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Abstract
We systematically tested the Autodock4 docking program for absolute binding free energy predictions using the host-guest 
systems from the recent SAMPL6, SAMPL7 and SAMPL8 challenges. We found that Autodock4 behaves surprisingly 
well, outperforming in many instances expensive molecular dynamics or quantum chemistry techniques, with an extremely 
favorable benefit-cost ratio. Some interesting features of Autodock4 predictions are revealed, yielding valuable hints on the 
overall reliability of docking screening campaigns in drug discovery projects.

Keywords SAMPL7 · Binding free energy · Non-equilibrium · Crooks theorem · Fast switching · Hamiltonian replica 
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Introduction

SAMPL (Statistical Assessment of the Modeling of Proteins 
and Ligands) [1–5] are NIH-funded community-wide blind 
challenges for advancing computational methodologies as 
predictive tools in rational drug design. The challenges were 
started in 2010 and are organized on a quasi-yearly basis, 
with the SAMPL8 deadline set at February 2021. SAMPL 
challenges focus on the determination of the absolute bind-
ing free energy (ABFE) in host-guest systems involving 
hosts such as cyclodextrines [6], Cucurbituryl-like [7] and 
Octa-acids [8] cavitands, and drug-like small molecule com-
pounds (SMC), as well as on physical properties of SMCs 
such as solvation free energies, pKa, LogP, and LogD.

The SAMPL initiative has attracted widespread attention 
in the drug design scientific community. In the last decade, 
≃160 papers dealing with SAMPL predictions have been 
published on drug design oriented journals with a constant 
increase of the citation rate (see Fig. 1)

In the challenges, disparate methodologies are assessed, 
from quantum chemistry (QM) approaches or Molecular 

Dynamics (MD) computational strategies to semiempirical 
data-driven protocols. In many instances, submitted predic-
tions for host-guest ABFE’s are produced using sophisti-
cated and computationally demanding MD-based method-
ologies such as alchemical free energy perturbation [9–11], 
potential of mean force along physical host-guest coordi-
nates [12], and nonequilibrium alchemy [10, 11] or QM-
based high-level techniques using implicit solvation models 
[13] or QM/MM Hamiltonians.

While molecular docking has been often used by par-
ticipants in the preparatory stages for pose assessment or 
identification, this technique has been very rarely used in the 
SAMPL challenges like the one and only tool for predicting 
ABFE’s [14]. Indeed, accurate binding free energies are uni-
versally believed beyond the capabilities of docking scoring 
functions. The docking paradigm relies in fact on important 
approximations, such as implicit solvent, rigid (or mostly 
rigid) receptor, crude estimates of the entropy gain or loss 
upon binding, absence of microsolvation contributions due 
to explicit water molecules.

Recent analysis on drug-protein systems based on binary 
classification [15, 16] have shown that modern commercial 
or freely available docking programs like Autodock [17], 
Idock [18] and Glide [19] yields a median area under the 
receiver operating characteristic curve (ROC-AUC) of ≃ 
0.70 on well established drug-receptor benchmark sets such 
as DUD-E [20]. This value indicates that docking has an 
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average probability of discerning active from inactive com-
pounds (decoys) only 40% higher than that based on the 
flipping a coin. Despite these modest performances, docking 
techniques are commonly used in drug discovery. Docking 
based approaches, for example, account for nearly 6% of 
all peer-reviewed Covid-19-related scientific output in 2020 
according to the Scopus database. Such widespread usage 
in drug design is due to the remarkable efficiency of this 
method in comparison to more rigorous MD-based or QM-
based physical approaches. A single node of the Summit 
high performing computer (HPC) at the Oak Ridge National 
Laboratory can deliver in 24 hours the docking scoring func-
tions of 250000 compounds on Covid-19-related targets with 
full structural optimization of the ligand [21]. On similar 
facilities, an efficient MD-based technology can require sev-
eral days to compute the absolute binding free energies of 
few tens of host-guest pairs in a typical SAMPL challenge 
[22].

Due to its efficiency, docking is routinely being used as 
a triaging tool for identifying potential ligands of important 
biological targets such as the SARS-CoV-2 proteinase [23, 
24], to be further assessed using seemingly more accurate 
and far more computationally-demanding approaches. It is 
therefore of interest to rigorously evaluate the predictive 
performance of molecular docking in the SAMPL chal-
lenges for host-guest ABFE’s, albeit in retrospective. While 
in some of the past SAMPL challenges molecular docking 
was rarely tested [14] or used to produce the reference null 
model [4], to our knowledge such systematic assessment by 
way the typical SAMPL metrics (correlation coefficients, 
mean unsigned errors, Kendall coefficient, etc. ) has not been 
undertaken yet. To this end, we have computed, using a pop-
ular and widely available docking program, Autodock4 [17], 
the ABFE for all host-guest pairs taken from the three latest 

SAMPL6 to SAMPL8 challenges, with the idea that the les-
sons learned in SAMPL1-SAMPL5 challenges afforded a 
tuning or optimization of the most used advanced method-
ologies for ABFE predictions. Results were indeed surpris-
ing. Autodock4 did in general quite well, over-performing 
costly and complex technologies in many instances. Some 
interesting features of docking predictions are revealed, 
yielding valuable hints on the overall reliability of docking 
screening campaigns.

The paper is organized as follows. In section “Methods” 
we succinctly provide the main ingredients and technical 
details of host-guest docking calculations. In the “Data 
processing” section, we describe the content of the archive 
provided as supporting information, including data and 
application software for straightforwardly reproducing our 
results. Autodock4 predictions are presented in the “Results 
sections” along with a bird’s eye survey of the SAMPL6-
SAMPL8 challenges. Finally in the last section, we draw 
some concluding remarks.

Methods

In molecular docking, host-guest or drug-receptor scoring 
functions are generally computed using simplified interac-
tion potentials based on pairwise atom-atom interactions 
supplemented with entropy-related desolvation/conforma-
tional terms. These functions represent the ABFE for the 
docked complex as a sum of various contributions, relying 
on empirical parameters often refined or trained through 
knowledge-based approaches [25].The Autodock4 code uses 
[17] a scoring function of the kind

Fig. 1  Publications per year 
(right scale) on SAMPL chal-
lenges and corresponding cita-
tions per year (left scale). Data 
taken from the Scopus database 
(www.scopus.com)
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where �G
vdw

 and �G
elec

 are due to the atom-atom 12-6 
Lennard-Jones potentials and Coulomb charge-charge 
interactions with distance-dependent dielectric screening, 
respectively, �G

hbond
 is computed using a directional poten-

tial accounting for H-bond interactions, �G
desolv

 is a term 
representing the solvation free energy change upon binding, 
and �G

conf
 is related to the entropy loss of the ligand upon 

binding. The weighting constants W in Eq. 1 are optimized 
(trained) to calibrate the empirical free energy based on a 
set of experimentally determined binding constants. Explicit 
expressions of the �G contributions in Eq. 1 in terms of 
pairwise interactions are given in Ref. [17].

In the last decade, most of commercial and publicly avail-
able docking approaches have evolved towards the calibra-
tion of efficient scoring functions using machine learning 
(ML) techniques, by removing, rather than adding, “physi-
cal” components [26]. Autodock4, for examples, in mod-
eling electrostatic interactions, uses distance dependent 
dielectric screening rather than more rigorous (and much 
more expensive) Poisson-Boltzmann or Generalized Born 
approaches. In the Vina program [27], a popular and faster 
alternative of the Autodock4 code, atomic charges are no 
longer included in the scoring functions, whose electrostat-
ics is described only by directional h-bonds terms.

Molecular docking with Autodock4 starts with the cal-
culation, performed by the Autogrid4 program [17], of a 
grid potential (in some user-defined region of interest) due 
to the atoms of the rigid macromolecule (host in our case). 
Actual docking of the fully flexible ligand reduces hence 
to a global minimization process of the function Eq. 1 with 
respect to the ligand coordinates only, relying on the previ-
ously determined grid potential. Flexible residues/groups of 
the receptor/host do not contribute to the grid potential and 
they are de facto considered as a “ligand” appendix in the 
docking minimization process, thereby expanding the dock-
ing minimization cost.

In the present study, docking calculations were run on 
the configurations of the hosts and guests provided in the 
.sdf files downloaded from the officials SAMPL6 and 

(1)ΔGbind = WvdwΔGvdw +WelecΔGelec +WhbondΔGhbond +WdesolvΔGdesolv + ΔGconf

SAMPL7 and SAMPL8 GitHub repositories [28]. The hosts 
in these challenges include Cucurbituril cavitands [29], the 
Triptycene walled glycoluril trimer [7], various mono-3-sub-
stituted �-cyclodextrin analogues [6], and the Gibb Deep 
Cavity Cavitands or Octa-acids [8]. The guests are small 
molecule compounds with molecular weight (MW) com-
prised in the range 90 ≤ MW ≤ 510 Da. In the Table 1, we 
report detailed information on the challenges

The chemical structures of all guests and hosts can be 
found in the cited GitHub repositories [28] as well as in 
the provided SI. On overall, we calculated the ABFE for 82 
host-guest systems.

In all cases, we used the Autogrid4 default settings for 
grid generation with the hosts being considered as rigid. 
More in detail, the docking region is a cubic box of side-
length of 15 Å with a grid spacing in each direction of 0.375 
Å, centered at the host center of mass. The .sdf files, prior 
of being fed to Autodock4, were converted into .pdb files 
using OpenBabel [30] specifying, via the -p option, the pH 
used in the SAMPL experiments. [28] Prediction files sub-
mitted by all SAMPL participants as well as experimental 
data were also downloaded from the cited GitHub reposito-
ries and stored in the Supporting Information (SI).

Quality metrics for our Autodock4 prediction and for all 
other submissions (including Vina) were obtained using the 
scripts in the compressed archive provided as SI. The archive 
contains all input/out generated by the Autogrid4 or Auto-
dock4 programs on the SAMPL6 to SAMPL8 challenges, 
as well as the application scripts (with essential documenta-
tion) for data processing. For a detailed description of the SI 
archive, see Section “Data processing” further below.

Autodock4 performs a cluster analysis or “structure bin-
ning” [17] based on all-atom root mean square deviation 
(RMSD), ranking the resulting families of docked conforma-
tions in order of increasing binding free energies, as com-
puted according to Eq. 1. For highly symmetric hosts, such 
as the cucurbituril or the octa-acids cavitands in SAMPL6 
SAMPL7 and SAMPL8, or for C1-symmetry compounds 
with highly symmetric binding cores such as the beta-cyclo-
dextrin derivatives in SAMPL7, the RMSD-categorized 

Table 1  The host types and the 
number of ligands are given for 
each challenges

In parenthesis we report the number of submissions (ranked or not ranked) for each system. CB8: cucurbi-
turil); OA (octa-acid); TEMOA: tem-octa-acid; exoOA: exo octa-acid; CD: beta-cyclodextrin derivatives); 
CLIP: open cucurbituril-like cavitand

OA TEMOA exoOA CB8 CLIP CD

SAMPL6 8 (45) 8 (45) n/a 14(38) n/a n/a
SAMPL7 8 (16) n/a 8(16) n/a 16(8) 16(7)
SAMPL8 n/a n/a n/a 7(35) n/a n/a
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docking families are considered as competitive binding poses 
[31] or symmetry-related poses [32]. In both cases, we have 
estimated the ABFE as

where �Gi refer to the final ranked free energies in the .dlg 
Autodock4 output file. Docking calculations on the 82 host-
guest systems required less than one hour on a low-end 
8-processor CPU workstation.

Data processing

The compressed archive provided as SI.zip , when 
unzipped, generates a directory called workspace. The 
directory tree of the workspace directory is shown in 
Fig. 2. The workspace directory contains the following 
sub-directories:

(2)�G = −RT ln

(

∑

i

e−��Gi

)

bin: includes application scripts for data processing. 
These commands are activated, under any unix operating 
system, by sourcing the file source_this_file.bash 
in this directory. Detailed information for executing these 
scripts can also be found in the README file inside this 
directory.
RESULTS: contains the results of all submissions (Auto-

dock4 included) for the ABFE’s of all host-guest systems in 
the SAMPL6, SAMPL7, SAMPL8 challenges.
SAMPLX (where X=6,7,8) : Each of these three directo-

ries contains a number of sub-directories corresponding to 
the hosts used the in the challenge. In each host sub-direc-
tory, the input/output Autodock4 files are stored. Results can 
be replicated using the docking.bash script provided 
in the bin directory. Autodock4 and MGLtools must be 
installed before executing the docking.bash. Installation 
instructions are given in the docking.bash file.

Each of the host sub-directories contains the ANALY-
SIS and analysis sub-directory. ANALYSIS contains 
all the original submissions files (taken from the GitHub 
site [28]) for the corresponding SAMPLX-host challenge. 
From the analysis directory, data metrics for all ANAL-
YSIS submissions can be produced by issuing the command 
analysis.bash provided in the bin directory. For more 
information see the README file and the comments in the 
analysis.bash script in the bin directory. The files 
predictions_from_perl.names lists the method 
(as specified by the participants) used in the corresponding 
SAMPLX-host challenge. This file can be generated using 
the perl script samplmanager.pl (see Documentation 
in the bin directory).

Fig. 2  Directory tree of the workspace directory generated from 
the SI archive

Fig. 3  Correlation plot experi-
mental vs computed binding 
free energies (in kcal/mol) for 
the Autodock prediction set 
(green) and the best (MAE) 
prediction set (magenta) in 
host-guest systems included 
in the the SAMPL6, SAMPL7 
and SAMPL8 challenges. The 
challenges are identified by 
the acronym SAMPLx-host, 
where x = 6, 7, 8 and host is 
CB8 (cucurbituril), OA (octa-
acid), TEMOA (tem-octa-acid), 
exoOA (exo octa-acid), CD 
(beta-cyclodextrin derivatives), 
CLIP (open cucurbituril-like 
cavitand)
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Results

In the correlation plots reported in Fig. 3 we compare the 
results obtained with Autodock4 to the best prediction set in 
the SAMPL6,SAMPL7, and SAMPL8 challenges.

We use the mean absolute error (MAE) for ranking the 
best submissions. This quantity is less sensitive to outliers 
than the root mean square deviation or correlation coeffi-
cients are. While The Pearson and Kendall coefficients, � 
and � , are related to precision and reproducibility , MAE 
is a direct measure of the accuracy of a methodology, i.e. it 
expresses the mean closeness of the predicted value to the 
the experimental value. Methods yielding data with accept-
able or good Pearson correlation coefficient and large MAE 
are likely to be affected by an undetected systematic bias, a 
serious drawback in a blind prediction for absolute binding 
free energies.

Figure 3 shows that Autodock4 predictions, quite expect-
edly, are systematically worse than the corresponding best 
prediction set. In one case, SAMPL7-CD, Autodock4, while 
being better correlated to the experimental data, exhibits 
an MAE that is 70% larger than that of the best prediction 
set. Results are further detailed in Table 2. Among the top-
performing approaches, we consistently find MD-based

techniques, with the alchemical variants [10, 11], DDM 
(double decoupling method) or FS (fast switching), appear-
ing in four of the top-performing cases, and with the 
Umbrella sampling/potential of mean force (PMF) approach 
[37] in two cases. In only one case (SAMPL7-OA), an ML 
mixed approach resulted as the top-performing method 
using MAE as metrics. This “victory”, however, was not 
confirmed in the parent SAMPL7-exoOA challenge where 
the mixed-ML protocol yielded a disappointing MAE of 
2.55 kcal/mol. Concerning the force fields, the CHARMM 
generalized force field (CGenFF [38]) and the generalized 

AMBER force field (GAFF [39]) were used in two and four 
cases, respectively, in the top MD-based performing meth-
ods. The polarizable force field AMOEBA [40], in com-
bination with the DDM alchemical method, was very suc-
cessful in the SAMPL7 challenge. Quite consistently, QM 
based approaches are never found among the top-performing 
sets. Overall, the data indicate that the SAMPL challenges 
have failed so far to clearly identify the “best” methodology 
for ABFE prediction in the host-guest systems. MD-based 
results seem to strongly depend on the ability of the force 
field to deal with the systems under scrutiny and/or to the 
adopted simulation protocol.

Autodock4 in many instances is found to outperforms 
expensive MD-based or QM-based computational tech-
niques used in the SAMPL challenges. In Table  3 we 
report the Autodock4 ranking for the MAE, � and � metrics 
obtained in the challenges. Interestingly, Autodock4 yields 
better MAE’s than correlation coefficients. This is, to some 
extent, a surprising result as the performances of docking 
scoring functions are usually measured on their ability to 

Table 2  Quality metrics for 
the Autodock predictions (AD) 
sets and best predictions (best). 
MAE, � , and � refer to mean 
absolute error (in kcal/mol), the 
Pearson correlation coefficient, 
and the Kendall and coefficient

The “Method” entry refers to the methodology used in the best prediction set (see text)
a See the SAMPL6-OA submission file finzb-973-OA-submission-19.txt in the SI
b See SAMPL6-TEMOA submission file vq30p-973-TEMOA-NHLBI-1.txt in the SI
c See SAMPL8-CB8 submission file CB8_SILCS_reweightedLGFE.txt in the SI

MAE � �

Challenge AD Best AD Best AD Best Method
SAMPL6-CB8 2.10 1.51 0.10 0.36 − 0.24 0.09 MD/DDM/GAFF [33]
SAMPL6-OA 0.41 0.40 0.95 0.96 0.64 0.57 MD/PMF/GAFFa

SAMPL6-TEMOA 0.77 1.03 0.58 0.95 0.14 0.79 MD/PMF/CGenFFb

SAMPL7-CD 1.60 1.04 0.43 0.12 0.40 0.21 MD/FS/GAFF [34]
SAMPL7-CLIP 1.82 1.39 0.34 0.79 0.28 0.60 MD/DDM/AMOEBA [35]
SAMPL7-OA 1.00 0.54 0.59 0.80 0.25 0.75 MIXED [36]
SAMPL7-exoOA 2.76 0.92 0.95 0.90 0.79 0.71 MD/DDM/AMOEBA [35]
SAMPL8-CB8 2.08 1.71 0.60 0.65 0.43 0.52 MD/LGFE/CGenFFc

Table 3  Autodock4 ranking in the SAMPL challenges

MAE � , � and n refer to the mean absolute error (kcal/mol), the Pear-
son correlation coefficient, the Kendall rank coefficient and the total 
number of submissions, respectively

Challenge MAE � � n

SAMPL6-CB8 4 30 36 38
SAMPL6-OA 2 6 12 45
SAMPL6-TEMOA 1 19 35 45
SAMPL7-CD 5 1 1 8
SAMPL7-CLIP 3 4 4 8
SAMPL7-OA 4 4 8 15
SAMPL7-EOA 6 3 4 15
SAMPL8-CB8 3 17 11 35
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rank the ligands in the correct order rather than on accuracy. 
In this respect, Autodock4 has a probability of 75%, 60%, 
and 49% of being among the top-performing methods as far 
as MAE, � and � are concerned, respectively.

We have also tested the Vina1.1.2 docking program 
[27]. Vina, a derivation of Autodock4, uses a quite different 
scoring function based on Van der Waals surface distances 
(rather than internuclear as in Autodock4) with pair hydro-
phobic, repulsion, H-bond terms and rotatable bond penal-
ties with empirically determined weights based on extensive 
ligand-protein data-sets. Unlike in Autodock4, no atomic 
charges are used in the Vina scoring functions [27]. Vina 
significantly improves the average accuracy of the binding 

mode predictions compared to AutoDock4, and it was found 
to be a strong competitor against popular commercial pro-
grams, resulting at the top of the pack in many cases [27]. 
In Vina, the calculation of grid maps and the assignment of 
atomic charges is not required. To launch a Vina docking 
run, besides the pdbqt structures of ligand and receptor, 
only the binding site position (the COM of the hosts in all 
cases) needs to be specified along with the size of the search 
cubic box. For the latter, we used a side-length of 15 Å  as 
for Autodock4. Rankings obtained with Vina in the SAMPL 
challenges are reported in Table 4. Vina turned out to be sig-
nificantly less performing for ABFEs in host-guest systems 
than Autodock. Apparently, the less physical Vina empirical 
scoring functions, specifically trained on extensive databases 
of ligand-receptor systems, show some weaknesses in these 
kind of simple complexes.

In Fig. 4, we report the correlation plots between experi-
mental and predicted binding free energies by category. 
Docking data are represented by the Autodock4 and Vina 
prediction sets. The number of points in the MD, QM, and 
MIXED plots are indicative of the frequency with which the 
corresponding category has been adopted by the SAMPL 
participants. The MD-based methodologies are found to be 
the best correlated as measured by both the Pearson corre-
lation coefficient � , while docking exhibit the lowest mean 
unsigned error MAE. QM and MIXED approaches yield, on 
the overall, the worst result.

From a drug-design perspective, the potential loss in eco-
nomic value due to false negative is impossible to assess. 

Table 4  Vina ranking in the SAMPL challenges

MAE � , � and n refer to the mean absolute error (kcal/mol), the Pear-
son correlation coefficient, the Kendall rank coefficient and the total 
number of submissions, respectively. In parenthesis we report the dif-
ference with respect to Autodock4 ranking

Challenge MAE � � n

SAMPL6-CB8 5 (− 1) 37 (− 7) 39 (− 3) 38
SAMPL6-OA 10 (− 8) 1 ( 5) 17 (− 5) 45
SAMPL6-TEMOA 11 (− 10) 42 (− 23) 39 (− 4) 45
SAMPL7-CD 5 ( 0) 2 (− 1) 2 (− 1) 8
SAMPL7-CLIP 6 (− 2) 9 (− 2) 7 ( 0) 8
SAMPL7-OA 5 (− 1) 1 ( 3) 4 ( 4) 15
SAMPL7-EOA 7 (− 1) 14 (− 11) 14 (− 10) 15
SAMPL8-CB8 10 (− 7) 29 (− 12) 29 (− 18) 35

Fig. 4  Correlation plots 
between experimental and 
calculated (in kcal/mol) host-
guest binding free energies 
by category in the SAMPL6, 
SAMPL7, and SAMPL8 chal-
lenges. The violet solid and blue 
dashed line mark the best fitting 
line and perfect correlation, 
respectively. All points within 
the green-shaded area differ 
by less than 2 kcal/mol from 
the corresponding experimen-
tal data. The Docking panel 
includes data from Autodock4 
and Vina
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False-negative are unavoidable in high-throughput screen-
ing processes (HTS), performed both experimentally and 
in silico. False positives, on the other hand, are one of the 
factors that currently restricts the discovery potential of HTS 
techniques, as they require time, energy, and high cost to be 
identified in wet-lab low-throughput protocols by medicinal 
chemists [41]. In this regard, a well established picture for 
assessing the capability of discerning active binders (true 
positive) from false positives (or false alarms) is that based 
on the binary metrics expressed by the receiver operating 
characteristics (ROC) graph [42]. Given a prediction method 
(or classifier), the ROC curve is constructed by assuming 
that ligands can be clumped in two groups, namely good 
or bad binders (p instances and n instances, respectively) 
according to some threshold ABFE value t. Below t and 
above t, ligand are good binders and bad binders, respec-
tively. By continuously varying the threshold (starting from 
a very stringent (i.e. low) value of t), for each t, the points 
on the ROC curve can be constructed from the correlation 
data by grouping the outcomes into the “false positives” (fp) 
when according to the classifier (e.g docking or MD) the 
ABFE is below the given threshold t (good binder) while 
the experimental value (or instance) is above t (bad binder), 
and into “true positives” (tp), when the classifier and the 
experimental instance are both indicating a good binder. 
The false positive rate (FPR) and true positive rate (TPR) 
are given by FPR = fp∕n and TPR = tp∕p . The lower left 
point (FPR=0,TRP=0) in the ROC square represents the 

strategy of never issuing a a good binder, and is obtained 
with the possible most stringent threshold t (no true posi-
tive of false positive: all outcomes are in the non-binder 
group). The opposite strategy, of unconditionally issuing 
good binder classifications, is represented by the upper right 
point (FPR=1,TRP=1). In the SI, we provide a simple awk 
script (roc.awk) to compute the ROC curve form a set of 
correlation data.

The correlation plots of Fig. 4 translates into the ROC 
curves reported in the Fig. 5. The area under the ROC curve 
(AUC) provides a direct measure of how much a methodol-
ogy is capable of distinguishing between good binders and 
bad binders. A classification based on a coin flip has an 
AUC of 0.5. As it can be seen, the best methodology in the 
SAMPL6-SAMPL8 challenge is MD, with an AUC=0.76. 
Docking (Autodock4 and Vina) yields an AUC of 0.70, in 
agreement with the mean AUC obtained by docking tech-
niques in the DUD-E ligand-receptor benchmark [20]. 
Docking performances in the SAMPL challenges, however, 
are degraded by Vina, the latter showing poor correlation 
( � = 0.05 ) and an AUC of 0.55. Autodock4, on the other 
hand, has an AUC of 0.82, superior to that of the aggregated 
MD methods. In the SI (directory ROCs in the workspace 
root directory) we provide the ROC curves of the aggregated 
methods for the three challenges.

An important point about the ROC curve is that it meas-
ures the ability of a method to produce good relative instance 
scores, i.e the ability in ranking the ABFEs of the ligands 

Fig. 5  ROC graphs for the vari-
ous aggregated methodologies 
used in SAMPL6 SAMPL7 and 
SAMPL8. The circles represent 
the random choice (coin flip)
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in the correct order. While ROC graphs are excellent tests 
for assessing the precision (i.e. reproducibility) of a meth-
odology, they tell nothing about the accuracy, i.e. how close 
the prediction is to the actual experimental value. So, for 
example, a highly inaccurate ( MAE ≫ 0 ) and precise method 
( � ≃ 1 and � ≃ 1 ) with a correlation plot characterized by a 
best fitting line with a positive slope ≫ 1 and with arbitrary 
intercept, yields a ROC graph signaling perfect classification 
with an AUC ≃ 1 . A less precise but highly accurate technique 
(e.g. MAE ≃ 2.5 kcal/mol), exhibiting a best fitting line with 
unitary slope and zero intercept, yields and AUC of only 0.9.

Conclusion

We have tested the Autodock4 program for absolute binding 
free energy predictions of host-guest systems taken from 
the recent SAMPL6, SAMPL7 and SAMPL8 challenges. 
Calculations have been done using the Autodock4 default 
settings for all cases with no adjustments whatsoever. Using 
the usual SAMPL metrics based on mean absolute errors 
and correlation coefficients, we found that Autodock4 per-
forms surprisingly well at predicting binding free energies, 
surpassing in many instances expensive molecular dynam-
ics or quantum chemistry techniques, yielding on overall an 
extremely favorable benefit-cost ratio. The Vina1.1.2 dock-
ing program was also tested on the SAMPL challenges with 
less satisfactory results compared to Autodock4

The ROC curves for the aggregated methodologies 
(MD, QM, Mixed. and Docking) in the SAMPL challenges 
have shown that the highest AUC are obtained by atomis-
tic molecular dynamics simulations with explicit solvent, 
followed by Docking (Autodock4 and Vina). Aggregated 
QM-based or mixed QM/MM are found to be less reliable 
in ranking absolute binding free energies.

Based on the results reported in our study, a cavalier 
attitude or excessive skepticism towards docking does 
not appear to be justified in the computational chemistry 
community. Given the reported good performances in the 
SAMPL6-SAMPL8 challenges, and given the limited cost 
and ease of setup, Autodock4 may provide a valid null (refer-
ence) model for future SAMPL challenges.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10822- 021- 00388-4.
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