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SUMMARY

Computational protocols for cell type deconvolution from bulk RNA-seq data have
been used to understand cellular heterogeneity in disease-related samples, but their
performance can be impacted by batch effect among datasets. Here, we present a
DAISM-DNN protocol to achieve robust cell type proportion estimation on the
target dataset. We describe the preparation of calibrated samples from human
blood samples. We then detail steps to train a dataset-specific deep neural network
(DNN) model and cell type proportion estimation using the trained model.
For complete details on the use and execution of this protocol, please refer to Lin
et al. (2022).
BEFORE YOU BEGIN

Large-scale expression profiling of clinical samples has become feasible in routine clinical settings.

However, these methods, such as high-throughput RNA-seq, only measure the average expression

of genes from the heterogeneous samples in their entirety. As a result, they do not provide detailed

information on the cellular compositions of the samples. To leverage the wealth of existing and clin-

ically annotated bulk data, e.g., in The Cancer Genome Atlas (TCGA) and the International Cancer

Genome Consortium (ICGC), there has been strong interest in computational ‘‘deconvolution’’ algo-

rithms that can estimate individual cell type abundance from bulk tissue transcriptomic profiles.

Signature-based deconvolution methods derive an optimal dissection of original samples based on

a set of pre-identified cell-type-specific expression patterns. However, the deconvolution accuracy

would be plagued by technical bias when applied to samples profiled using different platforms from

those of signature matrix (Vallania et al., 2018). Enrichment- (or marker-) based methods, which

assign a per-cell-type score that can be used to compare the prevalence of a specific cell type across

samples. However, the per-cell-type scores cannot be used for comparison across cell types as these

values in general do not reflect the absolute abundances of different cells from a sample. Moreover,

enrichment-based methods can sensitively distinguish between ‘‘coarse-grained’’ cell types (e.g., B
STAR Protocols 3, 101587, September 16, 2022 ª 2022 The Author(s).
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1

mailto:zhanglei@xmu.edu.cn
mailto:jhan@xmu.edu.cn
mailto:rsyu@xmu.edu.cn
https://doi.org/10.1016/j.xpro.2022.101587
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xpro.2022.101587&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1. Overview of DAISM-DNN protocol
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versus T cells), but often have low specificity in discriminating between ‘‘fine-grained’’ cell types

(e.g., sub-populations of T cells) (Sturm et al., 2019).

Recently, the development of deep neural networks (DNNs) has provided the computational power

to resolve complex biological problems using data-driven approaches with the vast trove of data

available from the biomedical research community. However, it is still challenging for a DNN-based

algorithm to deliver consistent performance under different experimental conditions due to statis-

tical bias between training and actual data (Tegner and Gomez-Cabrero, 2022).

We propose the DAISM-DNNXMBD (XMBD: Xiamen Big Data, a biomedicalopen software initiative in

the National Institute for Data Science in Health and Medicine, Xiamen University, China) protocol

for cell type deconvolution from bulk RNA-seq data. By training a dataset-specific deep neural

network from a certain amount of calibration data drawn from the same experiment conditions as

the target dataset, DAISM-DNN effectively medicates problems of source-target data mismatch

problems in existing deconvolution methods, and produces highly accurate and reliable cell type

abundance from bulk RNA-seq data. Note that the trained DAISM-DNN model can also be used

across multiple biomedical experiments as long as these experiments are conducted under the

same experimental conditions as those used in generating the calibration data.

To properly execute the pipelines of DAISM-DNN (Figure 1), in the before you begin section, we

start from collecting peripheral blood mononuclear cells (PBMC) from human blood samples and

preprocessing for the following expression profiling and cell proportion measurement. The protocol

below provides information about preparing calibration samples for using DAISM-DNN on PBMCs

samples. The same protocol can be extended for other sample types such as whole-blood samples

or frozen tissue samples.

Institutional permissions

The studies described in this protocol received IRB approval by The First Affiliated Hospital of Xia-

men University.

PBMC isolation and storage

Timing: 1 h, it takes longer if more than 6 samples are processed at the same time

Note: We recommend processing samples within 6 h from the collection.
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1. Collect 10 mL peripheral blood of each sample in vacuum blood tubes.

Note: Heparin or citrate is recommended as anticoagulant, EDTA anticoagulated PBMC sam-

ples may require additional washing steps.

2. Using aseptic technique, transfer anticoagulant-treated blood from each blood collection tube

into 50 mL sterile conical tubes.

3. Dilute blood with an equal volume of PBS (room temperature (25�C), 1:1 dilution). Then mix the

blood and medium by gently inverting the tube or pipetting up and down.

4. Gently layer the diluted blood onto 20 mL Ficoll-Paque Plus in a fresh 50 mL conical tube. Slowly

dispense the first 5 mL of blood dropwise to avoid disturbing the separation medium and blood

interface.

5. Centrifuge at 400 3 g at room temperature for 20 min with the BRAKE OFF, to prevent disrupt-

ing the density gradient during deceleration.

6. Collect the PBMC layer at the interface between plasma and Ficoll-Paque Plus and transfer it into

a new 15 mL conical tube (troubleshooting problem 1).

7. Wash the cell suspension with 15 mL of prewarmed serum-free RPMI 1640 medium and centri-

fuge at 300 3 g at RT (25�C) for 5 min.

8. Discard the supernatant and flick the tube to detach the cell pellet. Repeat step 7.

9. Resuspend the cell pellet using 2 mL prewarmed serum-free RPMI 1640 medium.

10. Count cells and check the viability using 0.4% Trypan Blue Stain (Thermo Fisher Scientific) with

an automated cell counter or manually using a Neubauer hemocytometer (or an alternative cell

counter).

11. Centrifuge at 300 3 g at RT for 5 min to pellet the cells.

CRITICAL: If fresh PBMCs are planned to be used immediately, please skip steps 12–21.

12. Discard the supernatant and re-suspend the pellet in cold freezing medium to obtain a cell den-

sity of 4–6 3 106 cells/mL.

13. Transfer the cell suspension into a 1 mL cryovial and store at �80�C. When longer storage

(longer than 7 days) is planned, transfer the sample into �140�C or liquid nitrogen between 1

to 7 days after storage at �80�C.

Note: It is recommended to use the samples within one year.

PBMC thawing

Timing: approximately 1 h, it takes longer if more than 6 samples are thawed at the same

time

14. Warm complete RPMI 1640 medium with 10% FBS and 25 U/mL Benzonase for PBMCs in a 37�C
water bath.

Note: Benzonase treatment can reduce the viscosity and background by removing free DNA

from lysed cells.

15. Remove PBMC samples from liquid nitrogen, and keep them in the Thermo-Flask� (Thermo

Fisher Scientific) with liquid nitrogen or on dry ice.

16. Thaw frozen vials in 37�C water bath for 2–3 min, and remove the tube once the PBMC sample

just thawed.

17. Add 1 mL of warm complete RPMI 1640 medium to the cryovial in a dropwise manner. Then

transfer cells to an appropriately labeled 15 mL centrifuge tube and gently pipet up and

down to mix cells.
STAR Protocols 3, 101587, September 16, 2022 3
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18. Centrifuge cells at 300 3 g for 5 min at room temperature.

19. Remove supernatant and resuspend the cell pellet with 1 mL of warm complete RPMI 1640 me-

dium.

Optional: Filter cells through a 70 mm cell strainer if you observe any clumps.

20. Add 9 mL warm complete RPMI 1640 medium to the tube and gently pipet up and down to mix

cells.

21. Centrifuge at 300 3 g for 5 min at room temperature.

22. Remove supernatant and resuspend the cell pellet with 1 mL of warm complete RPMI 1640 me-

dium.

23. Count cells by adding 10 mL cells to 990 mL DPBS utilizing a hemocytometer (for example Novo-

cyte Flow cytometer or an equivalent equipment).

24. For calibration samples, adjust the cell concentration to 1–33 106 cells/mL with warm complete

RPMI 1640 medium for flow (or mass) cytometry or PBS for RNA purification. Transferred cells to

new 5 mL polystyrene round-bottom tubes (flow or mass cytometry) or 1.5 mL tubes (RNA-Seq).

Note: Pipet the cell suspension and make sure it’s well dispersed before transferring cells.
a. For flow (or mass) cytometry, place the 5 mL polystyrene round-bottom tubes in a 37�C CO2

incubator for 15 min before staining.

b. For RNA purification, centrifuge at 300 3 g for 5 min at room temperature.

i. Discard the supernatant of the rest cell suspension.

ii. The PBMC pellet can either be snap frozen in liquid nitrogen and stored at –80�C for later

RNA purification or used directly in an RNA purification procedure using the RNeasy Mini

Kit (1 3 106–1 3 107 cells).

Note: Make sure that supernatant is removed completely to avoid interference with the next

steps of RNA isolation.

Note: We also recommend thawing no more than 12 PBMC samples at once to minimize the

time thawed PBMCs are left at room temperature.

Prepare DAISM-DNN environment

Timing: 10 min

The DAISM-DNN package for Python is available through the following public repository: https://

github.com/xmuyulab/DAISM-XMBD. The requirements of hardware are dataset dependent, the

demo data provided with the DAISM-DNN source code on GitHub require a peak of 5.2 GB of

random-access memory (RAM) during the DNN training process, so a computer with 8 GB of RAM

should be able to run it smoothly.

25. DAISM-DNN is functional on all operating systems (Linux, Windows and Mac OSX) with Python

3. Python versionR 3.7 is recommended. Python can be downloaded from https://www.python.

org/downloads/. Once the Python environment has been set up, DAISM-DNN can be easily

installed via pip:
Optional: To better manage the development environment and avoid incompatible versions

of dependencies required by different projects, we recommend using a virtual environment or

$ pip install daism
4 STAR Protocols 3, 101587, September 16, 2022
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a docker container to run DAISM-DNN. The steps 26 and 27 under ‘prepare DAISM-DNN envi-

ronment’ refer to preparing DAISM-DNN environment via conda virtual environment and

docker container respectively. Only one of them needs to be implemented.

26. This step refers to creating a conda virtual environment and install daism package via pip or

conda. A simplified strategy to run Python on any operating systems is to use Anaconda.
$ d

$ c

$ c

$ p

$ c

$ d

$ d

dai
a. Anaconda can be downloaded from https://www.anaconda.com/products/individual ac-

cording to individual computer specifications.

b. It is recommended to create a new conda environment:
onda create -n daism python=3.7
c. Activate this environment:
onda activate daism
d. Run the following command to install daism via pip or conda:

i. For pip:
ock

ip install daism

ond

ock

ock

sm
ii. For conda:
a install daism -c zoelin1130
Note: All package dependencies should be handled automatically when installing with pip or

conda.

27. This step refers to building a docker container to run DAISM-DNN. We provide a docker image

with DAISM-DNN installed: https://hub.docker.com/r/zoelin1130/daism.
a. Please follow the instructions on https://docs.docker.com/engine/install/ to install Docker

according to individual computer specifications. More details on using Docker can be found

in https://docs.docker.com/get-started/.

b. Once docker is installed, open the console and pull the docker image:
er pull zoelin1130/daism:latest
c. Create a container if GPUs are available to speed up computation:
er run –gpus all -i -t –name run_daism -v example/:/workspace/example/ zoelin1130/

:latest /bin/bash
Optional: If GPU is not available on your device, create a container utilizing CPU:
er run -i -t –name run_daism -v example/:/workspace/example/ zoelin1130/daism:latest
Note: ‘‘run_daism’’ is your container name. It is strongly recommended to add -v parameter

for implementing data and scripts mounting: mount the local volume ‘‘example’’ (from your

machine) to ‘‘/workspace/example/ (to your container)’’ instead of directly copy them into

the container.

/bin/bash
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Figure 2. Schematic of preprocessing of single cell RNA-seq and bulk RNA-seq of purified cells
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Prepare your augmentation transcriptional data

Timing: varied

To provide sufficient training data for training DAISM-DNN, additional training samples are gener-

ated by computing weighted combinations of expressions of calibration samples and simulated

pseudo-bulk samples. In this study, we use single cell or purified bulk-RNA samples as augmentation

data to create pseudo-bulk samples.

In all cases, the augmentation transcriptome output requires to be in the format of a matrix

composed of columns associated to sample ID and rows to gene symbols. In our original study,

we used a manually annotated dataset of single cell RNA-seq of PBMCs from 103 Genomics web-

site, ‘‘8k PBMCs from a healthy donor’’ which is denoted as PBMC8k. We also used 1,533 RNA-seq

samples of purified cells collected from various studies as augmentation data in case the calibration

samples were profiled on high throughput sequencing. The cell type and GEO accession number of

each RNA samples were listed on Data S1. These processed augmentation datasets are available at

https://doi.org/10.17632/ysjwjvpnh3.1. Please note that steps 28 and 29 under ‘prepare your

augmentation transcriptional data’ can be carried out independently as they refer to preprocessing

of single cell RNA-seq data and bulk RNA-seq data of purified cells respectively (Figure 2).

Considering we have expression matrix and corresponding cell type annotation information of each

sample, anndata (Wolf et al., 2018) was used to handle these annotated data matrices in memory

and on disk. It can also be compatible with h5ad files. Depending on the h5ad format of augmenta-

tion in use, such a cell-type specific matrix can be obtained as following:
6 STAR Protocols 3, 101587, September 16, 2022
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28. In case in which single cell RNA-seq data were used for augmentation.
a. Align the raw single cell RNA-seq reads to the GRCh38 reference genome and quantify by

Cell Ranger (Zheng et al., 2017).

b. Use Seurat (Butler et al., 2018) to process the resulting expression matrix. The official Seurat

tutorial is available at: https://satijalab.org/seurat/articles/pbmc3k_tutorial.html.

i. First, exclude the cells with less than 500 genes or greater than 10% mitochondrial RNA

content and genes expressed in less than five cells from analysis.

ii. Then, exclude the cells with abnormally high gene counts which were considered as cell

doublets from further analysis. The raw uniquemolecular identifier (UMI) counts were log-

normalized, and the top 2,000 highly variable genes were called based on the average

expression (between 0.0125 and 3) and average dispersion (>0.5).

iii. Perform principal component analysis on the highly variable genes to further reduce the

dimensionality of the data.

iv. Finally, clusters were identified using the shared nearest neighbor-based clustering algo-

rithm on the base of the first 20 principal components with an appropriate resolution.

v. The identified clusters were annotated based on canonical marker expression patterns

consistent with known immune cell types. The marker genes were obtained from the

Cell Marker (Zhang et al., 2018) database for the target cell types in peripheral blood.

Cell types were identified manually by checking if the respective marker genes were high-

ly differentially expressed in each cluster.

Note: The clusters without high expression on the selected marker genes or with high

expression on the marker genes of other cell types were grouped into the ‘‘unknown’’ type.

c. Save the preprocessed counts data as a tab-delimited file with gene symbols in row and sam-

ple names in column.
29. In case in which RNA-seq data of purified cells were used for augmentation (See ‘‘sequence data

processing’’ for more details).
a. Download the raw FASTQ reads from the NCBI website. The cell type and GEO accession

number of each RNA samples were listed on Data S1.

b. Use fastp (Chen et al., 2018) to perform quality control of FASTQ reads.

c. Perform transcription and gene-level expression quantification using Salmon (Patro et al.,

2017) with GRCh38 after quality control of FASTQ reads.

Note: Users can choose different reference genome from GRCh38, but the version of the

reference genome for calibration samples and augmentation data should preferably be

consistent.

d. Get transcripts per million (TPM) normalization results from salmon output. Merge the quan-

tification results from different samples via R package tximport (Soneson et al., 2016).

Note: If the samples are from different study, users should take the intersection of gene sym-

bols of all expression profiles.

e. Get reads count results from salmon output. Compute the total reads count for each sample.

Remove the samples those total reads count is less than 1 million.

f. Save TPM-normalized expression data as a tab-delimited file with gene symbols in row and

sample names in column.
30. A comma-separated annotation table with two columns, sample names and annotated cell type,

is also needed.

31. On the Shell Console, users can convert tab-delimited matrix files and annotation table to ann-

data format and save as a h5ad file via create_h5ad.py, which is available through the DAISM-

DNN repository https://github.com/xmuyulab/DAISM-XMBD, as following:
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$ python creat_h5ad.py -anno annotation_table.csv -exp expression.txt -outdir ./ -prefix
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Where -anno defines the comma-separated annotation table; -exp: the tab-delimited expression

profile; -outdir: the folder where the output files are stored; -prefix: output filename prefix.

purified
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Human peripheral blood sample (sex, age as
required par study)

Any supplier N/A

Chemicals, peptides, and recombinant proteins

Ficoll-Paque Plus GE Healthcare Life Sciences Cat# GE17-1440-02

Phosphate-Buffered Saline w/o Ca & Mg (PBS) Mediatech Cat# 21040CV

RPMI 1640 (13) Medium Gibco Cat# 11875093

0.4% Trypan Blue Solution Thermo Fisher Scientific Cat# T10282

Fetal Bovine Serum, heat inactivated, qualified
(FBS)

Gibco Cat# 10438026

Benzonase� Thermo Fisher Scientific Cat# C973K71

DPBS w/o Ca/Mg (DPBS) Costar Cat# 21-031-CM

Critical commercial assays

RNeasy Mini Kit QIAGEN Cat# 74104

Deposited data

Single cell RNA-seq (PBMC8k) 103 Genomics https://support.10xgenomics.com/
single-cell-gene-expression/datasets

augmentation data for DAISM Lin et al., (2022);
Mendeley Data

https://doi.org/10.17632/ysjwjvpnh3.1

Dataset SDY67 (both flow cytometry data and
RNA-Seq data)

Zimmermann et al. (2016) ImmPort (http://www.immport.org) with
accession number SDY67

PBMC datasets Monaco et al. (2019) GEO (https://www.ncbi.nlm.nih.gov/geo/):
GSE107990 and GSE59654

Software and algorithms

Cytobank System Cytobank https://community.cytobank.org/

R software (v3.6.3) R https://cran.r-project.org

Cell Ranger (v2.1.0) 103 Genomics https://support.10xgenomics.com/
single-cell-gene-expression/software/
pipelines/latest/installation

Seurat (v3.1.1) Butler et al. (2018) https://satijalab.org/seurat

Salmon (v0.11.3) Patro et al. (2017) https://combine-lab.github.io/salmon

fastp (v0.20.0) Chen et al. (2018) https://github.com/OpenGene/fastp

tximport (v1.18.0) Soneson et al. (2016) https://bioconductor.org/packages/release/
bioc/html/tximport.html

FlowSOM (v1.18.0) Van Gassen et al. (2015) https://bioconductor.org/packages/release/
bioc/html/FlowSOM.html

Phenograph (v0.99.1) Levine et al. (2015) https://github.com/jacoblevine/PhenoGraph

DAISM-DNNXMBD Lin et al. (2022) https://github.com/xmuyulab/DAISM-XMBD

Other

70 mm Cell Strainer, Polypropylene Frame Biologix Cat# 15-1070

50 mL sterile conical tubes Thermo Fisher Scientific Cat# 339653

15 mL sterile conical tubes Thermo Fisher Scientific Cat# 339650

1 mL cryovial Accumax Cat# ACV01

15 mL Polypropylene Centrifuge Tubes Corning Inc. Cat# 430052

Falcon� 5 mL Round Bottom
Polypropylene Tubes

Corning Inc. Cat# 352063

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Novocyte Flow cytometer Agilent Technologies Cat# 2010011AA

2100 Bioanalyzer Agilent Technologies Cat# G2939BA

Quantus� Fluorometer Promega Cat# E6150

Neubauer hemocytometer Thermo Fisher Scientific Cat# 68052-14

Thermo-Flask� Thermo Fisher Scientific Cat# 2123-0010
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MATERIALS AND EQUIPMENT
Complete RPMI 1640

Reagent Final concentration Amount

RPMI Medium 1640 (13) N/A 500 mL

FBS 10% 50 mL

Benzonase� (25 kU/100 mL) 25 U/mL 55 mL

Total N/A 550 mL

Store at 4�C for up to 2 weeks.
STEP-BY-STEP METHOD DETAILS

Herein we describe Step-by-step methods for getting transcriptional data and corresponding cell

type proportions data for the execution of DAISM-DNN. In this section, we provide detailed data

processing steps and implementation of each module of DAISM-DNN.

Get your transcriptional data

Timing: 1 day

For both calibration samples and test samples, below is a general pipeline for preparation of RNA

sequencing data for use with DAISM-DNN.

1. RNA is isolated using the RNeasy Mini Kit (QIAGEN) when using PBMC samples according to the

manufacturer’s instructions (please refer to https://www.qiagen.com/us/resources/resourcedetail?

id=14e7cf6e-521a-4cf7-8cbc-bf9f6f a33e24&lang=en).

2. Measure the concentration of RNA isolated from PBMC samples using Quantus� Fluorometer.

Note: Calibrate the Quantus� Fluorometer before measurement. If quantitating samples of

higher concentration than the standard, dilute the sample to ensure it is within the linear range

of the standard (troubleshooting problem 2).

3. Check RNA integrity using Agilent 2100 Bioanalyzer.

Note: RNA integrity is assessed as an additional measure of the sample RNA quality. The Dis-

tribution Value 200 (DV200) is the percentage of RNA fragments longer than 200 nucleotides.

The lower is the DV200 value, the more degraded is the RNA in the sample. We recommend

using samples with DV200 higher than 30% for following steps.

4. Prepare 200 ng of total RNA in 5 mL of nuclease-free water for each sample.

Pause point: RNA samples can be stored at �80�C for several months.

5. Generate and sequence cDNA libraries from isolated PBMCs using the Illumina NovaSeq 6000

System or an equivalent platform.
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Process sequence data

Timing: 2 h

6. For processing RNA-seq data, quality assessment was carried out using fastp (Chen et al., 2018).

a. Install fastp from the following sources: https://github.com/OpenGene/fastp.

b. Once fastp installed, run the following command for paired end data:
7. Perform sequence alignment to targeted genes from GRCh38 using Salmon (Patro et al., 2017) or

an equivalent algorithm.

a. Install Salmon according to the tutorial: https://combine-lab.github.io/salmon/getting_started/.

b. In order to quantify transcript-level abundances, Salmon requires a target transcriptome. This

transcriptome is given to Salmon in the form of a (possibly compressed) multi-FASTA file, with

each entry providing the sequence of a transcript. Download the target transcript from En-

sembl: http://asia.ensembl.org/info/data/ftp/index.html. For example, we’ll be analyzing

some human data, so we’ll download and index the homo sapiens transcriptome.

> fastp -i in.R1.fq.gz -I in.R2.fq.gz -o out.R1.fq.gz -O out.R2.fq.gz
>

> curl http://ftp.ensembl.org/pub/release-106/fasta/homo_sapiens/cdna/Homo_sapiens.

GRCh38.cdna.all.fa.gz -o homo.fa.gz

>

g

>
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c. Extract a transcript-gene correspondence information file.
zgrep ">" Homo_sapiens.GRCh38.cdna.all.fa.gz | sed ’s/>//g’ | sed ’s/cdna.*gene_symbol://

’ | sed ’s/description.*//g’ > gene_map.txt
d. Next, we’re going to build an index on our transcriptome.
salmon index -t homo.fa.gz -i homo_index
e. Quantifying the samples.
salmon quant -i homo_index -l A \

-1 out.R1.fq.gz \

-2 out.R2.fq.gz \

-g gene_map.txt \

-p 8 –validateMappings -o salmon_out/${samp}
The -i argument tells salmon where to find the index. -l A tells salmon that it should automatically

determine the library type of the sequencing reads (stranded vs. unstranded etc.). The -1 and -2 argu-

ments tell salmonwhere to find the left and right reads for this sample (notice, salmonwill accept gzip-

ped FASTQ files directly). -g refers to the correspondence between transcripts and genes. If not spec-

ified, the output is quantification of gene expression. Otherwise, the output is the quantification of

transcript expression. Finally, the -p 8 argument tells salmon tomake use of 8 threads and the -o argu-

ment specifies the directory where salmon’s quantification results should be written. You can read

about salmon’s many options in the documentation (https://salmon.readthedocs.io/en/latest/).

Note: After the salmon commands finish running, you should have a directory named ‘‘sal-

mon_out’’, which will have a sub-directory for each sample. The main output file is called

‘‘quant.sf’’.
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8. Get transcripts per million (TPM) normalization result from salmon output. Merge the quantifica-

tion results from different samples via R package tximport.
> library(tximport)

> sampleList <- c("S1", "S2", "S3", "S4", "S5", "S6", "S7", "S8", "S9", "S10") #replace with

your sample list

> fileList <- file.path("salmon_out/", sampleList, "quant.sf")

> names(fileList) <- sampleList

> txi <- tximport(fileList, type = "salmon", txOut = T)

> prefixOut <- "result/salmon"

> write.table(txi$abundance, file=paste(prefixOut, "TPM.txt", sep="."), sep= "\t",row.names = T,

col.names = NA, quote = F)

> write.table(txi$counts, file=paste(prefixOut, "readscount.txt", sep="."), sep="\t", row.-
9. Compute the total reads count for each sample (salmon.readscount.txt). Remove the samples

those total reads count is less than 1 million.

10. Save the TPM-normalization expression matrix with columns associated to sample ID and rows

to genes specified using HUGO symbols as a tab-delimited file ‘‘caliexp.txt’’.

names = T, col.names = NA, quote=F)
Obtain paired cell type proportions from flow or mass cytometry

Timing: 2 h

Every sample from calibration transcriptional dataset must have paired cell type proportions data for

execution of DAISM-DNN.

11. Stains the sample with pre-selected antibodies that target surface and intracellular markers accord-

ing to the manufacturer’s instructions (For mass cytometry, please refer to https://www.fluidigm.

com/download/7266. For flow cytometry, please refer to https://enquirebio.com/flow-cytometry).

12. Acquire data on flow or mass cytometry.

13. The acquired data can be normalized and analyzed with Cytobank (https://community.cytobank.

org/) or other commonly used software for data cleaning, doublets, and dead cell removal.

14. The results were then exported as .fcs files for further analysis. Merge your FCS files from all sam-

ples using the cytofkit package (Chen et al., 2016) in R (v3.6.3). And scale the data with cytofA-

sinh-transformation.
>library(cytofkit)

>file_name <- list.files(raw_fcs_dir,pattern=’.fcs$’, full=TRUE)#replace ’raw_fcs_dir’

with your directory

>combined_data <- cytof_exprsMerge(fcsFiles = file_name, transformMethod = "cytofAsinh",

mergeMethod ="all")
15. Perform automated clustering with cytofkit using the FlowSOM algorithm (Van Gassen et al.,

2015), or an equivalent algorithm, such as Phenograph (Levine et al., 2015).

>combined_data <- as.data.frame(combined_data)
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>cell_clusters <- cytof_cluster(xdata = combined_data[,cluster_marker], method = "Flow-

SOM", FlowSOM_k = 40)

#if use phonograph alogorithm

>cell_clusters <- cytof_cluster(xdata = combined_data[,cluster_marker], method = " Rpheno-
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Note: FlowSOM_k refers to number of clusters for meta clustering in FlowSOM. Rphenog-

raph_k refers to integer number of nearest neighbours to pass to Rphenograph. ‘‘cluster_-

marker’’ refers to the subset antibodies users selected to identify specific populations in

high-dimensional analysis.

16. After every single cell was assigned to a cluster, manually annotate each cluster based on its

marker expression pattern compared with patterns of known immune cell types. Use heatmap

to visualize mean values of normalized markers expression in each cluster (Figure 3).

graph", Rphenograph_k = 1000)
>clustered_cells<-data.frame(combined_data[,cluster_marker], metacluster = cell_clusters)

#produce Marker-Cluster Heatmap

> heatmap_data <- clustered_cells %>%

group_by_at(c(’metacluster’)) %>%

summarise_if(is.numeric,mean,na.rm=TRUE)%>%

data.frame()

>heatmap_data <- na.omit(heatmap_data)

>row.names(heatmap_data)<-as.character(heatmap_data[,’metacluster’])

>library(pheatmap)

>pheatmap(mat=heatmap_data[,cluster_marker],

scale = "none",
Note: The name of the cell type annotated to CyTOF data should be consistent with that of

augmentation data (troubleshooting problem 3).

17. Calculate the cell type proportions of each sample according to manual annotation of each cell.

The calibration fraction file should be in the format of a matrix composed of columns associated

to sample ID and rows to cell type.

display_numbers =TRUE)
> cell_percentages <- cytof_clusterStat(data = clustered_cells, cluster = "metacluster",

statMethod = "percentage")

> cell_percentages = as.data.frame(cell_percentages)

> cell_percentages = cell_percentages/100
18. Save the calibration fraction file as a tab-delimited file.

# change the rownames of cell_percentages according to your annotation.
12 STAR Protocols 3, 101587, September 16, 2022



ll
OPEN ACCESSProtocol
CRITICAL: The same cell label should be used for a particular phenotype in both augmen-

> write.table(cell_percentages, file="califra.txt",sep="\t",quote=F)
tation annotation table and calibration fraction file.
Generate dataset-specific training data via simulation modules of DAISM-DNN

Timing: 5 min

After expression profiles of test and calibration samples as well as corresponding cell type propor-

tions are ready, users can start to run DAISM-DNN to achieve cell type proportion estimation. DA-

ISM-DNN has two training set simulation modules. One is DAISM_simulation which uses DAISM

strategy in generating mixtures (Figure 4). The other is Generic_simulation which generates training

set only using purified cells.

19. Before generating the training set, the users can keep a number of hold-out samples from the

input calibration dataset so that they can verify the performance of trained DAISM-DNN model

on the input dataset. The following command can be used to create the hold-out data:

Note: In troubleshooting problem 4, we evaluated the effect of the size of training data generated

from the same number of calibration samples on the deconvolution performance of DAISM-DNN.
$daism split -caliexp ./example/caliexp.txt -califra ./example/califra.txt -n 6 -seed 777
The expression profile and corresponding cell type proportions file of calibration samples were saved

to example folder. Where -caliexp defines the expression profile of calibration samples; -califra: the cell

type fraction file of calibration samples; -n: the number of hold-out samples from calibration samples;

-seed: random seed; -outdir: the folder where the output files are stored. This step will generate four

files: the expression profiles and ground truth cell fraction files of hold-out samples (hold_out_exp.txt

and hold_out_fra.txt) and the rest of calibration samples (rest_cali_exp.txt and rest_cali_fra.txt).

20. Generate dataset-specific training data populated from a certain amount of calibration samples

using DAISM simulation module:

-outdir ./example/
$daism DAISM_simulation -platform S -caliexp ./example/rest_cali_exp.txt -califra

./example/rest_cali_fra.txt -aug ./example/pbmc8k.h5ad -N 16000 -testexp ./example/tes-
Where -platform defines the platform of augmentation data (S refers to single cell RNA-seq while R refers

to RNA-seq); -aug: purified samples expression h5ad file used as augmentation, here we use

pbmc8k.h5ad for example; -N: number of simulation samples, the DAISM package set N to 16,000 as

default; -outdir: the folder where the output files are stored. This step will generate two files: an

DAISM-generated artificial RNA expression profiles based on calibration samples augmented with the

augmentation data (DAISM_mixsam.txt) and their corresponding cell fractions (DAISM_mixfra.txt).

Optional: DAISM package also includes another simulation module which generates training

dataset using only gene expressions of purified cells if the expression profile and correspond-

ing cell type proportions of calibration samples are not available.

texp.txt -outdir ./
STAR Protocols 3, 101587, September 16, 2022 13
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$daism Generic_simulation -platform S -aug ./example/pbmc8k.h5ad -N 16000 -testexp

./example/testexp.txt -outdir ./
Perform DAISM-DNN training

Timing: 10 min

A deep neural network can now be trained on the generated training data.

21. Use the DAISM-generated artificial profiles (DAISM_mixsam.txt) and corresponding artificial cell

fractions (DAISM_mixfra.txt) to train the neural networks.
$daism training -trainexp ./output/DAISM_mixsam.txt -trainfra ./output/DAISM_mixfra.txt
Where -ncuda defines the serial number of GPU; -p: include this option to report the performance of

trained model on training and validation set.

Note: The gene symbol and cell type list as well as the model will be saved in output folder

specified.

Note: If theartificialmixturesgeneratedusingonlygeneexpressionsofpurifiedcells, it is recommen-

ded to use ‘‘-sum2one’’ parameter in training and prediction process (troubleshooting problem 5).

Note: During the training process, DAISM-DNN randomly splits the training set and the vali-

dation set at a ratio of 8:2. DAISM-DNNwill stop the training process when the validation error

-outdir ./ -ncuda 0 -p
Figure 3. Heatmap showing mean values of normalized markers expression in each cluster of CyTOF data
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Figure 4. Schematic of generating pseudo-bulk training datasets using DAISM mixing strategy

$d

-c
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did not decrease for 10 epochs, and select the model producing the best results on the vali-

dation set as the final model for prediction. A ‘‘-p’’ option is provided to report the perfor-

mance of the final model on the training set and validation set in terms of Pearson correlation

between predicted fraction and ground truth in console.
Validate hold-out samples on trained model

Timing: < 1 min

Users can validate the trained model on the hold-out samples (generated in step 19) to see if the

desired performance can be achieved on test samples of interest.

22. Predict cell type proportions of hold-out samples via DAISM prediction module:
aism prediction -testexp ./example/hold_out_exp.txt -model ./output/DAISM_model.pkl

elltype ./output/DAISM_model_celltypes.txt -feature ./output/DAISM_model_feature.txt
23. Run the following command to evaluate the performance on hold-out samples. The output

‘‘metrics.txt’’ file reports the Pearson correlation, spearman correlation, Lin’s concordance cor-

relation coefficient (CCC) and root-mean-square error (RMSE) between predicted fractions and

ground truth.

-outdir ./
STAR Protocols 3, 101587, September 16, 2022 15



$daism metrics -pred ./output/DAISM_result.txt -gt ./example/hold_out_fra.txt -outdir ./
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Where -pred defines the prediction file; -gt defines the ground truth cell type proportions file.
Estimate cell type proportions via trained model

Timing: < 1 min

After validating the performance of the trained model on hold-out samples, users can perform cell

type proportion estimation on the test samples of interest.

24. Predict cell type proportions of test data via DAISM prediction module:
$daism prediction -testexp ./example/testexp.txt -model ./output/DAISM_model.pkl -cell-

type ./output/DAISM_model_celltypes.txt -feature ./output/DAISM_model_feature.txt -out-
Optional: DAISM package also provides one-stop DAISM-DNN module which integrates

simulation, training and prediction in one command.

dir ./
$daism DAISM -platform S -caliexp ./example/caliexp.txt -califra ./example/califra.txt -aug
Where -write defines whether to write simulation expression profile and corresponding cell type pro-

portions file to disk. If users choose not to save simulation products, remove -write parameter.

./example/pbmc8k.h5ad -N 16000 -testexp ./example/testexp.txt -outdir ./ -ncuda 0 -write
EXPECTED OUTCOMES

DAISM-DNN provides a robust and accurate cell type proportion estimation from bulk RNA-seq

data through training deep neural network on dataset-specific training set.

As outcome, DAISM-DNNdeconvolute bulk RNA-seq to predict absolute proportions of cell types of in-

terest. The result is a matrix composed of columns associated to sample ID and rows to cell types of

interest.

We evaluated the performance of DNN models trained from DAISM-generated pseudo training

data (DAISM-DNN) on the RNA-seq dataset SDY67 (Zimmermann et al., 2016). A total of 250 sam-

ples with ground truth proportions of five cell types (B cells, CD4 T cells, CD8 T cells, monocytes,

and NK cells) from SDY67 were used for analysis in this paper. The performance of DAISM-DNN

was measured from 30 permutation tests independently. For each permutation test, we used 50

randomly selected samples from SDY67 as testing data, and the remaining 200 samples were

served as calibration data, which were augmented with the scRNA-seq data PBMC8k of the five

cell types to create the training data respectively. DNN was trained on DAISM-generated training

data (Figure 5). Pearson correlation, Lin’s concordance correlation coefficient (CCC) and root-

mean-square error (RMSE) between predicted fractions and ground truth were used to evaluate

the performance of DAISM-DNN.
LIMITATIONS

Compared to other deconvolution algorithms, the DAISM-DNN model needs to be trained from

the RNA-seq expression profiles and the corresponding ground truth cell fractions from a set of
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Figure 5. Performance evaluation of DAISM-DNN on RNA-seq dataset SDY67

(A) Scatterplots of ground truth fractions (x axis) and predicted cell fractions (y axis) for DAISM-DNN. Global Pearson

correlation (r) is shown in scatter plots.

(B) The boxplots show the Pearson correlation, CCC and RMSE for each cell type in 30 permutation experiments.
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calibration samples. Therefore, this protocol is more suitable for applications with rigorous quality

control requirements, e.g., in a clinical setting where not only statistical correlation but also indi-

vidual level prediction performance is expected. In addition, as the performance of DAISM-DNN

may be affected by the number of calibration samples as well as the measurement errors of

ground truth cell type fractions of calibration samples, it is highly recommended that the users

train a high-quality DAISM-DNN model based on a sufficient number of calibration samples

(e.g., 100–200), and then use the model on subsequent testing samples measured following the

same standard operating procedure (SOP). Note that once a dataset-specific DAISM-DNN model

is trained, it can be reused without the need for retraining as long as the expression profiles of

testing samples are acquired using the same SOPs as those used in generating the model.

Another limitation of DAISM-DNN is that it requires RNA-seq expression profiles of purified cells or

single cells that match the target cell types of interest for data augmentation. This could be sub-

stantially eased by leveraging public single-cell datasets with well-annotated cell types

information.
STAR Protocols 3, 101587, September 16, 2022 17
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TROUBLESHOOTING

Problem 1

Low yield and/or viability of PBMCs. (before you begin: step 6).
Potential solution

Ensure that Ficoll temperature is between 18�C to 20�C. Ficoll is less dense at higher temperatures.

This may allow lymphocytes to enter the Ficoll layer instead of collecting at the interphase.

Avoid aspirating excessive Ficoll while collecting the PBMC layer. Exposure to Ficoll for long dura-

tions may be toxic to cells. Wash PBMCs with PBS two to three times.
Problem 2

Low or no fluorescence reading. (step-by-step method details: step 2).
Potential solution

Sample concentration was too low. Redilute sample and repeat measurement.

The wrong standard concentration was used to calibrate the Quantus� Fluorometer. Check that the

fluorescence is within the range of the standard curve used (e.g., if the RNA samples are of low con-

centration, then use the low concentration standard), and that the standard used the same as the

sample.
Problem 3

The cell types of augmentation data may not match that of CyTOF data even called the same names.

(step-by-step method details: step 16).
Potential solution

Users can use CITE-seq data or other data which provide single-cell transcriptome and surface pro-

teins simultaneously for augmentation. First, perform clustering on normalized protein profiles of

CyTOF and CITE-seq on surface markers in common, respectively. Then calculate Pearson correla-

tion between each cluster of CyTOF and CITE-seq data based on the mean values of marker expres-

sions. For each CyTOF cluster, we identified the best-matching cluster of CITE-seq according to the

correlation of the two clusters. The details may refer to Lin et al. (2022).
Problem 4

How many in-silico samples are needed to be generated from calibration samples? (step-by-step

method details: step 19).
Potential solution

To evaluate the effect of the size of training data generated from the same number of calibration

samples on the deconvolution performance of DAISM-DNN, we tested DAISM-DNN with different

training data sizes ranging from 640 up to 32,000 simulated samples on three PBMC datasets

(GSE59654, GSE107990, SDY67), respectively. The performance of each model was measured

from 30 permutation tests. In each permutation test, 50 randomly selected samples were held out

as the test samples, and the remaining samples from the same dataset were used as calibration sam-

ples. The mean CCC performance across cell types improved as the training data size increased on

all three datasets (Figure 6, reprinted with permission from Supplementary Figure S18 in Lin et al.

(2022)). However, the increment started to level off when the training data size increased to 3,200

simulated samples for GSE59654 and GSE107990, and about 12,800 simulated samples for

SDY67. Based on this result, we used 16,000 simulated samples as the default size of training

data in our experiments.
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Figure 6. Assessment of the effect of training data size on mean Pearson correlation coefficients across cell types
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Problem 5

The predicted proportions of cell types of interest do not meet ‘‘sum to one’’. (step-by-step method

details: step 20).
Potential solution

Note that we don’t use ‘‘sum to one’’ constraint in our objective equation of neural networks as in

some cases the target cell types may not cover all cell types existing in the sample. Therefore, the

sum of the fractions of target cell types may not necessarily equal to one. However, we provide a

‘‘-sum2one’’ option to add this constraint to DAISM-DNN models when it is necessary. This option

can be used as follows:
#training

$daism training -trainexp ./output/Generic_mixsam.txt -trainfra ./output/Generic_mix-

fra.txt -outdir ./ -ncuda 0 -sum2one

#prediction

$daism prediction -testexp ./example/testexp.txt -model ./output/DAISM_model.pkl -cell-

type ./output/DAISM_model_celltypes.txt -feature ./output/DAISM_model_feature.txt -out-

dir ./ -sum2one
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead

contact, Rongshan Yu (rsyu@xmu.edu.cn).
Materials availability

There are no newly generated materials associated with this protocol.
Data and code availability

The source code for DAISM-DNN is available at https://github.com/xmuyulab/DAISM-XMBD,

https://zenodo.org/record/6606456. The dataset SDY67 provides both flow cytometry data and
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RNA-Seq data and the data are available through ImmPort (http://www.immport.org) with accession

number SDY67. The dataset GSE107990 and GSE59654 were downloaded from GEO (https://www.

ncbi.nlm.nih.gov/geo/). Code for generating figures in this Protocol, including Troubleshooting, is

available as an R script in Data S2. Augmentation data for DAISM are available at Mendeley data

(https://doi.org/10.17632/ysjwjvpnh3.1).

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.xpro.2022.101587.
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