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00-645 Warsaw, Poland

4 Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
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Abstract: The initial aim of this work was to elucidate the mutual influence of different single-
stranded segments (loops and caps) on the thermodynamic stability of RNA G-quadruplexes. To
this end, we used a new NAB-GQ-builder software program, to construct dozens of two-tetrad
G-quadruplex topologies, based on a designed library of sequences. Then, to probe the sequence–
morphology–stability relationships of the designed topologies, we performed molecular dynam-
ics simulations. Their results provide guidance for the design of G-quadruplexes with balanced
structures, and in turn programmable physicochemical properties for applications as biomaterials.
Moreover, by comparative examinations of the single-stranded segments of three oncogene promoter
G-quadruplexes, we assess their druggability potential for future therapeutic strategies. Finally, on
the basis of a thorough analysis at the quantum mechanical level of theory on a series of guanine
assemblies, we demonstrate how a valence tautomerism, triggered by a coordination of cations,
initiates the process of G-quadruplex folding, and we propose a sequential folding mechanism,
otherwise dictated by the cancellation of the dipole moments on guanines.

Keywords: RNA G-quadruplex folding; RNA—cation interactions; valence tautomerism;
de novo RNA modelling; RNA G-quadruplex stabilization

1. Introduction

More and more scientific reports indicate the wide occurrence of guanine quadru-
plexes (GQs) across the transcriptome in various regions of mRNA, non-coding RNAs and
telomeric 3′overhangs, being involved in replication and genomic instability [1–3]. The
GQ-forming sequences are overrepresented in oncogene promoter regions such as hTERT,
MYC, BCL2, c-KIT and KRAS [4]. The latter is the most frequently mutated oncogene in
human cancers and the Kristen rat sarcoma viral oncogene homologue (KRAS) mutation
is commonly associated with poor prognosis and resistance to therapy. For this reason,
quadruplexes have become emerging potential therapeutic targets, as the transcriptional
repression of oncogenes through the stabilization of their GQ topologies has become a
novel anticancer strategy.

The guanine quadruplexes are non-canonical four-stranded nucleic acid helices (i.e.,
DNA or RNA molecules), assembled from repeated short sequences of guanines in the
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presence of (preferably monovalent) cations [5]. As presented in Figure 1, GQ secondary
structures are formed of at least two stacks of cyclic arrangements of four Hoogsteen
hydrogen-bonded co-planar guanosine residues (G-tetrads). Each guanine in the tetrad
acts both as an acceptor and a donor of two hydrogen bonds. The spatial proximity of the
four carbonyl oxygens in the G-tetrad is unique, with their lone electron pairs in a very
close approach, which produces a significant electrostatic repulsion of negative charges
and, therefore, represents an excellent location for the coordination of dehydrated cations.
Quadruplexes can be formed intramolecularly or by the association of two or four nucleic
acid molecules, and some of them also have the tendency to oligomerize. The tracks of the
stacked guanines (G-strands) are connected to the sugar-phosphodiester backbone(s) via
glycosidic bonds, which can adopt the anti or syn geometries, depending on the relative
orientation of the four G-strands (regarding their 5′ to 3′ polarity): parallel (the four strands
share the same polarity), antiparallel (two strands one way, the other two the opposite way;
these pairs correspond to two adjacent or diagonally opposed G-strands, resulting in very
different geometries) or hybrid (three strands sharing the same polarity and the last one
having the opposite). The parallel topologies contain almost exclusively anti guanines,
whereas mixtures of syn and anti are observed in antiparallel and hybrid structures. Finally,
the single-stranded sections that link G-tetrads are called loops and can also adopt diverse
geometries: lateral (edgewise), diagonal and double-chain reversal (propeller) [5].

Figure 1. Left panel: Schematic representation of a G-tetrad with a coordinated metal cation. Central
and right panels: The PDB ID 2RQJ structure that was used as a reference for the investigated series
of intramolecular RNA two-tetrad G-quadruplex systems. Loops and caps are coloured green and
cyan, respectively.

The length and composition of the loop motifs are major determinants of the thermal
stability and folding topology of quadruplexes [6–8]. For example, the shortest, single-
nucleotide loops intrinsically form the propeller geometry, which corresponds to the
parallel orientation of the four G-strands that are inherent in RNA G-quadruplexes. The
combination of different loop geometries, orientations of G-strands and molecularities
determines the polymorphism of GQs [9], with 26 theoretically possible G-quadruplex
topologies for nucleic acids, among which only a few have been observed in vitro [10–12].
Ultimately, the topology of a G-quadruplex depends on its precise nucleotide sequence,
which can provide additional stabilizing interactions via pi-stacking, hydrogen bonding,
solvation and cation coordination, but also on buffer conditions, i.e., the types of cations in
the solvent.

G-quadruplex formation has been demonstrated in the presence of monovalent and
divalent cations, with the structural stabilization following this general trend: Sr2+ > K+

> Ca2+ > NH+ > Na+ > Rb+ > Mg2+ > Li+ > Cs+ [13,14]. Still, the majority of physical
studies reported for G-quadruplexes have been conducted in solutions containing Na+

or K+, as these are the most abundant monovalent cations in cells. Potassium ions are
preferred over sodium ions, because the dehydration prior to their entry in the central
channel of stacks formed by G-tetrads (the GQ core) is energetically less favourable for Na+

than K+. In contrast to Mg2+, which has a greater affinity for negatively charged backbone
phosphates, monovalent cations (e.g., Na+ and K+) are the most commonly associated
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with non-anionic oxygens (i.e., oxygen atoms other than those in the phosphate group)
as inner shell ligands. This general trend has been confirmed by Balasubramanian and
co-workers in their experiments with a hybrid RNA molecule, which was equally likely
to fold into two mutually exclusive intramolecular structures: a helix-based hairpin and
a G-quadruplex. The eleven-nucleotide RNA-stretch (rGCGGGAGUGGG) experienced
structural ambivalence between the hairpin and G-quadruplex conformers, as it is comple-
mentary to both (CUACCCGC) and (AGGGAGGG) sequences within the same strand [15].
The authors suggested that the conformational preference in that RNA molecule depended
strongly on the relative amounts of mono- (K+) and divalent (Mg2+) metal cations, leading
to quadruplex or hairpin conformations, respectively. The space between the four carbonyl
groups is sufficiently large to accommodate coordinated sodium ions in the planes of
G-tetrads. The ionic radius of Na+ is 0.95 Å, and experimental studies indicate that this is
around the maximum size of a cation that can be coordinated in the plane of a G-tetrad
(Figure 2).

Figure 2. G-tetrads stabilized by potassium (left) and sodium (right) ions, calculated at the QM level
of theory. The central panel presents different positions of K+ and Na+ cations with respect to the
plane of G-tetrads.

Larger cations, such as K+ (with the ionic radius of 1.33 Å), are too large to be coordi-
nated within the plane of the G-tetrad, but they are coordinated between the planes of two
stacked tetrads. Multiple cation coordination geometries and occupancies are also possible
and observed in G-quadruplexes [5]. The coordinated cations not only screen electrostatic
repulsion between the lone pair electrons on carbonyl oxygens, but they also repel one
another within the GQ core, when it contains more than one coordinated cation. Thus, the
cation localization within a G-quadruplex is the result of both cation–lone pair attraction
and cation–cation repulsion forces. In this work, we present an additional role of the cation
in the folding and stabilization of G-quadruplexes, in the initiation of intramolecular charge
transfer (valence tautomerism) in guanines, prior to the assembly of the adjacent guanines
by hydrogen bonds via Hoogsteen edges. Thanks to the presence of a 2′hydroxyl group
on ribose sugar, an RNA G-quadruplex forms a more thermodynamically stable, compact
and less hydrated structure than its DNA counterpart [16–19]. The inherent chemistry of
2′hydroxyl groups on riboses plays a significant role in redefining the hydration structure in
the grooves and the hydrogen bonding network, causing more intramolecular interactions
within the RNA quadruplex topology and leading to enhanced stability. Furthermore, the
2′hydroxyl groups exert conformational constraints on the GQ architecture, preventing
it from attaining syn-conformation (prerequisite for the antiparallel relative orientation
of the G-strands), which limits the RNA quadruplexes to parallel conformations only. In
the parallel conformation, the G-strands are oriented in the same direction and (preferably
short) propeller loops connect the top of one strand with the bottom of the adjacent strand.
Moreover, the presence of planar uridines instead of thymines (possessing a bulky methyl
group) in the loops additionally stabilizes RNA quadruplexes, by promoting pi-stacking
interactions with other bases and the release of the structured water molecules [20]. Overall,
the monomorphic all-parallel and all-anti topology substantially reduces the diversity of
RNA G-quadruplexes (as compared to their DNA counterparts [21]), making them very
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straightforward testing macromolecules for studying quadruplex folding and probing their
structural modifications.

To understand how optimized RNA sequences could assist in achieving G-quadruplex
topologies with desired physicochemical properties, we examined the effect of the loop
sequences and cap compositions on the thermal stability and folding topology in a library
of a dozen two-tetrad RNA G-quadruplexes by a combination of quantum mechanical
(QM) calculations and molecular dynamics (MD) simulations, using classical and (for
selected GQ systems) polarizable force fields [22,23]. The choice of the two-tetrad RNA
G-quadruplexes as the testing system was dictated by their intrinsic lower stability due
to minimal number of G-tetrads, causing higher sensitivity to structural modifications.
For this reason, the influence of selective in silico mutations, introduced in the loop and
cap fragments, on the dynamic behaviour and thermal stability of the investigated GQ
topologies could be observed within ∼100 nanoseconds of MD simulations [24–29].

2. Materials and Methods
2.1. Quantum Mechanical Calculations

The molecule builder–editor, implemented in the Avogadro 1.2.0 [30] software, was
used for the creation of the set of investigated guanine systems (G-monomer, two G-dimers,
G-trimer and G-tetramer), as well as for the analysis of their molecular and electronic
structures obtained from the QM calculations. The optimization of guanine systems,
recommended for studying quadruplexes, was completed at the B3LYP-D3 level of theory,
i.e., with the dispersion correction added explicitly by Grimme’s method (third order)
with Becke–Johnson damping [31] and the 6-311++G(d,p) basis set [32], implemented in
the Gaussian 16 package [33]. The semiempirical dispersion correction scheme that we
used in this study provides reliable insights into the molecular structure and non-bonded
interactions in assemblies of heterocyclic systems (in this case assemblies of nucleotides),
which are in good agreement with the results that we later obtained with the LC-DFT
approach, recently recommended for studies of GQ models [34,35].

2.2. Molecular Dynamics Simulations

The stability benchmark of the investigated ∼40 GQ topologies was conducted
with MD >100 ns simulations using the Amber ff99SB-ILDN [36] force field (with the
ParmBSC0 [37] nucleic acid parameters included) with explicit solvation (TIP4P [38] model)
implemented in the GROMACS 4.5.x [39,40] package. The K+ ions were added only to
neuralize the net charge in the simulated systems. Such depletion of ions with respect to the
physiological conditions was dictated by the need to increase the sensitivity of the studied
quadruplexes to structural modifications when cations leave the GQ core. To retain the GQ
topologies of the models, the relaxation of these structures was performed gradually. First,
only the positions of water molecules were optimized; then, only the backbone (P atoms)
was relaxed during the NVT simulations. Finally, the whole GQ structure was involved
by the NVT and then NpT simulations. After such optimization with the gradual release
of a quadruplex structure, long MD production runs at room temperature (300 K) were
performed. The Berendsen thermostat and Parrinello–Rahman barostat were used, where
appropriate, in periodic boundary conditions.

The preparation of selected GQ systems for MD simulations with a polarizable force
field included explicit solvation with TIP4P water and ions (Na+ and CL− in 150 mM
concentration) with GROMACS 2022.1 (Amber ff99sb-ILDN force field). The choice of salt
concentration was dictated by buffer compositions used in experimental studies on RNA,
mimicking physiological conditions, as well as reported recommendations for solvation in
MD simulations of biomolecular systems [28,41–43]. The gradual minimization involved
consecutive steps: minimization of the solvent with frozen nucleic acids and flexible water,
minimization with position restraints on the nucleic acid with flexible water, unrestrained
minimization with flexible water, and, finally minimization with rigid water molecules.
All of the above steps consisted of the steepest descent followed by conjugate gradient
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phases. Next, the systems were converted to Tinker format with Tinker 8.10.2 [44] and an
AMOEBA 2018 [45] polarizable force field, using an in-house script. Then, the systems were
minimized with Tinker9 1.0.0 [46] and gradually heated to 300 K under NVT conditions.
After NVT and NpT equilibration runs (1 ns long with a 1 ps time step) production runs of
60 to 103 ns were performed with Tinker9. A Nosé–Hoover thermostat and barostat were
used, where appropriate, in periodic boundary conditions.

The trajectories from all MD simulations were visually examined and analysed using
VMD 1.9.3 software [47]. The binding pocket detection was performed with GHECOM
software [48]

2.3. De Novo Modelling of G-Quadruplex Topologies

We have developed a new software program, NAB-GQ-builder, based on Nucleic Acid
Builder (NAB), which allows for the rapid, sequence-based building of initial quadruplex
models, which can be further studied with any simulation/analysis methods [49]. NAB is
a molecular manipulation language which is distributed within AmberTools and Amber
molecular simulation packages [50]. As the main input, the program takes a sequence of
the quadruplex to be built, and information on the expected interactions between guanine
residues that create the quadruplex core. The latter consists of all pairs of guanines that
should form hydrogen bonds via Hoogsteen edges, as well as pairs of guanines that
are required to interact via pi-stacking. Based on these input data, the structure of the
quadruplex is built by “growing” the programmed topology iteratively, i.e., one residue at
a time. After each elongation of the nucleic acid strand, the model undergoes a series of
structural transformations that allow for putting the obtained nucleotides in their desired
geometric configuration. The whole procedure can be outlined as the following steps:

1. Adding a new nucleotide to the model. The orientation of the new nucleotide with
respect to the already built ones (if any) resembles that in canonical helical nucleic
acids—with adjacent nucleotides interacting via pi-stacking.

2. Application of the geometric restraints to the model based on user’s input and a
predefined set of templates, consisting of pairs of nucleotides involved in hydrogen
bonds via Hoogsteen edges, and pairs of pi-stacking nucleotides.

3. Concerted pulling of residues, based on the imposed restraints. The conjugated
gradient (CG) algorithm is used for this purpose, as implemented in NAB for “rigid
body transformations”. The structure with the lowest potential energy is chosen as
the input configuration for the next step.

4. Capping and parametrization. The model is properly capped to represent a chemically
valid nucleic acid molecule with Amber ff99bsc0-OL3 [37,51,52] force field parameters
assigned. assigned.

5. The backbone with restrained nucleobases is optimized using the Generalized Born
implicit solvent model [53].

6. The optional removal of the cap prior to the addition of a new nucleotide.

If the quadruplex-building procedure goes wrong at any point (i.e., the geometric
constraints cannot be fulfilled due to entanglement), it can be easily detected by a sudden
increase in potential energy signalled at step 3. This problem can be dealt with by a
manual intervention (i.e., placing the problematic nucleotide in a proper orientation and
restarting the program). In the case of all quadruplexes built for this study, it was enough
to increase the number of CG trials in step 3 to solve this problem automatically. The
output quadruplexes lack the central ions, and have to be added manually. The final
GQ model shall undergo standard energy minimization in explicit solvent before further
investigations. Further development of the program is planned. The current version of the
NAB-GQ-builder is available upon request. An exemplary building process performed by
the program is presented in Appendix C.
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3. Results

In the first step of our study, we probed the effect of the single-stranded sections (i.e.,
loops and caps) on the thermal stability and folding topology in a library of ∼40 designed
GQ systems, and three RNA quadruplexes located in the 5′-untranslated region (5′-UTR)
of the KRAS transcript (Table A1 in Appendix B.1) [54]. To this end, we built all of the
investigated systems, using our new tool for de novo quadruplex folding (NAB-GQ-builder,
see Materials and Methods, Section 2.3), and performed MD runs on a series of GQ models
(Table A1, Appendix B.1). Each investigated sequence could be described as leftCap–GG–
leftLoop–GG–centralLoop–GG–rightLoop–GG–rightCap. The reference sequence (PDB ID:
2RQJ, Figure 1, Table A1, Models 1 and 2) of the investigated series of RNA quadruplexes
was GG–A–GG–A–GG–A–GG–A, i.e., had single-nucleotide adenine loops and one single-
nucleotide adenine cap [55]. Except in the case of G-undecamer (Table A1, Model 24), where
guanines from the loops caused a structural destabilization by strongly interfering with G-
tetrads, all investigated GQ topologies with single-nucleotide loops and no cap fragments
remained stable (Table A1, Models 16, 24–26), in agreement with previous reports [12,55].
The presence of at least one single-nucleotide cap substantially enhanced the stability of
all those GQ structures (e.g., even a G-undecamer quadruplex with one A-cap remained
stable, Table A1, Model 5), primarily through retaining the central cation inside the GQ
core, but also by contributing to the stabilizing pi-stacking interactions with the G-tetrad
residues (Table A1, Models 2–6). The two investigated KRAS quadruplexes, GC–GG–C–GG–
C–GG–A–GG–CA (Figure 3, seq1, Table A1, Model 39) and A–GG–U–GG–C–GG–C–GG–C
(Figure 3, seq3, Table A1, Model 41), fell into the category of highly stable GQ topologies
with single-nucleotide loops and two cap fragments.

Figure 3. Top: The three RNA G-quadruplex systems located in the 5′-UTR of the KRAS transcript,
which are stable at room temperature according to molecular dynamics simulations with a polarizable
force field (AMOEBA). Seq1 and seq3 are both very stable thanks to their single-nucleotide loops and
cap fragments. Bottom: Assessment of the binding pockets in the seq1, seq2 and seq3 GQ topologies.
The deep potential binding pockets are located inside long loops of the least stable seq2 quadruplex,
which could be stabilized with small molecules.

Interestingly, regardless of the composition of other mutated single-stranded GQ
fragments, a single uridine in the central loop always guaranteed the highest stability of a
G-quadruplex structure (Table A1, Models 4, 6, 26, 31). As anticipated, single-uridine loops
promoted the stabilization of GQ structures by interacting with structured water molecules
and by possessing efficient hydrogen bond acceptors (i.e., carbonyl oxygens). Moreover,
by being planar, and the smallest and the most symmetric of the nucleotides, two uridines
in the propeller loop promoted its stiffness by effective pi-stacking interaction, which was
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unattainable for any other two-nucleotide loop. Still, the investigated G-quadruplexes with
two-uridine loops were stable only if ended by two-nucleotide caps on both sides (i.e.,
single-nucleotide caps were not enough), with decreasing stability following this trend:
GC–, CA–, AU–, AC–, GU– (Table A1, Models 19, 22, 20, 18, 38, respectively). As mentioned
earlier, cap fragments can stabilize a quadruplex by preventing the escape of cations from
the GQ core, and to some extent by fostering pi-stacking interactions with the nearest
G-tetrad. Importantly, the latter could not be achieved when cap nucleotides interacted
too strongly with G-tetrad or loop residues, and caused reciprocal displacements of the
guanines within the tetrad, leading to a gradual dissociation of the quadruplex.

Overall, the interactions between caps and G-tetrads could be moderated, for example,
by preferentially separating pi-stacking with the core guanine loop residues (i.e., purines)
by pyrimidine linkers. The optimization of the interactions between the caps and loops was
much more challenging. A successful interplay of interactions between purine–pyrimidine
caps and two-uridine loops that stabilized G-quadruplexes were observed for the GC–,
AC–, and AU– caps (but not GU–, where both cap residues possess carbonyl oxygens,
which are highly reactive with cations and water molecules). Interestingly, one loop with
the opposite order of purine and pyrimidine residues (CA–) also promoted the stabilization
of a GQ system with two-uridine loops (Table A1, Model 18). Thanks to a relative chemical
neutrality (i.e., possessing the smallest dipole moment among nucleotides and no carbonyl
oxygens), adenine worked successfully as a linker residue of that cap. The stabilizing effect
of adenine-containing caps was also observed in NMR experiments on a G-quadruplex-
forming human c-MYC oncogene promoter [56]. Although the three-nucleotide loops were
generally found to be too labile to foster the stability of G-quadruplexes, some combinations
of nucleotides in those loops resulted in relatively stable topologies (Table A1, Models
9, 13–15, 27–29). In the case of a purine–purine–pyrimidine loop (Table A1, Model 15),
two purines stiffened the loop, preferably by pi-stacking with each other, and in this way
promoted the stability of a GQ system, in agreement with previously reported experimental
studies on quadruplex loops [7]. In the case of a pyrimidine–purine–pyrimidine loop
(Table A1, Model 13), by separating a purine residue from G-tetrads by a pyrimidine
linker, the core guanines were protected from potentially disturbing stacking interactions
with the purine loop residue, and in this way maintained the integrity and stability of
such a quadruplex. We found a similar trend in the third studied KRAS quadruplex, GG–
CGGC–GG–CAGU–GG–CGGC–GG (Figure 3, seq2, Table A1, Model 40), where in each
loop the two preferentially pi-stacking purine residues in the middle were separated from
G-tetrads by pyrimidine linkers. The dynamic behaviour of the seq2, the least stable among
KRAS quadruplexes, drew our attention to the influence of the central loop on the overall
stability of GQ structures. As investigated in detail and described in the Appendix B.2, an
escape of the central cation from the GQ core of the seq2 quadruplex and a collapse of the
central loop both led to a pronounced distortion of the guanine core prior to quadruplex
unfolding. We also observed that even a minor intervention in the central loop’s content
(e.g., adding/changing nucleotides) very strongly influenced the stability of the whole
G-quadruplex (Table A1, Models 13 and 14). These results are consistent with experimental
assessment of the influence of the GQ loop sequence (especially the central loop) on the
quadruplex topology and stability [57,58].

The second step of our study concerned better understanding the role of electrostatic
interactions in G-quadruplex folding and stabilization. To this end, we built five sim-
plified (i.e., one layer of guanines, and no backbone) models, representing all possible
stages of a GQ-forming process: a G-monomer, two G-dimers, a G-trimer and a G-tetramer
in the reciprocal configurations characteristic of a G-tetrad. This simplified model of a
G-quadruplex was justified by the similarities in the values and directions of the dipole mo-
ments calculated for a single guanine and stacks of three guanines (Appendix A, Figure A2).
We considered two cases of a G-dimer, with adjacent (Figure 4a) or diagonally opposed
guanines (Figure 5a). Adding the adjacent guanine to a G-monomer (µtot = ∼7 D), initially
resulted in an increase in the total dipole moment (µtot = ∼10 D).
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Figure 4. The optimizations of two adjacent guanines without (a→b) and with (c→d) metal (here
potassium) cations, calculated at the QM level of theory. The optimization without a cation leads
to the cancellation of the dipole moments by a pronounced mutual rearrangement of the guanines,
driving the residues to interact with hydrogen bonds via Watson–Crick edges. The presence of the
cation stabilized the mutual orientation of guanines, favouring hydrogen bonding via Hoogsteen
edges, despite a non-zero total dipole moment of the system.

Figure 5. The optimizations of two diagonally opposed guanines without (a→b) and with (c→d) a
metal (here, potassium) cation, calculated at the QM level of theory. The optimizations in both cases
were associated with the cancellation of the dipole moments and pronounced changes in the mutual
orientation of guanines, that (in both cases) preclude the formation of GQ topology.

Then, upon optimization, the residues sampled the conformational space until they
were connected by two N–H· · ·O hydrogen bonds via Watson–Crick edges, which was
associated with the cancellation of the dipole moments (µtot = ∼0 D, Figure 4b). The
cancellation of the dipole moments was also observed among two diagonally opposed
guanines (Figure 5b). Again, the dipole–dipole attractive force led the guanines to the
same final mutual orientation as for the adjacent guanines, followed by the formation of
two N–H· · ·O hydrogen bonds via Watson-Crick edges. From this part of the study, we
conclude that the hydrogen bonding via Hoogsteen edges, which is characteristic of G-
quadruplexes, is in general unfavourable for two interacting guanine residues (Figures 4b
and 5b). Instead of forming hydrogen bonds via Hoogsteen edges, during optimization, the
neighbouring guanines always (i.e., even when additionally separated by 5 Å) sampled the
conformational space until they could finally connect by favourable hydrogen bonds via
Watson–Crick edges and cancel the dipole moments. The model of the G-trimer, in order
to cancel its substantial total dipole moment (µtot = ∼13 D, Figure 6a), became triangular
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during optimization (Figure 6b), while both the initial (Figure 7a) and optimized (Figure 7b)
models of a complete G-tetrad resulted in a zero total dipole moment. The result presented
in Figure 6b is in agreement with the two-decade-old studies of S̆poner and co-workers on
G-trimer intermediates, showing that without the cation “well-structured parallel-stranded
all-anti triplexes are unlikely to participate in folding/formation process of G-DNA” [59,60].
As in the other studied assemblies, the cancellation of the dipole moments corresponded to
attractive forces, which in the case of the G-tetrad worked along with the circular network
of hydrogen bonds via Hoogsteen edges (Figure 7b). The introduction of a monovalent (Li+,
Na+ and K+) metal ion to the same five guanine systems confirmed the game-changing
role of cations in the formation of G-quadruplexes. For example, upon interaction with
a potassium cation, the dipole moment of the G-monomer increased (from ∼7 to ∼10 D).
The relatively high value of the total dipole moment did not change when another adjacent
(Figure 4c) or diagonally opposed (Figure 5c) guanine was added to that G-monomer.
Interestingly, the interactions with a cation stabilized only the adjacent guanines in the
Hoogsteen hydrogen-bonded orientation (Figure 4d), while in the case of the diagonally
opposed G-dimer, one guanine rotated by 180◦ during optimization (Figure 5d). Adding
the third guanine to the system still did not change the total dipole moment (µtot = ∼10 D,
Figure 6c), while the cation preserved the initial Hoogsteen hydrogen-bonded arrangement
of guanines during optimization (Figure 6d). These results are in agreement with several
previous MD studies on the folding pathways of G-quadruplex structures [59,61], as well
as NMR experiments on G-triads coordinating cations [62]. Finally, the system of four
guanines (Figure 7c) exhibited an excellent stability, associated with the zero total dipole
moment (Figure 7d) and the circular network of hydrogen bonds via Hoogsteen edges.
As expected, the too-large potassium cation moved out of the G-tetrad’s plane during
optimization, while smaller cations (Li+ and Na+) stayed inside the negatively charged
GQ core (Figure 2). The extended models of G-strands, represented by stacks of three
guanines, exhibited analogical trends in forming guanine assemblies without and with
the assistance of cations. Interestingly, by coordinating only one metal ion, the whole
isolated stack of three guanine tetrads kept the proper geometry during optimization,
as the stabilization effect was propagated on the neighbouring guanines in the stack
by a combination of pi-stacking and dipole–dipole interactions (Figures A1 and A2 in
Appendix A). The high charge density of Li+ (0.90 Å) was responsible for the disrupted
planarity of the tetrad formed by crowded (i.e., too strongly attracted by the too small
cation) guanines, and corresponded to the lowest stabilization effect. In contrast, one K+

ion effectively coordinated eight guanines from the two neighbouring G-tetrads and all pi-
stacked layers maintained their planarity. The observed trend in the coordination strength
(i.e., K+ > Na+ > Li+) is particularly pronounced in guanine-deficient GQ systems, which,
by virtue of possessing the minimal number (two) of pi-stacking G-tetrads, depend even
more strongly on the stabilization effect provided by the coordination of cations (Table A1
in Appendix B.1).
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Figure 6. The optimizations of three adjacent guanines without (a→b) and with (c→d) a metal (here,
potassium) cation, calculated at the QM level of theory. The optimization without a cation leads to
the cancellation of the dipole moments by a reorganization of the guanines, leading to a triangular
orientation stabilized by Hoogsteen-like hydrogen bonds. The presence of the cation stabilized the
mutual orientation of guanines characteristic of a G-tetrad, via the Hoogsteen fingerprint of hydrogen
bonds, despite a non-zero total dipole moment of the system.

Figure 7. The optimization of a G-tetrad without (a→b) and with (c→d) a metal (here, potassium)
cation, calculated at the QM level of theory. The optimization in both cases did not much change
the mutual arrangement of the guanines. The potassium ion moved out of the plane of the G-tetrad
upon optimization. A G-tetrad without a cation remains stable, as guanines are held together by the
attractive forces originating from the cancellation of dipole moments, along with the circular network
of hydrogen bonds via Hoogsteen edges.
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4. Discussion

Our quantum chemical calculations on the above-described guanine systems strongly
indicate the key role of the cation in the process of G-quadruplex folding. Curiously, we ob-
served the electronic effects of metal ion coordination on the intramolecular charge transfer
(valence tautomerism) in guanines (Figure 8), manifested by the conformational trans-
formation (planar→nonplanar) of the amino group (–NH2), associated with the change
in its hybridization (sp2→sp3). The phenomenon of tautomerism has already been ob-
served in RNA biochemistry and proposed, for example, to enhance the structural and
functional diversity of RNA enzymes and aptamers [63,64]. To the best knowledge of the
authors, valence tautomerism has not yet been reported for RNA systems. However, it was
reported for 4-aminocoumarin, which, similarly to guanine, possesses the amino group
attached to a heterocyclic ring and undergoes transitions between sp2 and sp3 hybridization
states [65,66]. An isolated guanine possesses an sp2 hybridized (i.e., planar) amino group
with the nitrogen’s lone electron pair delocalized into rings (Figure 8). We observed that
the coordination of a metal ion by guanine promoted sp3 hybridization, associated with the
flattened triangular pyramidal geometry of the –NH2 group (i.e., the donor in the hydrogen
bond via Hoogsteen edges). The sp3 hybridized amino group, being more flexible and
stretched than its sp2 counterpart, becomes more easily reachable by the hydrogen bond
acceptor on the adjacent guanine. Interestingly, once the sp3 hybridized amino group
creates the hydrogen bond with the acceptor, the planarity of the –NH2 group is restored,
which enhances the ability of that amino group to donate hydrogen bonds [67].

Figure 8. Left: The dipole moments calculated for guanine alone (top) and upon coordination
of a metal cation (bottom) at the QM level of theory. Right: The valence tautomerism observed
in guanine upon the coordination of a metal (here, potassium) cation. The intramolecular charge
transfer that corresponds to the sp2 to sp3 transition of the amino group (top). The length of the
C–N bond in the amino group was calculated as 1.362 and 1.371 Å for sp2 and sp3 hybridizations,
respectively. The electrostatic potentials mapped on the van der Waals surfaces (bottom). Red and
blue colours correspond to negative and positive charges, respectively. Note the increase in the
negative charge (more red region) on the nitrogen in the amino group upon coordination of the cation,
which corresponds to the sp3 hybridization.

Based on these observations, we postulate that the valence tautomerism is an important
element in the cation-initiated G-quadruplex folding mechanism.

Without the assistance of a cation, neither two adjacent guanines extracted from a
G-tetrad, nor stacks of guanines (representing G-strands), could preserve the reciprocal
orientation that allows for hydrogen bonding via Hoogsteen edges. Instead, due to the
dipole–dipole attractive forces between guanines, they are conformationally rearranged
during optimization until they finally interact by hydrogen bonds via Watson–Crick edges
and cancel the total dipole moment (Figure 4b and 5b) [68–70]. We demonstrated that the
coordination of a cation is crucial for the stabilization of all studied G-tetrad fragments
(Figures 4c→d, 6c→d, 7c→d), except for the case of the diagonally opposed G-dimer
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(Figure 5c→d). In that case, the coordinated cation promoted a 180◦ rotation of one guanine,
corresponding to its relative syn-conformation, which is prerequisite for the antiparallel
relative orientation of the G-strands, and is therefore unavailable for the intrinsically
parallel topology of RNA G-quadruplexes. Based on our conclusions from the analysis
of the simplified model of tetrad-forming guanine systems (Figures 3–7), we propose
a folding mechanism of the monomorphic (i.e., all-parallel stems with all-anti guanine
orientation) intramolecular RNA G-quadruplexes, presented schematically in Figure 9 as
the a→c→d scenario. When the adjacent G-strands fold sequentially around the cation
(i.e., the “sequential scenario”), the total dipole moment of the assembly stays the same
throughout the whole process (as in Figures 4d and 6d). The electrostatic attraction between
carbonyl oxygens and a coordinated cation compensates for the non-zero (but constant)
total dipole moment of the RNA system during the intermediate stages of folding, until the
full G-quadruplex is created and the dipole moments on guanines are finally cancelled (as
in Figure 7d).

Figure 9. Two possible scenarios of G-quadruplex folding proposed on the basis of the obtained QM
results. Grey arrows indicate the sequences of folding, while green dotted lines indicate unfolded
loops. The “hinge scenario” (a→b→d): First, two adjacent pi-stacked G-strands assemble upon
interaction with a metal cation (a), and the same happens to the adjacent pair of G-strands (b); then,
due to a hinge-like conformational transformation of the central loop, both GQ halves assemble into
a complete quadruplex topology (d). Note that the “hinge scenario”, would require an energetically
unfavourable dissociation of an extra cation coordinated to one dimer of the adjacent G-strands before
completion of the folding process. Otherwise, the two halves of a quadruplex could not assemble
due to repulsion forces between the two cations. The “sequential scenario” (a→c→d): After two
adjacent pi-stacked G-strands assemble upon interaction with a metal cation (a), the next G-strands
join them in a sequential manner, i.e., through the stage of three adjacent G-strands (c), until they fold
into a complete quadruplex (d). Note that the “sequential scenario” requires a high propensity of
the central loop for folding into a propeller single-stranded structure in order to assemble the third
G-strand.

Importantly, without the assistance of a metal cation, the guanines from adjacent
G-strands are unable to attain the mutual configuration that is prerequisite for hydrogen
bonding via Hoogsteen edges (Figure 4). Therefore, we propose the “sequential scenario”
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as the mechanism of G-quadruplex folding, which requires cation coordination to initiate
and foster the quadruplex-forming process.

The proposed mechanism of sequential G-quadruplex folding (Figure 9, scenario
a→c→d) provides the answer to the question “why do tetrameric quadruplexes experi-
mentally tend to form all-parallel stems with all-anti nucleobase orientation” [34].

The stability of the complete quadruplex structure, which depends on the cancellation
of the dipole moments and the circular network of hydrogen bonds via Hoogsteen edges
(Figure 7b) within G-tetrads, is additionally moderated by the dynamic behaviour of the
single-stranded fragments, with the key influence of the central loop on the stabilization of
the whole GQ topology. The latter effect is strongly pronounced in the proposed “sequential
scenario” of RNA G-quadruplex folding, where the propensity of the central loop for
folding into a propeller single-stranded structure appears crucial for the creation of the
intermediate with three assembled G-strands (Figure 9c). A stable G-quadruplex topology
allows an exchange of ions between the negatively charged GQ core and the surrounding
solvent (Figures A4–A6). The most stable quadruplexes should remain intact even when
cations completely leave the GQ core for a short time (Figure 7b). A longer absence of
cations in the GQ core destabilizes the structure of a G-quadruplex, finally leading to its
dissociation (see Table A1, GQs marked as “destroyed”).

We observed that the central loop had the biggest impact on the G-quadruplex stability
and the highest susceptibility to changes; hence, this single-stranded section shall be
designed with particular caution.

As anticipated, single-nucleotide (particularly uridine) loops promoted G-quadruplex
stabilization, with the highest stability detected for GQ topologies possessing the single-
uridine central loop. We provided guidance in stabilizing GQ topologies possessing longer
loops, for example, by stiffening the loop by the placement of nucleotides that preferably
pi-stack with each other, or by separating the preferably pi-stacking purine residues from
the G-tetrads and caps. The single-nucleotide caps stabilized the GQ topologies indirectly
by locking cations inside the GQ core, and directly by contributing to the stabilizing pi-
stacking interactions with the G-tetrad residues. We observed that the fluctuations of the
loops, especially those that were longer, were often coupled with the sequence-dependent
dynamic behaviours of the cap fragments. The composition of the caps corresponded
to their bulkiness and flexibility, which were both responsible for their (de)stabilizing
properties. The larger (i.e., purine) the nucleotide, the better the cap’s coverage of the
entrance to the GQ core, which could prevent the escape of the central cation. The best
stabilizing single-nucleotide caps were made of adenine, which possesses the smallest
dipole moment among nucleotides and no carbonyl oxygens. Thus, they did not destabilize
G-tetrads by competing for interactions with the core guanines or cations. Other single-
nucleotide caps had weaker stabilizing effects, dictated by their chemical characteristics
and therefore their propensity to interact with core guanines and cations. Another way of
moderating the stabilization of G-quadruplexes by capping was achieved by two-nucleotide
caps, especially by the right combination of purine and pyrimidine residues. By using
a pyrimidine nucleoside as a linker that moves a bigger purine residue away from the
nearest G-tetrad, we moderated the pi-stacking interactions between the cap and guanines,
allowing for higher flexibility and therefore efficiency in retaining cations inside the GQ core.
Other compositions of two-nucleotide or longer caps had generally destabilizing effects
on the studied G-quadruplexes, especially in the topologies possessing long and labile
loops with nucleotides that were prone to interactions. The role of the caps as quadruplex
stabilizers is particularly pronounced in the guanine-deficient topologies, which by default
possess a weaker set of stabilizing interactions. In such cases, the efficient maintenance
of the cation inside the core is crucial for preserving the integrity of the otherwise floppy
tridimensional structures of two-tetrad G-quadruplexes.

In summary, the diversity of supramolecular interactions inherent to G-quadruplexes,
including hydrogen bonding, pi-stacking, charge transfer interactions, and metal ion
coordination-driven self-assembly, possess an inspiring methodological strategy of fabri-
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cating GQ-based functional materials [71–74]. Advanced G-quadruplexes with balanced
topologies and, in turn, programmable physicochemical properties have broad prospective
applications as stimuli-responsive (i.e., sensitive to metal ion concentration) and reversible
smart biomaterials.

Furthermore, we performed a pocket-based druggability assessment of three KRAS
two-tetrad RNA G-quadruplexes, whose stability we had assessed by molecular dynamics
simulations using both classical and polarizable force fields (Appendix B). Inside the central
CAGU loop of the least stable seq2 KRAS GQ topology with four-nucleotide loops and
no caps (Table A1, Model 40) we found a deep potential ligand-binding pocket (Figure 3,
bottom panel). As the pocket is located inside the most vulnerable element for the stabiliza-
tion of the whole GQ topology (i.e., the central loop), it should be prone to intervention
with small-molecule ligands. Moreover, the sequential diversity of the residues involved
in this pocket should correspond to a high degree of selectivity. In summary, the three
investigated KRAS oncogene promoter G-quadruplexes have potential as therapeutic tar-
gets for selective structure-stabilizing small-molecule ligands. This emerging potential was
recently reported experimentally [54,75]. The possibility of building reliable tridimensional
atomistic GQ models with NAB-GQ-builder makes the structure-based design of drugs
targeting quadruplexes possible.

5. Conclusions

Considering that GQ-forming sequences are overrepresented in the oncogene promoter
regions of the human genome, while being underrepresented in structural databases,
we developed a software—NAB-GQ-builder—that builds de novo atomistic GQ-models
based on nucleotide sequences. These models may become the basis for drug design
studies targeting G-quadruplexes [76], whose experimentally resolved structures are not
yet available.

We demonstrated, for the first time, an additional role of metal cations in the folding
and stabilization of G-quadruplexes, in the initiation of intramolecular charge transfer
in guanines (valence tautomerism). This phenomenon shall be further explored in the
context of guanine’s potentially enhanced chemical reactivity, which may lead to the RNA
oxidative damage observed in disease states, especially for neurodegenerative disorders.

Our combined simulations at the QM and MD levels of theory confirmed the game-
changing role of cation coordination in the initiation of the sequential folding of G-
quadruplexes, otherwise dictated by the cancellation of the dipole moments on guanines.
This mechanism explains previous experimental reports on the spontaneous tendency of
tetrameric G-quadruplexes to form all-parallel stems with all-anti nucleobase orientation.

Finally, by probing the influence of the composition of loops and caps on the dynamic
behaviour of guanine-deficient quadruplex topologies, we investigated their sequence-
dependent susceptibility to stabilization. On the basis of these results, we provided guid-
ance for the optimization of GQ-based morphologies for development of functional RNA-
based biomaterials [77].
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Appendix A. QM Results

Figure A1. The structures of three layers of stacking guanine quartets, optimized at the QM level of
theory, shown as simplified (i.e., lacking single-stranded motifs) representations of G-quadruplexes
with coordinated K+ (a), Na+ (c), and without cations (b). Note that without flexible loops, the
quartets remain intact even without cation coordination, thanks to the cancellation of the dipole
moments within the G-tetrads combined with the circular network of the hydrogen bonds via
Hoogsteen edges. The adjacent G-tetrads are held together by the quadrupole interactions between
pi-stacking guanines.
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Figure A2. The dipole moments calculated at the QM level of theory for a single guanine coordinating
K+ (a), a three-guanine stack with K+ situated in the plane of the middle guanine (b), and a three-
guanine stack with K+ situated between the planes of two guanines (c). Note the similarity in the
values (i.e., the length of the vector) and directions of the dipole moments obtained for all three cases.

Appendix B. MD Results

Table A1. RNA quadruplex-forming systems simulated with the Amber ff99-ILDN-Bsc0 force field.
Items with dash (“-”) symbol in the sequence field represent dimerized quadruplexes.

Model Type Sequence MD Time [ns] Result Ion Escape [ns] Dissociation [ns]

1 RNA AGGAGGAGGAGG-
GGAGGAGGAGGA 100 stable - -

2 RNA GGAGGAGGAGGA 100 stable - -
3 RNA GGAGGGGGAGGA 100 stable - -
4 RNA GGAGGUGGAGGA 100 stable - -
5 RNA GGGGGGGGGGGA 100 stable - -
6 RNA GGUGGUGGUGGA 100 stable - -
7 RNA GGAAGGAAGGAAGGA 100 destroyed 10 9.8
8 RNA GGGGGGGGGGGGGGA 100 destroyed 63 49
9 RNA GGAGGAGAGGAGGA 100 destroyed 26.1 26
10 RNA GGAGGGAGGGAGGA 100 destroyed 19.1 19
11 RNA GGACGGACGGACGGA 100 destroyed 11 13
12 RNA GGUUGGUUGGUUGGA 100 destroyed 17 14
13 RNA GGCACGGCACGGCACGGA 191.6 destroyed 141.8 141.3
14 RNA GGACAGGACAGGACAGGA 95.8 destroyed 23 14
15 RNA GGAGCGGAGCGGAGCGGA 191.6 destroyed 181.8 120.8
16 RNA GGAGGAGGAGG 100 stable - -
17 RNA ACGGGGGGGGGGGGGGCA 100 destroyed - 97
18 RNA ACGGUUGGUUGGUUGGCA 194 destroyed 117.1 117
19 RNA GCGGUUGGUUGGUUGGCG 194 stable - -
20 RNA AUGGUUGGUUGGUUGGUA 194 stable - -
21 RNA ACGGCCGGCCGGCCGGCA 194 destroyed 22 10
22 RNA CAGGUUGGUUGGUUGGAC 194 stable - -
23 RNA AGGUUGGUUGGUUGGA 194 destroyed - 170
24 RNA GGGGGGGGGGG 100 destroyed 7 6.5
25 RNA GGCGGCGGCGG 100 stable - -
26 RNA GGUGGUGGUGG 100 stable - -
27 RNA AGGAGCGGAGCGGAGCGGA 100 destroyed 17 14
28 RNA AGGCACGGCACGGCACGGA 100 destroyed 13 5
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Table A1. Cont.

Model Type Sequence MD Time [ns] Result Ion Escape [ns] Dissociation [ns]

29 RNA GCGGCACGGCACGGCACGGCG 96 destroyed 11 6

30 RNA AGGGGGGGGGGG-
GGGGGGGGGGGA 100 stable - -

31 RNA AGGUGGUGGUGG-
GGUGGUGGUGGA 100 stable - -

32 RNA AGGCGGCGGCGG-
GGCGGCGGCGGA 100 stable - -

33 DNA GGAGGAGGAGG 100 stable - -
34 DNA GGGGGGGGGGG 100 destroyed 2.1 2
35 DNA GGCGGCGGCGG 100 destroyed 2.9 2
36 DNA GGTGGTGGTGG 100 destroyed 34 33
37 RNA GGUUGGUUGGUUGG 100 destroyed 46 45
38 RNA GUGGUUGGUUGGUUGGUG 100 destroyed - 100
39 (seq1) RNA GCGGCGGCGGAGGCA 100 stable - -
40 (seq2) RNA GGCGGCGGCAGUGGCGGCGG 100 destroyed 7 5
41 (seq3) RNA AGGUGGCGGCGGC 100 stable - -
42 DNA GCGGCGGCGGAGGCA 100 stable - -
43 DNA GGCGGCGGCAGTGGCGGCGG 100 destroyed 9 8
44 DNA AGGTGGCGGCGGC 100 stable - -

We performed two sets of MD simulations in NpT ensemble and periodic boundary
conditions. The first set was based on the Amber ff99-ILDN-Bsc0 force field (Appendix B.1),
and the second set employed the polarizable AMOEBA force field (Appendix B.2). The
purpose and scope of both sets were different. With the classical Amber ff99-ILDN-Bsc0
force field, we wanted to examine the propensity of quadruplexes towards dissociation as
quickly as possible. Therefore, no ions were added to the system except for those neutraliz-
ing the net charge. In this way, we prevented the (potential) stabilizing effects arising from
the interactions of quadruplexes with solvent ions. The 44 systems listed in Table A1 were
evaluated. The AMOEBA force field, on the other hand, being much more computation-
ally demanding, was used only for the three KRAS systems (i.e., seq1, seq2 and seq3 in
Table A1 and Figure 3), described in detail in Appendix B.2). In the latter simulations,
we supplemented the systems with 150 mM NaCl, which—along with the more precise
physical description of the simulated molecules provided by AMOEBA—enabled us to ap-
proach the dynamic behaviour of the KRAS GQ topologies in the physiological environment
more closely.

Appendix B.1. MD Simulations with Amber ff99-ILDN-Bsc0 Force Field

Table A1 shows the content of simulated systems, the length of each simulation and
the final outcome. For KRAS, both DNA and RNA quadruplex analogues were studied.
The final outcome was categorized as either “stable”, in which the core of a quadruplex
retained most of its basic features, such as hydrogen bonding via Hoogsteen edges, the K+

in the GQ core, and pi-stacked guanine layers, or “destroyed”, which considered the loss of
the central cation, followed by the progressive decay of the geometric features characteristic
of quadruplexes. The outcome of each simulation was evaluated visually. Moreover, the
time of the K+ escape and of the dissociation of the guanine core were established. In some
of the simulations, the moment of K+ escape occurred after the core was assessed as being
dissociated. This means that, despite the loss of a significant proportion of the Hoogsteen
and pi-stacking interactions, the central cation (related to one or more nucleotides in the
GQ core) was still in a configuration characteristic of quadruplexes.

Appendix B.2. MD Simulations with AMOEBA Polarizable Force Field

We estimated the state of simulated quadruplexes by measuring the distances between
the central K+ ion and the carbonyl oxygens of the core guanines. Figures A3–A5 present
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these results for seq1, seq2 and seq3 KRAS G-quadruplexes, respectively. The average
value of the K+–carbonyl oxygen distance during the phases of simulation when the cores
of quadruplexes were considered “stable” was ∼2.89 Å. The structure was defined as
“stable” when the central ion occupied the space between the G-tetrads, and none of the
coordinating guanines diffused out of that ion further than 4.0 Å for longer than 5 ps. Within
these arbitrarily chosen limits, all disruptions of the core were reversible, and did not lead
to the release of the central ion from the core. Inlets in Figures A3–A5 with label 1 show the
structures of the GQ cores in the stable, mostly ordered state. Labels on inlets correspond
to labels on charts, providing information on the time-step in which snapshots were taken
for the visualization of the simulated quadruplexes. We observed two types of phenomena
leading to the destabilization of GQ cores. The first was breaking the coordination and
hydrogen bonds by one of the guanines (label 2 in Figures A3 and A5). The other observed
effect was the central ion leaving the GQ core (Figure A4, label 2 and Figure A5, label
3). In both these cases, the central ion was partially replaced by Na+ from the solvent,
which placed itself in the plane of the four guanines coordinating it, while the central K+

did not diffuse out of the core entrance. The core guanines remained in the quadruplex
configuration while coordinating both involved cations. In the case of the seq3 quadruplex,
K+ returned to the core in less than 300 ps, while in the seq2 case, it returned after almost
32 ns. For seq2, such a long-lasting loss of the K+ was related not only to the repulsion with
Na+, but also to the deformation of the GQ core. The central and lateral loops encountered
strong coupling with four Na+ ions through their backbone oxygens, which, enhanced by
the pi-stacking of the nucleotides of both loops, led to the collapse of the central loop. That,
in turn, exerted a sheering force on the guanine core, and the axis of the GQ core’s central
channel deviated from its default perpendicular orientation related to the G-tetrads’ planes
(Figure A6). Such a configuration made the return of K+ to the GQ core impossible due
to steric repulsion. K+ could not return to the GQ core until the congestion of Na+ ions
surrounded by the central loop had diffused out at the end of the simulation (Figure A4).
Although all of the notified changes in the structures of the simulated quadruplexes were
fully reversible, the above observations confirm the disruptive potential of long loops for
the stability of GQ topologies. This effect was the most pronounced for the central loop.
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Figure A3. The stability assessment of the seq1 quadruplex, as expressed by the average distance
between K+ and the carbonyl oxygens of eight guanines coordinating the ion. Inlet 1 (corresponding
to the simulation time labelled on the chart at 40 ns of the simulation)—the stable GQ core structure.
Inlet 2 (and label 2 on the chart)—the lateral guanine (red) diffused away from the central K+

(dark-pink sphere), which was reversed after ∼3 ns. See the text of Appendix B.2 for a detailed
explanation.

Figure A4. The stability of the seq2 quadruplex, as expressed by the average distance between K+

and the carbonyl oxygens of the eight guanines coordinating it. Inlet 1—the stable GQ core structure.
Inlet 2—K+ (dark-pink sphere) left the GQ core due to the repulsion of Na+ (dark-blue sphere) at the
entrance of the GQ core, and due to the deformation of the GQ core (see the text of Appendix B.2 and
Figure A6 for details).
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Figure A5. The stability of the seq3 quadruplex, as expressed with the average distance between
the central K+ and the carbonyl oxygens of the eight coordinating guanines. Inlet 1—the stable GQ
core structure. Inlet 2—one of the guanines (red) dissociated from the central K+ (dark-pink sphere)
transiently, losing hydrogen bonding with the rest of the tetrad. Inlet 3—K+ was pushed out of the
GQ core by Na+ (dark-blue sphere below K+) for ∼300 ps.

Figure A6. One of the most significant deformations observed for the seq2 quadruplex. The central
loop surrounds four Na+ ions (dark-blue spheres, down left), which—enhanced by inter-loop pi-
stacking (orange)—tightens the structure in this region. The resulting sheer force acts on the core
guanines (red), leading to the deformation of the GQ core. The dashed line shows the skewed main
axis of the GQ core.
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Appendix C. The Process of De Novo Quadruplex Folding with the NAB-GQ-
Builder Tool

Figure A7. Stages of the folding simulation of an example G-quadruplex with the sequence A-GGG-
AG-GGG-C-GGG-AGU-GGG-C, performed by means of the NAB-GQ-builder. (1) The first G-strand
is ready. (2) One guanine is still missing in the second G-strand. (3) The third G-strand is ready. (4)
Only one guanine is missing from the core. (5) The complete, slightly minimized quadruplex with
manually added K+ ions (dark-pink spheres), in explicit water and ions.
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