
Citation: Song, L.; Xiong, P.; Zhang,

W.; Hu, H.; Tang, S.; Jia, B.; Huang, W.

Mechanism of Citri Reticulatae

Pericarpium as an Anticancer Agent

from the Perspective of Flavonoids: A

Review. Molecules 2022, 27, 5622.

https://doi.org/10.3390/

molecules27175622

Academic Editors: Sokcheon Pak and

Soo Liang Ooi

Received: 29 July 2022

Accepted: 25 August 2022

Published: 31 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Review

Mechanism of Citri Reticulatae Pericarpium as an Anticancer
Agent from the Perspective of Flavonoids: A Review
Li Song 1, Peiyu Xiong 1, Wei Zhang 1, Hengchang Hu 1, Songqi Tang 2 , Bo Jia 1 and Wei Huang 1,*

1 College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610000, China
2 College of Traditional Chinese Medicine, Hainan Medical University, Haikou 571199, China
* Correspondence: gracehw@126.com

Abstract: Citri Reticulatae Pericarpium (CRP), also known as “chenpi”, is the most common qi-
regulating drug in traditional Chinese medicine. It is often used to treat cough and indigestion, but
in recent years, it has been found to have multi-faceted anti-cancer effects. This article reviews the
pharmacology of CRP and the mechanism of the action of flavonoids, the key components of CRP,
against cancers including breast cancer, lung cancer, prostate cancer, hepatic carcinoma, gastric cancer,
colorectal cancer, esophageal cancer, cervical cancer, bladder cancer and other cancers with a high
diagnosis rate. Finally, the specific roles of CRP in important phenotypes such as cell proliferation,
apoptosis, autophagy and migration–invasion in cancer were analyzed, and the possible prospects
and deficiencies of CRP as an anticancer agent were evaluated.
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1. Introduction

Citri Reticulatae Pericarpium is a commonly used traditional Chinese medicine de-
rived from the ripe peel of the Rutaceae plant Citrus reticulate Blanco and its cultivars [1],
which was first recorded in Shen Nong Ben Cao Jing and has a history of thousands of
years in China. As a botanical medicine with the same origin of medicine and food, CRP
has various pharmacological effects, which can be used alone or combined with other
traditional Chinese medicines to form many well-known classical prescriptions. It is widely
used in the clinical treatment of diseases of various systems and has outstanding advan-
tages for diseases of the respiratory and digestive system, especially diseases with cough,
expectoration, nausea and vomiting as the main symptoms.

The clinical efficacy of CRP has been affirmed, especially its contribution in cancer
treatment. Researchers began to explore its mechanism, trying to find out its counter-
measures against cancer in cancer cell lines and animal models, and concluded that the
natural compounds flavonoids contained in CRP are the implementers of its anti-cancer
effect. According to reports, flavonoids of CRP have outstanding performance in terms
of regulating key signaling pathways and related effectors, blocking the cancer cell cycle
to resist proliferation, inducing cell apoptosis, enhancing autophagy and inhibiting cell
migration and invasion. Thanks to these research results and data, the core code of CRP as
an anticancer agent has gradually been revealed.

As a novel anticancer agent, CRP has received extensive attention, and many studies
have confirmed that CRP and its active ingredients have inhibitory effects on cancer.
This review aims to collect and introduce the mechanism of CRP and its components in
inhibiting cancer, focusing on breast cancer, lung cancer, prostate cancer, hepatic carcinoma,
gastric cancer, colorectal cancer, esophageal cancer, cervical cancer, bladder cancer and
other cancers with a high diagnosis rate.
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2. Pharmacological Effects and Chemical Composition of CRP

Pharmacological studies have found that when applied to the digestive system, the
efficacy of CRP is to ameliorate gastrointestinal smooth muscle activity, accelerate gastric
emptying and intestinal push, alter gut microbiota, protect the esophagus and gastrointesti-
nal mucosa and resist peptic ulcer [2–7]. To date, CRP has proven effects in the respiratory
system, including but not limited to inhibiting airway inflammation, fighting acute lung in-
jury and pulmonary fibrosis [8–13]. In terms of the cardiovascular system, CRP can improve
cardiac insufficiency, alleviate cardiac hypertrophy and myocardial fibrosis, prevent hyper-
lipidemia and keep cardiomyocytes away from the damage of hypercholesterolemia [14–18].
Experiments have found that CRP’s neuroprotective properties confer the ability to prevent
neurodegeneration caused by Parkinson’s, Alzheimer’s, Huntington’s disease and multiple
sclerosis [19–22]. Unlike the above systems, CRP has relatively few studies in the related
direction of the urinary system and has been reported to be anti-inflammatory and enhance
renal function [23–25]. It is worth mentioning that CRP exhibits anti-inflammatory activity
not only in the urinary system, but also in various systems of the body. Nobiletin is consid-
ered to be a marker of anti-inflammatory effect of CRP, while Xue N. et al. suggested that
naringenin inhibits reactive oxygen species (ROS) and inflammatory cytokines involved
in the process of CRP against inflammatory damage [26,27]. The antioxidant capacity of
CRP is also an important part of its pharmacological action, and it is positively correlated
with the aging of CRP [28]. Data proves that long-term storage benefits the quality of CRP,
in which phenolic acids play a key role [29]. Moreover, the antioxidant activity of CRP is
closely related to the fungi represented by Aspergillus niger growing on its surface, which
can promote the transformation of flavonoids in CRP to increase its content [30].

The composition of natural compounds of CRP is complex. Through supercritical CO2
extraction [31,32], Soxhlet extraction [1,33,34], pressurized liquid extraction (Wei L) and
high-speed countercurrent separation [35], 161 constituents from CRP have been extracted
and identified, including 65 flavonoids, 51 phenolic acids, 27 fatty acids and 18 amino
acids [29,36]. Certainly, flavonoids are the most relevant class of all compounds with the
pharmacological effects of CRP, and flavanone, flavone, and polymethoxyflavone aglycones,
flavanone-and flavone-O-glycosides and flavone-C-glycosides are all the compounds it
contains [37–39]. Due to its abundant content, hesperidin has been used as a chemical
reference for CRP quality control by the Chinese Pharmacopoeia. Among them, in terms
of exerting medical effects, the representative flavonoids are tangeretin and nobiletin,
belonging to the polymethoxyflavones, and naringin and hesperidin, belonging to the
flavanone O-glacosides (Table 1, Figures 1 and 2).
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Table 1. The Flavonoids in CRP.

Classification Chemical Component Molecular Formula Molecular Mass References

Polymethoxyflavones Nobiletin C21H22O8 402 [40]
3,5,6,7,8,3′,4′-Heptamethoxyflavone C22H24O9 433 [40]

5-Hydroxy-6,7,8,3′,4′-
pentamethoxyflavone C20H20O8 388 [40]

Tangeretin C20H20O7 373 [40]
Monohydroxy-trimethoxyflavone C18H16O6 329 [40]

Monohydroxy-tetramethoxyflavone C19H18O7 359 [40]
Monohydroxy-pentamethoxyflavone C20H20O8 389 [40]

Trihydroxy-dimethoxyflavone C17H14O7 331 [40]
Trihydroxy-trimethoxyflavone C18H16O8 361 [40]

Isosinensetin C20H20O7 373 [40]
Monohydroxy-hexamethoxyflavone C21H22O9 419 [40]

Tetramethoxyflavone C19H18O6 343 [40]
Hexamethoxyflavone C21H22O8 403 [40]

Sinensetin C20H20O7 373 [40]
Tetramethyl-O-isoscutellarein C19H18O6 343 [40]
Dihydroxy-trimethoxyflavone C18H16O7 345 [40]

Trimethoxyflavone C18H16O5 313 [40]
Pentamethoxyflavone C20H20O7 373 [40]

Tetramethyl-O-scutellarein C19H18O6 343 [40]
Dihydroxy-tetramethoxyflavone C19H18O8 375 [40]
Dihydroxy-pentmethpxyflavone C20H20O9 405 [39]

Natsudaidai C19H18O7 359 [40]
Flavanone O-glycosides Hesperidin C28H34O15 611 [40]

Naringin C27H32O14 581 [40]
Eriocitrin C27H32O15 597 [40]

Neohesperidin C27H32O15 597 [40]
Narirutin C27H32O14 581 [40]

Prunin C21H22O10 435 [40]
Neohesperidin C28H34O15 611 [40]

Poncirin C28H32O414 595 [40]
Didymin C28H34O14 595 [40]
Melitidin C33H40O18 725 [40]

Flavone O-glycosides Rhoifolin C27H30O14 579 [40]
Hexamethoxyflavone-o-glucoside C27H33O13 565 [40]

Luteolin-7-O-rutinoside C27H30O15 595 [40]
Diosmin C28H32O15 609 [40]

Neodiosmin C28H32O15 609 [40]
Sudachiin C or B C30H34O17 667 [40]

Flavone C-glycosides Vicenin-2 C27H30O15 595 [40]
Diosmetin-6,8-di-C-glucoside C28H32O16 625 [40]

Lucenin-2 C27H30O16 611 [40]
Apigenin-8-C-glucoside C21H20O10 433 [40]
Diosmetin-6-C-glucoside C22H22O11 463 [40]

Apigenin-6,8-di-C-glucoside C27H30O2 595 [39]
Chysoeriol-6,8-di-C-glucoside C28H32O16 625 [39]

Flavanone aglycones Naringenin C15H13O5 273 [40]
Hesperetin C16H14O6 303 [40]
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3. Epidemiological Investigation of Cancer

Cancer develops from the clonal expansion of abnormal cells inside the body [41].
As changes in the prevalence and distribution of the main risk factors, cancer incidence
and mortality are rapidly growing worldwide. Cancer was the leading cause of premature
death in 57 countries until 2020 [42]. Based on cancer incidence and mortality from the
GLOBOCAN 2020 and The World Health Organization database, the most commonly
diagnosed cancers worldwide were female breast cancer, lung and prostate cancer; the
most common cause of cancer death were lung, liver and stomach cancers [43,44]. Female
breast cancer has now surpassed lung cancer as the leading cause of global cancer incidence
in 2020 with more than 6 million deaths [45]. The causes of cancer are multifaceted, with
multiple external factors combined with internal genetic changes leading to cancer, but
it mainly originates from both environment and genetics [46]. Unhealthy lifestyles, such
as cigarette smoking, alcohol abuse, excess fat and red meat intake and lack of fiber, can
also affect the development of cancer [47,48]. Conventional treatment modalities for cancer
include surgery, radiation therapy, chemotherapy, targeted therapy, hormonal therapy
and immunotherapy [49]. However, current treatments are often accompanied by various
physical and psychological side effects, which severely impact the prognosis and life
expectancy of patients. Throughout the past few years, both clinical and laboratory studies
of the treatment of cancer through traditional Chinese medicine have gained great attention.
The efficacy and safety of herbal medicine make it unique in the treatment of cancer. At the
same time, Chinese medicine can also be used as an adjuvant to reduce the side effects of
conventional cancer treatment.

4. The Performance of CRP in the Typical Phenotype of Cancer

Broadly speaking, cancer is a disease caused by dysregulation of cell proliferation [50].
The manifestation of cell proliferation is cell division, and mitosis is the main means of
cell division in eukaryotes, which is periodic. The cell cycle goes through 4 phases: G1,
S, G2 and M; and 3 checkpoints: G1/S, G2/M and SAC [51]. Apparently, this program
is regulated by proliferation signals, cyclins and corresponding cyclin-dependent kinases
(CDKs) [52]. Inactivation or mutation of growth suppressor genes and overexpression of
oncogenes lead to uncontrolled proliferation of cancer cells and upregulation of cyclin-
CDKs’ expression, which in turn affects cell cycle progression and mitosis [53]. However,
mTOR, which coordinates growth metabolism, suppresses the PI3K/AKT pathway to atten-
uate its anti-proliferative effect [54]. From the perspective of cancer metabolism, one of the
biological markers of cancer, the Warburg effect, a form of energy metabolism manifested
in aerobic glycolysis, enhances the proliferation and division, invasion and anti-apoptosis
of cancer cells [55]. It is worth noting that in the G1 phase, on the one hand, cyclin D1
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inactivates the inhibition of a mitochondria through the action of a series of factors, such as
NRF-1, PPARγ and PGC-1α [56–58]. On the other hand, during G1 phase in cancer cells,
PKM2 affected by PFK1, Ras, HIF-1 and PI3K/AKT/mTOR upregulates the gene CCND1
encoding cyclin D1 by increasing c-Myc expression and promoting β-catenin transactiva-
tion [59–61]. Conversely, PKM2 activated under the action of proliferative signals, such
as EGFR, NF-κB and AKT, can also upregulate the expression of HIF-1, STAT3 and c-Myc
through the STAT3 signaling pathway to maintain cell cycle progression [62–64]. Naringin
and tangeretin were determined to affect cyclin D and beta-catenin, resulting in cell cycle
arrest, which in turn counteracts the disordered proliferation of cancer cells. In addition, in
the anti-proliferation process of CRP, effectors on JAK/STAT, PI3K/AKT/mTOR pathways
are also involved (Figure 3).
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Interestingly, some proteins are involved in both cell proliferation and apoptosis. For
example, p53 not only acts on its key effectors PUMA and p21 to induce cell cycle arrest
to inhibit proliferation, but also acts as an upstream activator of pro-apoptotic proteins
to initiate apoptosis [65,66]. It is reasonable to think that the cycle arrest caused by the
regulation of P53 by hesperidin and tangeretin is the result of this.

The morphological changes of apoptosis are cytoplasmic shrinkage, chromatin py-
knosis, nuclear fragmentation and plasma membrane blebbing, which finally form an
apoptotic body [67]. Biochemical changes that can be observed during this process include
caspase activation, DNA and protein breakdown, membrane changes and recognition by
phagocytes [68]. The intrinsic apoptotic pathway is due to growth factor loss, DNA damage,
ER stress, ROS overload, replication stress, microtubule alterations and mitotic defects,
resulting in irreversible enhancement of mitochondrial outer membrane permeability and
the release of pro-apoptotic factors [67,69]. The BCL-2 family is an indispensable regulatory
protein in the internal apoptosis pathway, including the pro-apoptotic BAX, BAK, BAD,
BCL-XS, BID, BIK, BIM and Hrk, and the anti-apoptotic BCL-2, BCL -Xl, BCL-W, BFL-1 and
MCL-1 [70]. Under the action of cytotoxic signals, BH3-like proteins, such as BIM, BAD,
PUMA and Noxa, transmit the signals to the downstream BAX and BAK. Under normal
conditions, BAX located in the cytoplasm is enriched in mitochondria and becomes an
activated state [71–73]. During this process, BAK is also activated. The apoptosis-inhibiting
proteins BCL-2, BCL-XL, MCL-1, etc., can combine with BAX and BAK to suppress their
activity [74]. Cytochrome c is released under the action of these two diametrically opposed
proteins and then binds to Apaf-1 under the induction of apoptotic factors, such as Smac,
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DIABLO and Omi/HtrA2, to form apoptosome to further activate caspase-3 [75]. The
apoptosis inhibitor IAP family binds to and prevents the activation of caspase, forming
a negative feedback mechanism [76]. Another apoptosis-inducing factor induces apopto-
sis in a caspase-independent manner. Excessive DNA damage leads to the onset of the
PPAR-1-dependent cell death program; AIF then translocates from the mitochondria to the
nucleus, followed by nuclear condensation, phosphatidylserine exposure at the plasma
membrane and mitochondrial transmembrane collapse, a process unaffected by caspase
inhibitors [77]. The extrinsic apoptosis pathway is completed by death receptors that are
members of the TNFR superfamily, and the death receptors that receive cytotoxic signals
bind to their ligands. For instance, Fas/FasL, the most representative one, activates pro-
caspase-8 into caspase-8 through the combination of FADD and DED and then activates
other executioners of the caspase family in turn [78–80]. Activated caspase-8 activates BAX
and BAK by cleaving BID to release cytochrome c, a link that links the extrinsic and intrinsic
apoptotic pathways. Activated caspase-3 and caspase-7 cleave ICAD, which is an inhibitor
of caspase-activated DNase, and then release CAD, resulting in DNA fragmentation and
ultimately, complete apoptosis [78]. CRP is involved in the release of related proteins
on the internal/external apoptotic pathway, as well as upstream and downstream signal-
ing pathways, including but not limited to ERK and PPARγ-dependent or independent
(Figure 4).
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Autophagy suppresses tumors by eliminating oncogenic substrate proteins, toxic un-
folded proteins and damaged organelles, preventing chronic tissue damage and cancer de-
velopment; conversely, autophagy-mediated intracellular recycling promotes tumor growth
metabolism in cancer [81]. Autophagy was originally thought to be tumor-suppressive, as
the absence of the autophagy-related protein ATG6 has been observed in human breast,
ovarian and other cancers [82]. The mTOR and ULK complexes mediated by AMPK, p53,
PI3K/AKT and MAPK/ERK cooperate with ATG on the autophagic membrane to form au-
tophagosomes, which in turn control the entire autophagy process [83–86]. The formation
of autophagosomes involves a series of proteins and multimolecular complexes, involving
BECLIN 1, LC3, Rab complex, etc. [86]. The damaged organelles are captured by the au-
tophagosome membrane, recognized by the autophagy substrate p62, and then degraded
by lysosomes [87]. Autophagy inhibition is beneficial to tumor growth, as its deficiency
leads to the accumulation of p62, and the binding of p62 to mTORC1 inhibits autophagy
and activates NF-κB and NRF-2, which further promotes tumor cell proliferation [88–90].
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From a metabolic point of view, the existence of autophagy allows cells to still metabolize
in a starved state, which means that the activation of autophagy is sufficient to maintain
tumor cell survival [87,91]. CRP has not been researched in the field of autophagy for a
long time, but it is currently certain that its effects on autophagy include but are not limited
to regulating the PI3K/AKT/GSK-3c/mTOR pathway (Figure 5).
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Cancer metastasis is the spread of cancer cells to distant organs, and the invasion–
migration of cancer cells during this process is controlled by multiple factors. The process
of cell invasion–migration consists of the following aspects: (a) local invasion and cell
migration of the basement membrane; (b) intravascular deep vasculature and/or lym-
phatic system; (c) survival in the circulation; (d) arrest and extravasation at distant organ
sites; and (e) colonization at metastatic sites [92]. Protocols for single cell invasion in-
volve protease, actin cytoskeleton, integrin-dependent, integrin-independent and Rho- and
Rock/MLCK-dependent modes of migration into mesenchymal migration and glide-like
“amoematoid-migration” [93,94]. Epithelial–mesenchymal transitions (EMT) during cell
migration and invasion is regulated by transcription factors such as slug, Twist, ZEB1 and
ZEB2, which inhibit E-cadherin, the cornerstone of the epithelial state [95,96]. In addition,
the double negative feedback loop formed by miR-200 and ZEB1/ZEB2 is another impor-
tant mechanism for regulating EMT [96]. The invasion–metastasis cascade of cancer cells
begins with the destruction of BM, and its damage is the result of MMPs as enzymatically
hydrolyzed active proteins [97,98]. Indeed, the effects of MMPs on cancer are multifaceted,
including inflammation, cell proliferation, extracellular matrix (ECM) degradation, cell
migration, resistance to cell death, replicative immortality and metastatic niches; the most
critical role is the degradation and remodeling of the ECM during cancer cell invasion
and metastasis [99]. One of the sources of TGF-β, which has the function of inhibiting
tumor cell differentiation, is the inactive precursor after proteolysis of MMP-9. At the
same time, the regulation of VEGF by MMP-9 can promote tumor angiogenesis, which
is beneficial to tumor colonization [100–102]. In addition, TGF-β1 can also be activated
by MMP-14 and MMP-2 [103]. All three of the above proteins cleave LTBP-1 of the ECM
to indirectly regulate the activity of TGF-β [104,105]. NF-κB enhances the production of
MMPs, and its ability is restricted by TIMPs, with which it can form complexes that inhibit
proteolysis [106,107]. In particular, MMP-7 inhibits apoptosis by cleaving Fas ligands,
making it a place in the process of apoptosis [108]. The ability of hesperidin, naringin to
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downregulate MMPs has been demonstrated, which allows it to successfully reverse EMT
(Figure 6).
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5. Inhibitory Effect of CRP and Its Active Components on Cancer
5.1. Breast Cancer

With the highest diagnosis rate in women, breast cancer severely threatens the survival
and quality of life of women around the world. The mechanism of CRP in the treatment
of breast cancer is still under study. According to the existing results, flavonoids such
as nobiletin, tangeretin, hesperidin and naringin play a crucial role. The study found
that nobiletin can simultaneously inhibit the ERK1/2 and PI3K/AKT pathways to sup-
press the growth of TNBC MDA-MB-468 cells and perform anti-tumor effects through
anti-proliferation and induction of apoptosis [109]. Tangeretin inhibits breast cancer cell
metastasis by targeting TP53, PTGS2, MMP9 and PIK3CA and regulating the PI3K/AKT
pathway [110]. Tangeretin inhibits the formation of BCSCs and targets BCSCs by inhibiting
the Stat3/Sox2 signaling pathway, thereby treating breast cancer and BCSCs [111]. Tan-
geretin also attenuates DMBA-induced oxidative stress, reduces kidney DNA damage and
has chemo preventive activity against DMBA-induced breast cancer with cellular engraft-
ment [112,113]. Hesperidin exhibits a concentration-dependent cytotoxicity effect on human
breast cancer cell line MCF-7, which induces apoptosis and causes DNA damage [114,115].
The combination of hesperidin and chlorogenic acid modulates mitochondrial and ATP
production via the estrogen receptor pathway and synergistically inhibits the growth of
MCF-7 [116]. Naringin inhibits cell proliferation and promotes apoptosis and G1 cycle
arrest through regulating the β-catenin pathway, thereby suppressing the growth potential
of TNBC cells [117]. What’s more, hesperidin performed the inhibitory activity of the
proliferation of MCF-7-GFP-Tubulin cells, fought against drug-resistant cancer cells and
amelioratde the cell migration of MDA-MB 231 cells [118–120].

5.2. Lung Cancer

As the second most common cancer worldwide, lung cancer is the leading cause
of cancer death in 2020, with incidence and mortality rates approximately twice as high
in men as in women [45]. Under the current situation of extremely low survival rate,
how to improve the rate and the quality of life of patients diagnosed with lung cancer
has become the main subject of medical research. CRP is good at treating respiratory
system diseases, and pharmacological research has carried out in-depth exploration on the
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treatment of lung cancer. Smoking greatly increases the risk of lung cancer. Hesperidin is
able to down-regulate the expression of MMPs and enhance antioxidant status to combat
nicotine toxicity and suppression of smoking-induced lung cancer [121]. The antioxidant
capacity of hesperidin also inhibits tumor cell proliferation in benzo(a)pyrene-induced
lung cancer mouse models [122]. Another study found that inhibition of NSCLC cells
proliferation and promotion of apoptosis through the miR-132/ZEB2 signaling pathway
may be one of the mechanisms by which hesperidin alleviates NSCLC [123]. Hesperidin
also induces apoptosis through the mitochondrial pathway, up-regulates the expression of
P21 and P53 to triggers G0/G1 phase arrest in A549 cells and down-regulates cyclin D1
for anti-proliferation [124,125]. Another set of experiments by Xia R found that blocking
the SDF-1/CXCR-4 pathway to inhibit the migration of A549 cells and the suppression of
EMT phenotype transformation are also the approach for hesperidin to prevent tumors
and its metastasis [126]. Taking A549 cells as the research object, another important natural
compound of CRP, naringin, attenuates the EGF-induced MUC5AC mucin and mRNA
overexpression by inhibiting the synergistic activity of MAPKs/AP-1 and IKKs/IκB/NF-κB
signaling pathways [127]. Chen M found that naringin exhibited the capacity to inhibit
PI3K/AKT/mTOR and NF-κB pathways and activate the expression of miR-126 in H69
cells, thereby preventing cell growth and inducing apoptosis in SCLC cells [128].

5.3. Prostate Cancer

Prostate cancer is the most common malignancy among men worldwide, with 1.4 million
cases diagnosed in 2016 and more than 380,000 deaths [129]. A series of experimental studies
have demonstrated that flavonoids in CRP have positive effects on weakening cell viability
and inducing cytotoxicity in prostate cancer. The expressions of NF-κB and HIF-1α were
down-regulated in nobiletin-treated prostate cell lines DU145 and PC-3 cells, accompanied
by decreased phosphorylation of AKT, which in turn impairs cell viability [130]. Coinciden-
tally, tangeretin also down-regulated the expression of AKT and AR in C4-2 cells and
synergistically antagonized the resistance of CRPC cells to sorafenib or cisplatin [131].
In PC-3 cells, the pathways of tangeretin-induced cytotoxicity include not only caspase-
30mediated apoptosis, but also inhibition of PI3K/AKT/mTOR pathway to reverse the
EMT process [132].

5.4. Liver Cancer

Primary liver cancer, including hepatocellular carcinoma (HCC) and intrahepatic
cholangiocarcinoma, was the sixth most commonly diagnosed cancer and the third leading
cause of cancer death globally in 2020, with HCC accounting for 75–85% of these [45,133].
Hence, the exploration of CRP in the treatment of liver cancer mainly focuses on the
direction of HCC. Zheng J. et al. verified that the regulation of JNK/Bcl-2/BECLIN1
pathway-mediated autophagy is the mechanism by which tangeretin antagonizes the
proliferation and migration of HepG2 cells [134]. Hesperidin’ fight against HCC cells’
invasiveness is achieved by suppressing the activities of NF-κB and AP-1 to down-regulate
the expression and secretion of MMP-9 in acetaldehyde- and TPA-induced HCC [135,136].
The pro-apoptotic protein BAX is the key to cell apoptosis, and up-regulation of BAX to
induce apoptosis in HepG2 cells is an effective way for hesperidin and naringin to inhibit
liver cancer [137,138]. The fact that naringin reduces cell proliferation in DEN-induced
hepatocarcinoma rats is manifested by a marked decrease in AgNOR/nuclear and PCNA
levels, as well as altered DNA fragmentation in liver tissue [139].

5.5. Gastric Cancer

According to statistics, in 2020, there were more than 1 million new cases of gastric
cancer, causing 769,000 deaths, ranking fourth and fifth in the world in morbidity and
mortality, respectively [45]. Relying on the long-term clinical experience of CRP in the
treatment of digestive system diseases, related experiments have thus explored multi-
ple mechanisms of anti-gastric cancer. Endoplasmic reticulum stress mediates apoptosis
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and autophagy. Nobiletin down-regulates AKT/mTOR signaling pathway to promote
endoplasmic reticulum stress response in SNU-16 cells, which may be an integral part
of its anticancer activity [140]. Mitochondrial apoptosis mediated by activated caspase-9
and Fas/Fas L synergistically enables tangeretin to fulfill its mission of inhibiting AGS
cells [141]. Mitochondrial-mediated apoptosis is also applicable to the killing effect of
hesperidin on AGS cells. The level of reactive oxygen species in AGS cells after hesperidin
intervention increases, and the MAPK signaling pathway is regulated to induce cell apop-
tosis [142]. Radiation therapy is one of the main methods for the treatment of tumors at
present, through downregulating the expression of Notch-, Jagged1/2, Hey-1 and Hes-1,
downregulating the expression of miR-410, causing attenuated invasion and migration in
GC cells; tangeretin greatly enhanced the radiosensitivity of GC cells [143].

5.6. Colorectal Cancer

As the third most common cancer in terms of incidence and the second in mortality,
colorectal cancer accounts for one tenth of all diagnosed cancers and deaths [45]. Similar to
gastric cancer, the advantages of CRP in digestive diseases are also reflected in colorectal
cancer. Nobiletin and its major metabolites M1, M2 and M3 in the colon have established
roles in cell cycle arrest and apoptosis, thus effectively inhibiting AOM/DSS induced
colitis-associated colon cancer in CD-1 male mice [144]. In rectal cancer, the mechanism of
nobiletin is downregulating MMP-7 gene expression to inhibit the invasion and metastasis
of cancer cells [145]. Tangeretin and 5-FU synergistically up-regulate P21 in HCT-116 cells,
which in turn activates the P53-mediated DNA damage response and triggers apoptosis
via the JNK pathway, suggesting that the combination of tangeretin and 5-FU suppresses
the autophagy pathway, enabling cancer cells susceptible to oxidative stress-induced
programmed cell death [146]. Inhibition of colon cancer by hesperidin involves multiple
alterations, including caspase-3-mediated apoptosis, the autophagy program initiated by
PI3K/Akt/GSK-3c and mTOR pathway and, down-regulation of NF-κB and its target
molecules iNOS and COX-2 to attenuate oxidative stress and enhance antioxidants to fight
tumor-induced inflammation [147–150]. The above phenomenon also occurred in naringin-
treated CRC cells, where the suppression of the PI3K/AKT/mTOR pathway resulted in
ameliorated abnormal proliferation and apoptosis [151].

5.7. Esophageal Cancer

Esophageal cancer, another intractable disease of the digestive system, is also accompa-
nied by a particularly high fatality rate, with about 1 in every 18 cancer patients dying from
it [45]. The way that naringin combats esophageal cancer is to suppress the proliferation
and colony formation and the invasion of Eca109 cells by regulating related proteins to
block the JAK/STAT signaling pathway, so as to promote cell apoptosis [152]. In nude mice,
synephrine has a significant inhibitory effect on ESCC xenografts, and in vitro experiments
have observed that it down-regulates Galectin-3 to inactivate the AKT/ERK pathway in
ESCC cells [153].

5.8. Cervical Cancer

Although cervical cancer is the fourth leading cause of cancer death in women, the
most common cancer and the leading cause of cancer death in many countries worldwide,
it is considered a preventable cancer [45]. The inhibition of NEU3 activity in HeLa cells
and A549 cells mediated by naringin resulted in the accumulation of GM3 ganglioside,
which further led to the weakening of EGFR signaling, and finally resulted in cell growth
restriction. At the same time, the down-regulation of phosphorylation of EGFR and ERK
was also involved in the process [154]. Lin R’s data demonstrated that naringin abolishes
Wnt/β-catenin signaling and ultimately triggers cell cycle arrest at G0/G1 phase in Cervical
cancer cells, while ER stress-induced cell killing is also a pathway for naringin to act on [155].
Naringin also induces cell cycle arrest in the G2/M phase, inhibits cell growth and induces
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apoptosis via the NF-κB/COX-2-caspase-1 pathway, thereby exerting its anticancer activity
on SiHa cells and HeLa cells [156,157].

5.9. Bladder Cancer

The incidence of bladder cancer in men is much higher than women, making it
the sixth most common cancer and the ninth cause of cancer death [45]. Apoptosis is
an important mechanism of CRP against bladder cancer discovered in current research.
Nobiletin-induced apoptosis is accomplished through the regulation of endoplasmic retic-
ulum stress via PERK/elF2α/ATF4/CHOP pathway and PI3K/AKT/mTOR pathway,
and its inhibitory effect on BFTC cell growth is positively correlated with concentration
range [158]. Anti-tumor formation through apoptosis is also suitable for tangeretin by
inducing the release of pro-apoptotic factors such as cytochrome c to form an apoptotic
complex with activated caspase-9, thereby initiating the apoptotic response and disrupting
mitochondrial function, resulting in BFTC-905 cells being cytotoxic [159].

5.10. Other Cancers with High Diagnosis Rate

In addition to the above-mentioned cancers, CRP is quite successful in the treatment of
other common cancers. The mechanism of nobiletin against osteosarcoma metastasis is to
down-regulate the expression of MMP-2 and MMP-9 via ERK/JNK pathways and inhibit
the movement, migration and invasion of U2OS and HOS cells through activation of NF-κB,
CREB and SP-1 proteins [160]. Moreover, naringin suppresses the migration and invasion of
human chondrosarcoma by up-regulating the expression of miR-126 and downregulating
VCAM-1 expression [161]. By inhibiting MAPK and AKT/protein kinase B signaling
pathway and downregulating cell cycle-related factors, nobiletin achieves the purpose of
combating glioma cell proliferation and migration [162]. Suppression of the cyclin-D/cdc-2
complex formation leads to cell cycle arrest at G2/M arrest, decreased glioblastoma cell
growth after tangeretin treatment, increased G2/M phase cells and induces apoptosis [163].
Blocking the MAPKs signaling pathway, downregulating the activity and expression of
MMPs, thereby inhibiting the invasion, migration and adhesion of U87 cells, is a non-
negligible characteristic of naringin’s anti-metastatic properties [164]. Negative effects
on cell proliferation by inhibiting the FAK/cyclin D1 pathway, promoting apoptosis via
affecting the FAK/BADs pathway and attenuating cell invasion and metastasis through
the FAK/MMPs pathway are another example of naringin in the treatment of glioblastoma
cells [165]. Naringin-treated Walker 256 carcinosarcoma rats inhibited tumor growth, down-
regulated the expression of IL-6 and TNF-α and significantly prolonged the survival rate
without the occurrence of cachexia [166]. Induction of apoptosis by activating caspase-3
and up-regulation of intracellular ROS and blocking cell cycle progression in G2 phase
are the main ways that hesperidin reduces the viability of gallbladder cancer cells [167].
Inhibition of MAPK pathway, STAT3 activation and down-regulation of ER signaling
pathway in the genome seems to be an important mechanism by which hesperidin induces
apoptosis or autophagy in ECC-1 cancer cells [168]. Hesperidin inhibits mesothelioma
cell growth by inducing apoptosis by downregulating the mRNA and protein expression
levels of Sp1 and its regulatory proteins [169]. Hesperidin triggers apoptosis in lymphocyte
lineages in a PPARγ-dependent or PPARγ-independent manner and inactivates NF-κB,
which in turn sensitizes Ramos cells to chemotherapeutic agent-induced apoptosis [170].
The mechanism of action of hesperidin in NALM-6 cells is manifested in multiple aspects.
It can not only play pro-apoptotic and anti-proliferative effects via PPARγ-dependent
and PPARγ-independent pathways, but also affect apoptosis and cytotoxicity through
PI3K/AKT/IKK signaling pathway [171,172]. As early as 1998, some scholars have found
that hesperidin has an inhibitory effect on 12-O-tetradecanoyl-13-phorbo lactate-induced
skin tumor [173]. In vitro, hesperidin affected PD-L1 expression in HN6 cells and HN15
cells by reducing the phosphorylation of STAT1 and STAT3, thereby inhibiting cancer
cell survival and avoiding evasion of antitumor immunity. Correspondingly, in vivo
experiments found that hesperidin had a negative effect on 4-NQO-induced proliferation of
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rat oral cancer [174–176]. Nobiletin inhibited the proliferation of TCA-8113 cells and CAL-
27 cells through cell cycle arrest in G1 phase, accompanied by changes in intracellular levels
of acidified PKA and phosphorylated CREB, impaired mitochondrial function, glucose
consumption and pyruvate and lactate production [177]. The antagonism of nobiletin on
LPS- and INF-γ-induced PGE2, COX-2, NO endows it with the property of preventing
inflammation-related tumors [178]. Nobiletin has positive and negative regulatory effects
on MMPs and TMP-1, which is a specific manifestation of its interference with PI3K
signaling pathway to suppress tumors [179].

6. Conclusions

To sum up, the performance of CRP, especially its flavonoids, in the fight against
cancer, is worthy of recognition because, while it does not prevent the process of a certain
aspect of cancer alone, it reverses or suppresses the development of cancer through various
pathways, which is a characteristic that traditional anti-cancer agents lack compared to
traditional Chinese medicine. Because of the multiple functions of CRP, its ability has not
been thoroughly studied. In addition, CRP is also commendable as an advantage in that it
is a natural product that is homologous to medicine and food, which makes it inexpensive
and easy to obtain. However, the most prominent defect of CRP as an anti-cancer agent is
the lack of clinical research, which will be an important content of CRP to be explored next.
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