methylprednisolone combination therapy improves PF in
hospitalized patients diagnosed with severe COVID-19
pneumonia (Acat et al., 2021). However, pirfenidone
cannot prevent or reverse the progression of PF, which
also limits its use in COVID-19/PF co-occurrence
(Lancaster et al., 2019; Noble et al., 2011). There is no
reported effective treatment for COVID-19/PF co-
occurrence so far, thus the discovery of effective drugs
against COVID-19/PF co-occurrence will contribute to
improving patient prognosis and reducing social burdens.
Surprisingly, it is confirmed that natural products have the
effect of suppressing viral replication and transcription, and
can inhibit cytokine storm and improve immunodeficiency
(An et al., 2021). Natural product is also increasingly
recognized as an alternative source for inhibiting fibrosis
(Bahri et al., 2017). Natural products can reduce fibrosis
by inhibiting inflammation, myofibroblast activation, ECM
accumulation and epithelial-mesenchymal transition (EMT)
(Chen et al., 2018). Natural products are a treasure trove for
discovering new therapeutic drugs for COVID-19/PF co-
occurrence. A natural product with dual antiviral and
antifibrotic effects may have the great potential to become
a therapeutic agent for COVID-19 and PF comorbidities.

Kaempferol, a natural flavonoid that widely exists in many
fruits, vegetables and herbal medicine, is known as an
antimicrobial, anti-inflammatory and antioxidant
compound (Devi et al., 2015; Imran et al., 2019; Ren et al.,
2019). Main protease (Mpro), a potential drug target for
treating COVID-19, is found to be potentially inhibited by
kaempferol (Khaerunnisa et al., 2020; Mahmud et al., 2021).
Moreover, it is reported that kaempferol may directly target
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SARS-CoV-2 main protease (3CL pro) to perform anti-
COVID effect (Shaldam et al., 2021; Zhang et al., 2021).
Simultaneously, kaempferol inhibits the progression of
silica-induced PF and attenuates fibrotic airway
remodeling via modulating protease-activated receptor-1
activation (Gong et al., 2014; Liu et al., 2019). The above
researches suggest that kaempferol has dual effects against
COVID-19/PF co-occurrence, but the molecular mechanisms
have not been investigated. Therefore, drug-target, disease-
target and critical targets among COVID-19, PF and
kaempferol were captured. Protein-protein interaction
(PPI), MCODE, transcription factors, tissue-specific
enrichment, molecular docking, Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways and Gene Ontology
(GO) analyses were performed. The detailed strategy of

exploring the targets and mechanisms of kaempferol
against COVID-19/PF co-occurrence by bioinformatics and
network pharmacology is shown in Figure 1.

MATERIALS AND METHODS

Screening for Drug-Related Targets
The targets associated with kaempferol were retrieved from
Comparative Toxicoomics Database (CTD, http://ctdbase.org/
, accessed date: 3 September 2021) (Davis et al., 2021),
Traditional Chinese Medicine Systems Pharmacology
Database and Analysis Platform (TCMSP, https://tcmspe.
com/, accessed date: 2 September 2021) (Ru et al., 2014),
Swiss Target Prediction (http://swisstargetprediction.ch/,

FIGURE 1 | The flow diagram of a pragmatic strategy for identifying the pharmacological mechanism of kaempferol against COVID-19/pulmonary fibrosis co-
occurrence based on system pharmacology and bioinformatics analysis.
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accessed date: 2 September 2021) (Daina et al., 2019),
Similarity Ensemble Approach (SEA, https://sea.bkslab.org/,
accessed date: 2 September 2021) (Keiser et al., 2007), SymMap
(https://www.symmap.org/, accessed date: 2 September 2021)
(Wu et al., 2019) and TargetNet (http://targetnet.scbdd.com/,
accessed date: 2 September 2021) (Yao et al., 2016).

Collection of Disease-Related Targets
Targets related to COVID-19 were obtained from DisGeNET
(https://www.disgenet.org/home/, accessed date: 2 September
2021) (Pinero et al., 2017), CTD, GeneCards (https://www.
genecards.org/, accessed date: 3 September 2021) (Rebhan et al.,
1997), Therapeutic Target Database (TTD, http://db.idrblab.net/ttd/,
accessed date: 3 September 2021) (Wang et al., 2020), PubChem
(https://pubchem.ncbi.nlm.nih.gov/, accessed date: 2 September
2021) (Kim et al., 2021) and DrugBank database (https://www.
drugbank.com/, accessed date: 4 September 2021) (Wishart et al.,
2018).

Six databases were used to obtained PF-related targets including
DisGeNET, CTD, GeneCards, TTD, Online Mendelian Inheritance
in Man (OMIM, https://omim.org/, accessed date: 2 September
2021) (Amberger et al., 2015) and Phenopedia (https://phgkb.cdc.
gov/PHGKB/startPagePhenoPedia.action, accessed date: 2
September 2021) (Yu et al., 2010). Targets were mapped to
standard symbols by using Uniprot database (https://www.
uniprot.org/, accessed date: 2 September 2021) (UniProt, 2015).

Analysis of Overlapping Targets Between
Drug and Diseases
The Venn package of R 3.6.2 software was used to draw the petal
map. Venn diagram showing the intersection of the targets of
kaempferol against COVID-19/PF co-morbidity was plotted by
the Venn Diagram tool (http://bioinformatics.psb.ugent.be/
webtools/Venn/) and Microsoft Excel.

Protein-Protein Interaction Network
Construction and Critical Targets Analysis
The shared targets between diseases and drug were put into
the STRING 11.5 database (https://string-db.org/, accessed
date: 6 September 2021) (Szklarczyk et al., 2021) to construct
a PPI network. The organism was set to “Homo sapiens” and
the minimum required interaction score was set to 0.4. Then
the PPI network was visualized by Cytoscape 3.7.2 software
(https://cytoscape.org/) (Otasek et al., 2019). The CytoNCA
plug-in Cytoscape 3.7.2 software was applied to calculate
topological parameters including degree, closeness,
betweenness, LAC, network and eigenvector (Tang et al.,
2015). Regarding the medians of topological parameters as
the screening threshold, the overlapping targets above the
threshold were identified as critical targets.

Module Analysis of Critical Targets
Metascape (http://metascape.org/, accessed date: 7 September 2021)
was used to perform module analysis of critical targets (Zhou et al.,
2019).MCODE score (Bader andHogue, 2003) was applied to cluster

the most significant modules. Code score was calculated on the
connection density of the adjacent area, and the target in
MCODE module with greater degree value was considered to play
a more important role in treating COVID-19/PF co-morbidity. Of
note, the top five targets with the highest degree values in MCODE
modules were selected to perform molecular docking analysis.

Key Transcription Factors Analysis of
Critical Targets
Transcriptional Regulatory Relationships Unraveled by
Sentence-based Text mining (TRRUST, https://www.
grnpedia.org/trrust/, accessed date: 7 September 2021) is a
useful tool for predicting transcriptional regulatory network
(Han et al., 2018). The TRRUST database provides abundant
information of 8,444 transcription factors (TFs)-target
network. Critical targets were input to TRRUST database
with the species of “Human.” The top 10 TFs ranking based
on p value from small to large were selected to construct the
TFs-target network by using Cytoscape 3.7.2 software.

Tissue-Specific Enrichment Analysis of
Critical Targets
Genotype-Tissue Expression (GETx) (https://www.gtexportal.
org/, accessed date: 7 September 2021) is an online tool to
study genetic variation and expression of human tissues
(Consortium, 2013). The top 50 targets ranking based on
modules’ degree values from high to low were selected for
tissue-specific enrichment analysis. The heat map showed the
correlation between different samples and targets, and more
the important tissues corresponding to the targets would show
darker colors.

Gene Ontology and Kyoto Encyclopedia of
Genes and Genomes Enrichment Analyses
of Critical Targets
GO enrichment analysis included biological process (BP), molecular
function (MF) and cellular component (CC), as well as KEGG
pathway enrichment analysis were conducted in R 3.6.2 software.
“Org.hs.eg.db” (https://www.bioconductor.org/packages/org.Hs.eg.
db, accessed date: 7 September 2021) was used to match the gene
ID corresponding to critical targets. Then “cluster Profiler” package
(Wu et al., 2021) was used to perform enrichment analysis with the
criteria of pvalueCutoff = 0.05 and qvalueCutoff = 0.05. Based on
adjusted p value in ascending order, the top 20 enrichment results
were selected to display as a bubble chart by bioinformatics tool
(http://www.bioinformatics.com.cn/). Furthermore, the KEGG
pathways were classified based on KEGG databases and visualized
by hiplot (https://hiplot.com.cn/).

Molecular Docking Analysis of the Top Five
Targets
Molecular docking is widely applied in drug detection and is often
used to predict the relationship between targets and ligand.
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Molecular docking was carried out between kaempferol and the
top five targets via AutoDock software (Vina 1.5.6, http://
autodock.scripps.edu/) (Shen et al., 2021; Trott and Olson,
2010), which was often used to calculate the molecular
interaction force between protein and ligand. The small-
molecule two-dimensional structure format information of
kaempferol was obtained from PubChem database (https://
pubchem.ncbi.nlm.nih.gov/) and saved in the SDF format. The
SDF molecular structure file of kaempferol was converted into a
PDB file by Open Babel software. The three-dimensional
structure of key target proteins was downloaded from the
RCSB PDB database (https://www.rcsb.org/) (Rose et al.,
2021). The Auto Dock Tools 1.5.6 software was used to
convert the molecular structure document into PDBQT format
and perform molecular docking. The PyMol 2.3.2 software was
used to visualize the results with higher docking scores and
calculate the corresponding RMSD values.

RESULTS

Targets of Kaempferol Against COVID-19/
PF Co-Occurrence
As shown in Figure 2A unique PF-related targets were obtained
from DisGeNET (924), CTD (112), GeneCards (2,094), TTD
(19), OMIM (96) and Phenopedia (153). As shown in Figure 2B,
11,457 unique targets of COVID-19 were retrieved from
DisGeNET (1,843), CTD (9,859), GeneCards (2,572), TTD

(93), PubChem (643) and DrugBank (344). As shown in
Figure 2C, 737 unique targets related to kaempferol were
identified from CTD (182), TCMSP (53), Swiss Target
Prediction (99), SEA (102), SymMap (67) and TargetNet
(496). Finally, 290 targets of kaempferol against COVID-19/PF
co-occurrence were obtained (Figure 2D).

Protein-Protein Interaction Network
Construction and Critical Targets
Acquisition
The nodes represented shared targets and the edges indicated
protein-protein interactions between shared targets in PPI
network. PPI network of 290 common targets shown in
Figure 3A contained 290 nodes and 7,431 edges. Through
the topological identification and calculation of PPI network,
the medians of the topological parameter were degree = 40.5,
closeness = 0.52, betweenness = 64.65, LAC = 25.27, network =
27.80 and eigenvector = 0.04. Then 115 critical targets with the
topological parameters greater than the medians of above six
topological factors were screened out to construct PPI network
of critical targets. There were 115 nodes and 3,639 edges in the
PPI network of critical targets as shown in Figure 3B.

Investigation of Important Modules
Module analysis was carried out by using Metascape tool and five
functional clusters were shown in Figures 4A–E. Module 1
included 28 nodes and 132 edges with MCODE score = 4.714.

FIGURE 2 | Collection of targets related to drug and diseases from various open-source databases. (A) The number of pulmonary fibrosis-related targets from six
open-source databases. (B) The number of targets related to COVID-19 from six open-source databases. (C) The number of targets associated with kaempferol from six
open-source databases. (D) Venn diagram depicting common targets between COVID-19, pulmonary fibrosis and kaempferol.

Frontiers in Pharmacology | www.frontiersin.org June 2022 | Volume 13 | Article 8650975

Jiang et al. Kaempferol Against COVID-19/PF Co-Occurrence

http://autodock.scripps.edu/
http://autodock.scripps.edu/
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
https://www.rcsb.org/
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Module 2 contained 24 nodes and 205 edges with MCODE score
= 8.541. Module 3 included 21 nodes and 62 edges with MCODE
score = 2.952. Module 4 comprised of 4 nodes and 4 edges with
MCODE score = 1.000. Module 5 included 3 nodes and 3 edges
with MCODE score = 1.000. The top five targets with the highest
degree scores were epidermal growth factor receptor (EGFR,
degree = 23), proto-oncogene tyrosine-protein kinase SRC
(SRC, degree = 21), mitogen-activated protein kinase 3
(MAPK3, degree = 21), mitogen-activated protein kinase 1
(MAPK1, degree = 21), mitogen-activated protein kinase 8
(MAPK8, degree = 20), RAC-alpha serine/thre onine-protein
kinase (AKT1, degree = 20), transcription factor p65 (RELA,
degree = 19) and phosphatidylinositol 4,5-bisphosphate 3-kinase
catalytic subunit alpha isoform (PIK3CA, degree = 18).

Key Transcription Factors Acquisition
115 critical targets were input to the TRRUST database and 203 TFs
were obtained. TFs-target network contained 97 nodes including 10
TFs, 87 targets and 278 edges (Figure 5). Red nodes represented TFs
and purple nodes represented corresponding targets, and the edge
indicated the relevance between TFs and corresponding targets. The
size of the red node was negatively correlated with p value, the larger
the size of the red node was, the more important it is in the TFs-
target network. Especially, there were four critical targets that were
also predicted as TFs, including signal transducerand activator of
transcription 1 (STAT1), tumor protein P53 (TP53), JUN proto-
oncogene, AP-1 transcription factor subunit (JUN) and RELA. The
detailed information of the top 10 TFs were listed in Table 1.

Critical Targets Were Mostly Enriched in
Lung Tissue
Tissues were represented on the abscissa and targets were indicated
on the ordinate (Figure 6). The data was presented as a heat map
and the color indicated the level of enrichment. The darker the color
was, the higher the expression level of critical target in corresponding
tissue was. The result indicated that most critical targets were highly
expressed in lung tissue, especially fibronectin 1 (FN1), heat shock
protein 90 alpha family class B member 1 (HSP90AB1), fos proto-
oncogene, AP-1 transcription factor subunit (FOS), JUN, RAC
family small GTPase 1 (RAC1), vascular endothelial growth
factor A (VEGFA), ABL proto-oncogene 1, non-receptor tyrosine
kinase (ABL1), RELA, heat shock protein 90 alpha family class A
member 1 (HSP90AA1) and so on.

Gene Ontology Enrichment Analysis
2,958 GO terms were obtained, of which 2,705 belonged to GO-BP,
94 to GO-CC and 159 to GO-MF. The top 20 GO terms were
respectively shown in Figures 7A–C. As for GO-BP, critical targets
were mainly enriched in response to lipopolysaccharide, response to
molecule of bacterial origin, response to oxidative stress, cellular
response to biotic stimulus, response to antibiotic, regulation of cell-
cell adhesion and so on. As for GO-MF, critical targets were mainly
enriched in cytokine receptor binding, phosphatase binding, protein
tyrosine kinase activity, growth factor receptor binding, protein
phosphatase binding and so on. As for GO-CC, critical targets
were mainly enriched in membrane raft, membrane microdomain,
membrane region, focal adhesion, cell-substrate adherens junction
and so on.

Kyoto Encyclopedia of Genes and Genomes
Enrichment Analysis
174 KEGG terms were acquired and the top 20 KEGG terms were
shown in Figure 8. Critical targets were mainly enriched in the
EGFR tyrosine kinase inhibitor resistance, interleukin 17 (IL-17)
signaling pathway, tumor necrosis factor (TNF) signaling
pathway, Toll-like receptor signaling pathway, Yersinia
infection, advanced glycation end product-receptor for
advanced glycation end product (AGE-RAGE) signaling
pathway in diabetic complications, hypoxia inducible factor 1
(HIF-1) signaling pathway, T cell receptor signaling pathway,

FIGURE 3 | Protein-protein interaction (PPI) network for critical targets of
kaempferol against COVID-19/pulmonary fibrosis co-occurrence. Nodes
represent targets and edges represent protein-protein interactions. (A) PPI
network of 290 common targets between COVID-19, pulmonary fibrosis
and kaempferol. (B) PPI network of 115 critical targets for kaempferol against
COVID-19/pulmonary fibrosis co-occurrence.
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C-type lectin receptor signaling pathway, Th17 cell
differentiation, phosphoinositide 3-kinase/AKT serine/
threonine kinase (PI3K/Akt) signaling pathway and so on. The
results of KEGG pathway enrichment analysis were classified into
five types, containing inflammation, oxidative stress, immunity,
virus infection, cell growth processes and metabolism (Figure 9).

Kaempferol Had Good Binding Activities
With Critical Targets
To investigate whether kaempferol directly binds to EGFR,
MAPK1, MAPK3, SRC, AKT1, MAPK8, RELA and PIK3CA
(the top five targets with the highest degree values), molecular
docking analysis was performed by Auto Dock Tools software. A
binding energy less than 0 indicates spontaneous binding of
ligand and receptor. The lower binding energy indicates a
better binding effect. It is generally believed that binding
energy < −5 kcal mol−1 indicates a good binding activity.
Moreover, the stability of the simulated molecular docking
systems was investigated by the root-mean-square deviation
(RMSD), and it means the system is stable when RMSD is
lower than 2 Å. The molecular docking results showed that the
binding energies of kaempferol and the eight critical targets
ranged from −6.23 to −8.15 kcal mol−1 (Table 2). All the

simulated molecular docking reached the RMSD value range
required for stability. The better docking result was selected for
molecular docking visualization by using PyMol 2.3.2 software.
The results showed that 2-5 hydrogen bonds could be formed
between kaempferol and the eight critical targets (Figure 10).
Molecular docking results proved that kaempferol had good
binding activities with the eight critical targets.

DISCUSSION

The prevention and treatment of COVID-19 related
complications are public concerns. COVID-19/PF co-
occurrence is a common and threatening condition, and early
intervention is important for improving prognosis of pulmonary
complications caused by SARS-CoV-2 infection (Pan et al., 2020).
Traditional natural products have the effect of inhibiting viral
replication and transcription, reducing cytokine storm and
ameliorating immunodeficiency (An, et al., 2021). Further,
growing evidence shows that natural products are alternative
sources for improving fibrosis (Bahri, et al., 2017). Therefore, it
reveals that natural product is a treasure trove for discovering new
therapeutic drugs. It has been confirmed that kaempferol
alleviates H9N2 influenza virus-induced inflammation and

FIGURE 4 |Module analysis of 115 critical genes is performed by the Metascape tool. Each module demonstrats different biological process functions. (A)Module
1; (B) Module 2; (C) Module 3; (D) Module 4; (E) Module 5.
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acute lung injury (Zhang et al., 2017). Kaempferol can also inhibit
the virus replication of the pseudorabies virus in mice (Li et al.,
2021). Moreover, kaempferol is proved to inhibit the activity of
the Japanese encephalitis virus in BHK-21 cells (Care et al., 2020).
Except for the antiviral effect, the anti-PF effect of kaempferol is
also verified by a silica-induced PF mice model (Liu, et al., 2019).
The above evidences indicate that kaempferol with dual antiviral
and anti-PF effects may be the promising medicine for treating
COVID-19/PF co-occurrence. Thus, this study analyzed potential
targets and mechanisms of kaempferol against COVID-19/PF co-
occurrence by integrating bioinformatics and system
pharmacological tools.

First, 290 common targets between kaempferol, COVID-19
and PF were obtained, and then 115 critical targets with greater
topological parameters in the PPI network were screened out. The
top five targets from the 115 critical targets were identified,

including EGFR (degree = 23), SRC (degree = 21), MAPK3
(degree = 21), MAPK1 (degree = 21), MAPK8 (degree = 20),
AKT1 (degree = 20), RELA (degree = 19) and PIK3CA (degree =
18). Computer modelling approaches show that kaempferol has a
high binding affinity to 3CLpro (Shaldam, et al., 2021; Zhang,
et al., 2021). In vitro experiment confirms that kaempferol has
strong inhibitory effects on 3CLpro (Khan et al., 2021). Of note,
except for the direct effect on virus-produced proteins,
downstream molecules or signaling pathways during the
pathologic process are also potential mechanisms for
kaempferol against COVID-19/PF co-occurrence. Surprisely,
molecular docking analysis found that kaempferol showed
promising binding activities with the top five targets (EGFR,
SRC, MAPK3, MAPK1, MAPK8, AKT1, RELA and PIK3CA).
EGFR inhibitors are proved to have antiviral and antifibrotic
effects based on the Viral Fibrotic score, indicating that EGFR

FIGURE 5 | The top 10 key transcription factors (TFs) of 115 critical targets. The red nodes represent TFs and the purple nodes represent corresponding targets.
The edges represent the connection between TFs and targets. The sizes of red nodes present negative correlation with p values and a node with larger shape represents
the more important role in treating COVID-19/pulmonary fibrosis co-occurrence.

TABLE 1 | Key transcription factors associated with critical targets.

Key transcription factors Description p value

RELA V-rel reticuloendotheliosis viral oncogene homolog A (avian) 1.33E-49
NFKB1 Nuclear factor of kappa light polypeptide gene enhancer in B cells 1 3.34E-46
JUN Jun proto-oncogene 2.28E-41
SP1 Sp1 transcription factor 2.52E-39
STAT3 Signal transducer and activator of transcription 3 (acute-phase response factor) 2.7E-33
TP53 Tumor protein p53 1.03E-26
EGR1 Early growth response 1 5.56E-23
ETS1 V-ets erythroblastosis virus E26 oncogene homolog 1 (avian) 3.68E-22
STAT1 Signal transducer and activator of transcription 1, 91 kDa 1.15E-21
BRCA1 Breast cancer 1, early onset 4.04E-21
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may be a critical regulator of COVID-19/PF co-occurrence
(Vagapova et al., 2021). SRC is involved in the pathogenesis of
PF by regulating EMT, myofibroblast differentiation and
inflammation.

Xu et al. (2020), and a recent study reports that targeting SRC
reduces titers of SARS-CoV-2 (Meyer et al., 2021). AKT shows an
increased trend in various fibrotic diseases (Lu et al., 2010; Huang

et al., 2011), and it also increases in fibroblasts of bleomycin-
induced IPF in vivo and in vitro (Vittal et al., 2005; Xia et al., 2008;
Le Cras et al., 2010). Moreover, deficiency of AKT1 significantly
inhibits viral RNA expression (Esfandiarei et al., 2004), and PI3K/
AKT kinase inhibitors are found to suppress the replication of
middle east respiratory syndrome (MERS) (Kindrachuk et al.,
2015). The first identified member of the MAPK pathway is

FIGURE 6 | The heat map shows the relationship between different tissue samples and critical targets. Column represents critical targets and row represents
enriched tissues. The shades of colors represent the levels of enrichment of critical targets in tissues, and the darker the color indicates the more significant enrichment of
targets in corresponding tissues.
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extracellular signal-regulated kinase (ERK)1/2, which
overexpresses in IPF (Antoniou et al., 2010). A study confirms
that inhibition of ERK1/2 attenuates bleomycin-mediated PF by
inhibiting EMT (Zou et al., 2020). In addition, MAPK is also

involved in regulating virus replication, immune response and
apoptosis of virus-infected cells (Bian et al., 2011; Gaur et al.,
2011). It is worth noting that p38 MAPK inhibitor effectively
prevents the phosphorylation of heat shock protein 27,

FIGURE 7 |Gene ontology enrichment analysis of critical targets. The size of the node represents the number of genes involved in the GO term, and the color from
green to red indicates the −log10 (adjusted p value) from small to large. (A) Biological process enrichment results of critical targets. (B) Molecular function enrichment
results of critical targets. (C) Cellular components enrichment results of critical targets.
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cathelicidin antimicrobial peptide response element-binding
protein and eukaryotic initiation factor 4E in SARS-CoV
infected cells (Mizutani et al., 2004). RELA regulates the

interferon IFN response during SARS-CoV-2 infection (Yin
et al., 2021), and inhibition of RELA contributes to improving
PF (Hou et al., 2018). PIK3CA belongs to the lipid kinase family
and is responsible for coordinating functions such as
proliferation, vesicle trafficking, and protein synthesis in
various cells (Maheshwari et al., 2017). The above results
reveal that targeting the critical targets especially the top five
targets may be the potential therapeutic approach for kaempferol
against COVID-19/PF co-occurrence.

Abnormal TFs activation and subsequent abnormal
pathogenic genes expression play important roles in disease
progression. The top 10 TFs were identified from 115 critical
targets, and RELA was the most significant TF with the smallest p
value among the top 10 TFs. The activation of RELA, a subtype of
nuclear factor kappa-B (NF-κB), enhances the expression of

FIGURE 8 | Kyoto Encyclopedia of Genes and Genomes enrichment analysis of critical targets. The size of the node represents the number of genes involved in the
enrichment pathway, and the color from green to red indicates the −log10 (adjusted p value) from small to large.

FIGURE 9 | The classification of KEGG pathways. The results of KEGG pathway enrichment analysis are classified into five types and a color represents a type.
Column represents KEGG pathway terms and row represents the number of targets enriched on the pathways.

TABLE 2 | Molecular docking results of kaempferol with top eight critical targets.

Number Target protein PDB ID RMSD Binding energy (kcal/mol)

1 EGFR 5HG8 0.263 −7.530
2 MAPK1 6SLG 0.000 −6.170
3 MAPK3 4QTB 0.024 −6.750
4 SRC 1FMK 0.838 −7.720
5 AKT1 1UNQ 0.000 −6.550
6 MAPK8 2XRW 0.010 −6.420
7 RELA 6NV2 0.002 −6.230
8 PIK3CA 6PYS 0.048 −8.150
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TGF-β1 (Rameshwar et al., 2000). TGF-β1 is a key pro-fibrotic
factor that has been proved to promote the transition of fibroblast
to myofibroblast in PF (Andersson-Sjoland et al., 2008; Goodwin
and Jenkins, 2009). ACT001 (NF-ĸB inhibitor) attenuates PF
through decreasing the transition of fibroblast to myofibroblast,
inhibiting IL-6 production and fibronectin deposition (Jaffaret al.,
2021). Increased inflammatory cytokines and chemokines levels
result in spontaneous haemorrhage, thrombocytopenia and
systemic inflammation, which are the main manifestations of
the fatal cytokine syndrome in advanced COVID-19 patients
(Song et al., 2020; Xu et al., 2020). The activation of NF-ĸB
enhances the expression of inflammatory cytokines and
chemokines, including IL-1, IL-6, IL-8 and TNF-α (Liao et al.,
2005; Wang et al., 2007). Selective bruton tyrosine kinase
inhibitor inhibits NF-ĸB at the RELA phosphorylation stage,
which leads to the reduction of C-reactive protein and IL-6
and an improvement of oxygen saturation (Roschewski et al.,
2020). Further, to explore the association between tissues and
critical targets, tissue-specific enrichment analysis was
performed. The results showed that FN1, HSP90AB1,

HSP90AA1 and so on were significantly enriched in the lung
tissues. One of the characteristics of PF is excessive deposition of
ECM proteins such as fibronectin (Liu et al., 2017). Elevated
fibronectin deposition has been found in the lung tissues of PF
patients (Liu et al., 2019), and it has been suggested that SARS-
CoV-2 infection may promote the fibronectin expression in
alveolar epithelial cells (Xu et al., 2020). HSP90 plays an
important role in the folding, maturation and stabilization of
proteins, and is therefore required for replication of multiple
DNA and RNA viruses (Nagy et al., 2011). HSP90 inhibitor could
inhibit virus replication, thus inhibition of HSP90 may be an
effective strategy against SARS-CoV-2 infection (Li et al., 2020).
In addition, increasing evidence shows that HSP90 is closely
related to fibrogenesis (Bellaye et al., 2014), and overexpression of
HSP90 emerges as a hallmark pathological step indicating the
fibrogenesis progress (Sontake et al., 2017; Bellaye et al., 2018).
Immunohistochemistry study reveals that HSP90α and HSP90β
are overexpressed in the lungs of IPF patients (Sibinska et al.,
2017). HSP90α participates in the PF progress through
promoting the phosphorylation of AKT in P38 and ERK

FIGURE 10 | The docking models of kaempferol with the identified the top eight critical targets. (A) Docking results of kaempferol and EGFR. (B) Docking results of
kaempferol and MAPK1. (C) Docking results of kaempferol and MAPK3. (D) Docking results of kaempferol and SRC. (E) Docking results of kaempferol and AKT1. (F)
Docking results of kaempferol and MAPK8. (G)Docking results of kaempferol and RELA. (H)Docking results of kaempferol and PIK3CA.
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signaling pathways (Dong et al., 2017). The above descriptions
indicate that targeting critical targets and TFs to regulate
downstream genes may contribute to improving the condition
of COVID-19/PF co-occurrence.

The biological process and molecular mechanisms of critical
targets were further analyzed by GO and KEGG enrichment
analyses. Critical targets were found to be strongly associated with
regulation of virus infection, oxidative stress, inflammation,
immune response and metabolic process. One of the
characteristics of oxidative stress is the excessive production of
reactive oxygen species (ROS) that damage lung tissues over time
(Otoupalova et al., 2020). In response to lung tissues damage,
lung fibroblasts proliferate and migrate to the damaged area to
differentiate into myofibroblasts, causing increased fibronectin,
type I and III collagen (Thannickal et al., 2004). Furthermore,
oxidative stress participates in the pathogenesis of COVID-19,
and SARS-CoV-2 infection induces oxidative stress through
increasing the production of ROS and inhibiting antioxidant
capacity mediated by the nuclear factor erythroid 2-related
factor 2 in the host (Olagnier et al., 2020). Unfortunately,
raised oxidative stress will induce inflammatory cascades that
ultimately lead to in apoptosis, lung injury and dysregulated of
immune responses (Delgado-Roche and Mesta, 2020). The GO
result suggests that the effect of kaempferol against COVID-19/
PF co-occurrence may be closely associated with the regulation of
biological process of oxidative stress, inflammation, immune
response and metabolic process.

Furthermore, it was pleasant to find that critical targets
were mainly involved in oxidative stress, inflammation, cell
growth process, metabolism, immunity and virus infection-
related pathways. Among the KEGG pathways, IL-17
signaling pathway, TNF signaling pathway, Toll-like
receptor signaling pathway, HIF-1 signaling pathway,
EGFR tyrosine kinase inhibitor resistance and PI3K/Akt
signaling pathway showed significant significance. IL-17 is
found to be highly expressed in patients with COVID-19 and
PF comorbidities (Nuovo et al., 2012; Jahaj et al., 2021).
Circulating IL-17 is overexpressed in severe COVID-19
patients compared to severe non-COVID-19 patients
(Jahaj, et al., 2021). IL-17 signaling pathway is closely
related to T helper (Th)17 cell differentiation and
exacerbates cytokine storm during SARS-CoV-2 infection
(Wu and Yang, 2020). High levels of IL-17 are also found
in the lung tissues of IPF patients, which demonstrates that
IL-17 signaling pathway is related to IPF progress (Nuovo,
et al., 2012). TLRs are pattern recognition receptors involved
in the PF process by regulating inflammation and injury
repair (Kim et al., 2011). Moreover, activation of Toll-like
receptor signaling pathway promotes the overexpression of
pro-inflammatory factors (Conti et al., 2020). And
interaction between TLRs and viral particles is one of the
reasons that causes death of COVID-19 patients (Patra et al.,
2021). HIF-1, an important transcriptional factor in response
to hypoxia, plays an important role in mammalian oxygen
homeostasis and is involved in PF progress (Epstein et al.,
2001; Xiong and Liu, 2017). Selective silence of HIF-1α in
alveolar epithelial cells can inhibit the progression of

bleomycin-induced PF (Weng et al., 2014). Dysregulation
of HIF exacerbates edema and inflammation in the lung
tissues of patients with ALI, which is associated with
glycolysis and mitochondrial respiration (Eckle et al., 2013).
Other study also shows that the viral ORF3a protein increases
the expression of HIF-1α, which in turn aggravates SARS-CoV-
2 infection and inflammatory response (Tian et al., 2021).
Besides, EGFR has dual pro-fibrotic and anti-fibrotic effect,
and cancer patients treated with EGFR tyrosine kinase
inhibitors-monoclonal antibody present an elevated incidence
of interstitial lung disease (Osawa et al., 2015). However, a study
suggests that gefitinib can inhibit the progression of mice
models of bleomycin-induced PF (Ishii et al., 2006).
Spontaneous PF is observed in transgenic mice with high
expression of EGFR ligands (Korfhagen et al., 1994;
Perugorria et al., 2008), and EGFR ligands silencing
contribute to improving PF (Madtes et al., 1999). In a word,
these studies show that abnormal EGFR expression promotes
the development of PF. Moreover, EGFR inhibits IFN-I
production (Lupberger et al., 2013) and significantly
increases during ALI (Finigan et al., 2012), indicating that
EGFR is a potential targeted pathway for treating COVID-19.
ALI caused by cytokine storm is the characteristic of COVID-19,
and only the combination of TNF-α (an important subtype of
TNF signaling pathway) and IFN-γ can induce inflammatory
cell death during SARS-CoV-2 infection (Karki et al., 2021). In
addition, TNF-α significantly increases in mice models of
bleomycin-induced PF (Hou, et al., 2018). PI3K/AKT kinase
inhibitors are confirmed to inhibit the replication of MERS
(Kindrachuk, et al., 2015), and the inhibition of PI3K/AKT
signaling pathway contributes to alleviating PF (Fang et al.,
2020). The above researches illustrate that COVID-19 and PF
share the common targeting pathways, and IL-17, TNF, HIF-1,
EGFR, PI3K/AKT and Toll-like receptor signaling pathways
were the critical mechanisms of kaempferol against COVID-19/
PF co-occurrence.

CONCLUSION

This study is the first to elucidate the effect of kaempferol
against COVID-19/PF co-occurrence by bioinformatics and
systems pharmacology tools. The underlying mechanisms of
kaempferol against COVID-19/PF co-occurrence may be
related to bind to EGFR, SRC, MAPK3, MAPK1, MAPK8,
AKT1, RELA and PIK3CA. Kaempferol might regulate
inflammation, oxidative stress, immunity, virus infection, cell
growth process and metabolism through targeting EGFR, IL-17,
TNF, HIF-1, PI3K/AKT and Toll-like receptor signaling
pathways to perform anti-COVID-19/PF co-occurrence
effect. These findings suggest the possibility that kaempferol
is a candidate compound to treat COVID-19/PF co-occurrence,
but clinical, in vivo and in vitro experiments are needed to carry
out to verify the predicted effect of kaempferol on COVID-19/
PF co-occurrence in the future. This study contributes to
providing effective strategy for exploring therapeutic
approach for COVID-19/PF co-occurrence.
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